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Abstract

Distance rationalizability is a framework for classifying existing voting rules by in-
terpreting them in terms of distances and consensus classes. It also allows to design
new voting rules with desired properties. A particularly natural and versatile class of
distances that can be used for this purpose is that of votewise distances [EFS10b], which
“lift” distances over individual votes to distances over entire elections using a suitable
norm. In this paper, we continue the investigation of the properties of votewise distance-
rationalizable rules that was initiated by Elkind, Faliszewski, and Slinko [EFS10b]. We
describe a number of general conditions on distances and consensus classes that ensure
that the resulting voting rule is homogeneous or monotone. This complements the re-
sults of [EFS10b], where the authors focus on anonymity, neutrality and consistency. We
also provide a detailed study of the class of rules that are votewise distance-rationalizable
with respect to the simple majority consensus, which received little attention so far.

1 Introduction

In collaborative environments, agents often need to make joint decisions based on their pref-
erences over possible outcomes. Thus, social choice theory emerges as an important tool in
the design and analysis of multiagent systems [ER97]. However, voting procedures that have
been developed for human societies are not necessarily optimal for artificial agents and vice
versa. For instance, there are voting rules (such as, e.g., single transferable vote) that allow
for polynomial-time winner determination, yet have been deemed too complicated to be
comprehended by an average voter in many countries; in contrast, for an autonomous agent
the perceived complexity of a rule is not an issue. Further, unlike an electoral committee
in a human society, the designer of a multi-agent voting system is usually unencumbered
by legacy issues or the need to appeal to uneducated public, and can choose a voting rule
that is most suitable for the application at hand, or, indeed, design a brand-new voting rule
that satisfies the axioms that he deems important.

A recently proposed distance rationalizability framework [MN08, EFS09, EFS10b, EFS10a]
is ideally suited for such settings. Under this framework, one can define a voting rule by
a class of consensus elections and a distance over elections; the winners of an election are
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defined as the winners in the nearest consensus election. In other words, for any election
this rule seeks the most similar election with an obvious winner (where the similarity is
measured by the given distance), and outputs its winner. Examples of natural consensus
classes include strong unanimity consensus, where all voters agree on the ranking of all
candidates, and Condorcet consensus, where there is a candidate that is preferred by a ma-
jority of voters to every other candidate. Combined with the swap distance (defined as the
number of swaps of adjacent candidates that transforms one election into the other), these
consensus classes produce, respectively, the Kemeny rule and the Dodgson rule.

The examples above illustrate that the distance rationalizability framework can be used
to interpret (rationalize) existing voting rules in terms of a search for consensus (see [MN08]
for a comprehensive list of results in this vein). It can also be applied to design new vot-
ing rules: for instance, in [EFS09] the authors investigate the rule obtained by combining
the Condorcet consensus with the Hamming distance. Further, by decomposing a voting
rule into a consensus class and a distance we can hope to gain further insights into the
structure of the rule. This is especially true for the so-called votewise distances introduced
in [EFS10b]. These are distances over elections that are obtained by aggregating distances
between individual votes using a suitable norm, such as `1 or `∞. Indeed, paper [EFS10b]
shows that one can derive conclusions about anonymity, neutrality and consistency of vote-
wise rules (i.e., rules rationalized via votewise distances) from the basic properties of the
underlying distances on votes, norms, and consensus classes.

In this paper we pick up this thread of research and study two important properties of
voting rules not considered in [EFS10b], namely, monotonicity and homogeneity. Briefly
put, monotonicity ensures that a voting rule is in some way responsive to voters’ prefer-
ences (specifically, providing more support to a winning candidate cannot turn him into a
loser) and homogeneity ensures that the result of an election depends on the proportions
of particular votes and not on their absolute counts. Both properties are considered highly
desirable for reasonable voting rules (although, for example, single transferable vote and
plurality run-off used in political elections in, respectively, Australia, and France, are known
not to be monotone). We focus on the four standard consensus classes considered in the
previous work (strong unanimity S, unanimity U , majority M and Condorcet C) and `1-
and `∞-norms, Our aim is to identify distances on votes that, combined with these norms
and consensus classes, produce homogeneous and/or monotone rules.

Of the four consensus classes considered in this paper, the majority consensus M re-
ceived relatively little attention in the existing literature. Thus, in order to study the
homogeneity and monotonicity of the rules that are distance-rationalizable with respect to
M, we need to develop a better understanding of such rules. Our main result here is a
characterizaton of all voting rules that are rationalizable with respect to M via a neutral
distance on votes and the `1-norm. It turns out that such rules have a very natural in-
terpretation: they are “majority variants” of ordinary scoring rules. This characterization
enables us to analyze the homogeneity of the rules in this class, leading to a dichotomy
result.

As argued above, a votewise distance-rationalizable rule can be characterized by three
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parameters: a distance on votes, a norm, and a consensus class. From this perspective,
it is interesting to ask how much the voting rule changes if we vary one or two of these
parameters. We provide two results that contribute to this agenda. First, we show that
essentially any rule that is votewise-rationalizable with respect toM can also be rationalized
with respect to U , by modifying the norm accordingly. This enables us to answer a question
left open in [EFS10a]. Second, we show that, for any consensus class and any distance
on votes, replacing the `1-norm with the `∞-norm produces a voting rule that is an n-
approximation of the original rule, where n is the number of voters. For the Dodgson rule,
this transformation produces a rule that is polynomial-time computable and homogeneous.
This line of work also emphasises the constructive aspect of the distance rationalizability
framework: we are able to derive new voting rules with attractive properties by combining
a known consensus class with a known distance measure in a novel way.

Related work. The formal theory of distance rationalizability was initiated by Meskanen
and Nurmi [MN08], though the idea, in one shape or another, appeared in earlier papers as
well (see, e.g., [Nit81, Bai87, Kla05b, Kla05a]). The goal of Meskanen and Nurmi was to
seek best possible distance-rationalizations of classical voting rules. This research program
was advanced by Elkind, Faliszewski, and Slinko [EFS09, EFS10b, EFS10a], who, in addi-
tion to further classification work, also suggested studying general properties of distance-
rationalizable voting rules. In particular, in [EFS10a] they identified an interesting and
versatile class of distances—which they called votewise distances—that lead to rules whose
properties can be meaningfully studied.

The study of distance rationalizability is naturally related to the study of another—
much older—framework of interpreting voting rules as maximum likelihood estimators,
which could be dated back to Condorcet and which has been pursued, among others, by
Young [You77], Conitzer and Sandholm [CS05], Conitzer, Rognlie, and Xia [CRX09], and—
in the context of combinatrial domains—by Xia, Conitzer and Lang [XCL10]. To date, most
of the research on the MLE framework regards classifying existing voting rules as maximum
likelihood estimators; however, paper [XCL10] also shows that the MLE approach can be
used to deduce new useful voting rules.

This paper is loosely related to the work of Caragiannis et al. [CKKP10], where the au-
thors give a monotone, homogeneous voting rule that calculates scores which approximate
candidates’ Dodgson scores up to an O(m logm) multiplicative factor, where m is the num-
ber of candidates. The relation to our work is twofold. First, we also focus on monotonicity
and homogeneity, although our goal is to come up with a general method of constructing
monotone and homogeneous rules and not to approximate particular rules. Second, in the
course of our study we discover a homogeneous and poynomial-time computable voting
rule that approximates the scores of candidates in Dodgson elections up to a multiplicative
factor of n, where n is the number of voters. While the number of voters is usually much
bigger than the number of candidates, and thus our algorithm is usually inferior to that
of [CKKP10], it illustrates the power of the distance rationalizability framework.

Organization of the paper. The paper is organized as follows. Section 2 contains
preliminary definitions regarding voting rules in general and the distance-rationalizability
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framework specifically. In Section 3 we provide a detailed study of votewise rules with re-
spect to the majority consensus. Section 4 presents our results on homogeneity of votewise
rules. In Section 5 we briefly depart from our path of studying homogeneity and mono-
tonicity and show that `∞-votewise rules form weak approximations of `1-votewise rules. In
particular, we provide an interesting polynomial-time approximation algorithm for Dodg-
son’s rule. Finally, in Section 6 we present our results on monotonicity of votewise rules and
argue that our monotonicity conditions supplement distance-rationalizability framework in
general. We conclude in Section 7.

2 Preliminaries

2.1. Basic notation. An election is a pair E = (C, V ), where C = {c1, . . . , cm} is the
set of candidates and V = (v1, . . . , vn) is the set of voters. Voter vi is identified with a
total order �i over C, which we will refer to as vi’s preference order, or ranking. We write
cj �i c` to denote that voter vi prefers cj to c`. We denote by P(C) the set of all preference
orders over C. For a voter v, we denote by top(v) the candidate ranked first by v, and
set P(C, c) = {v ∈ P(C) | top(v) = c}. For any voter vi ∈ V and a candidate c ∈ C,
we denote by rank(vi, c) the position of c in vi’s ranking. For example, if top(vi) = c
then rank(vi, c) = 1. A voting rule is a mapping R that for any election (C, V ) outputs
a non-empty subset of candidates W ⊆ C called the election winners. Given an election
E = (C, V ) and s ∈ N, we denote by sE the election (C, sV ), where sV is obtained by
concatenating s copies of V . Assuming anonymity, we may view sV as a society where
every voter of V is cloned s times.

Two important properties of voting rules that will be studied in this paper are homo-
geneity and monotonicity.

Homogeneity. A voting rule R is homogeneous if for every election E = (C, V ) and every
positive integer s it holds that R(E) = R(sE).

Monotonicity. A voting rule R is monotone if for every election E = (C, V ), every c ∈
R(E) and every E′ = (C, V ′) obtained from E by moving c up in some voters’ rankings
(but not changing their rankings in any other way) we have c ∈ R(E′).

2.2. Voting rules. We will now define the classic voting rules discussed in this paper,
namely, scoring rules, (simplified) Bucklin, and Dodgson.

Scoring rules Throughout this paper, we will use a somewhat nonstandard definition of
a scoring rule. Any vector α = (α1, . . . , αm) ∈ (R+ ∪ {0})n can be used as a scoring
vector and it defines a partial voting rule Rα that can be used in elections for a fixed
number m of candidates. For each preference order u on the set of m candidates a
candidate c gets αrank(u,c) points (as is standard) and these values are summed up
together to obtain the score of c. However, we define the winners to be the candidates
with the lowest score (rather than with the highest; as is typical when discussing
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scoring rules). A sequence of score vectors (α(m))m∈N defines a voting rule R(α(m))

which is applicable for any number of alternatives.

For example, in this notation the Borda rule is defined by a family of scoring vectors
α(m) = (0, 1, . . . ,m − 1) and the k-approval is the family of scoring vectors given by

α
(m)
i = 0 for i ≤ k, α

(m)
i = 1 for i > k. The 1-approval rule is also known as Plurality.

The traditional model, where the winners are the candidates with the highest score, it
can be converted to our notation by setting α′i = αmax−αi, where αmax = maxmi=1 αi.
The reason for this deviation is that in the context of this paper it will be much more
convenient to speak of minimizing one’s score. Note that, in general, we do not require
α1 ≤ · · · ≤ αm, although this assumption is obviously required for monotonicity.

Note also that scoring vectors (α1, . . . , αm) and (βα1, . . . , βαm) define same voting
rules for any β > 0; the same is true for (α1, . . . , αm) and (α1 + γ, . . . , αm + γ) for
any γ ≥ 0. Thus, in what follows, we normalize all scoring rules by requiring that the
smallest entry in the scoring vector is 0, and the smallest non-zero entry is 1.

Bucklin The Bucklin rule1 RB can be thought of as an adaptive version of k-approval.
Under this rule, we first determine the smallest value of k such that some candidate
is ranked in top k positions by more than half of the voters. The winner(s) are the
candidates that are ranked in the top k positions the maximum number of times.
Under the simplified Bucklin rule RsB , the winners are all candidates ranked in top
k positions by a majority of voters. For any election E we have RB(E) ⊆ RsB (E).

Dodgson To define the Dodgson rule, we need to introduce the concept of a Condorcet
winner. A Condorcet winner is a candidate that is preferred to any other candidate
by a majority of voters. The Dodgson score of a candidate c is the smallest number
of swaps of adjacent candidates that have to be performed on the votes to make c the
Condorcet winner. The winner(s) under the Dodgson rule are the candidates with the
lowest Dodgson score.

2.3. Norms and Metrics. A norm on Rn is a mapping N : Rn → R that has the
following properties for all x, y ∈ Rn:

(1) N(αx) = |α|N(x) for all α ∈ R;

(2) N(x) ≥ 0 and N(x) = 0 if and only if x = (0, . . . , 0);

(3) N(x+ y) ≤ N(x) +N(y).

Two important properties of norms that will be of interest to us are symmetry and
monotonicity. We say that a norm N is symmetric if for each permutation σ : [1, n]→ [1, n]
it holds that N(x1, . . . , xn) = N(xσ(1), . . . , xσ(n)). For monotonicity, we make use of the
definition proposed in [BSW61]. Specifically, we say that a norm N is monotone in the

1known also as majoritarian compromise.
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positive orthant, or Rn+-monotone, if for any two vectors (x1, . . . , xn), (y1, . . . , yn) ∈ Rn+
such that xi ≤ yi for all i = 1, . . . , n we have N(x1, . . . , xn) ≤ N(y1, . . . , yn).

A well-studied class of norms are the `p-norms given by

`p(x1, . . . , xn) = (|x1|p + · · ·+ |xn|p)
1
p

for p ∈ N. This definition extends to p = +∞ by setting `∞(x1, . . . , xn) = max{x1, . . . , xn}.
Observe that for any p ∈ N ∪ {+∞} the `p norm is, in fact, a family of norms, i.e., it is
well-defined on Ri for any i ∈ N. Also, any such norm is clearly symmetric and monotone
in the positive orthant.

A metric, or distance, on a set X is a mapping d : X2 → R that satisfies the following
conditions for all x, y, z ∈ X:

(1) d(x, y) ≥ 0;

(2) d(x, y) = 0 if and only if x = y;

(3) d(x, y) = d(y, x);

(4) d(x, z) ≤ d(x, y) + d(y, z).

A function that satisfies conditions (1), (3) and (4), but not (2), is called a pseudodistance.
Given a distance d on X and a norm N on Rn, we can define a distance N ◦ d on

Xn by setting (N ◦ d)((x1, . . . , xn), (y1, . . . , yn)) = N(d(x1, y1), . . . , d(xn, yn)) for all vectors
(x1, . . . , xn), (y1, . . . , yn) ∈ Xn. A distance defined in this manner is called a product metric.

In this paper, we will study distances over votes and their extensions to distances over
elections via product metrics (see below). Some examples of distances over votes are given
by the discrete distance ddiscr, the swap distance dswap, and the Sertel distance dser, defined
as follows. For any set of candidates C and any u, v ∈ P(C), we set ddiscr(u, v) = 0 if u = v
and ddiscr(u, v) = 1 otherwise. The swap distance dswap is given by dswap(u, v) = 1

2 |{(c, c
′) ∈

C2 | c �u c′, c′ �v c}|, where �u and �v are the preference orders associated with u and v,
respectively. The Sertel distance between u and v is defined as the smallest value of i such
that for all j > i voters u and v rank the same candidate in position j.

A distance d on P(C) is called neutral if for any u, v ∈ P(C) and any permutation
π : C → C we have d(u, v) = d(π(u), π(v)), where π(x) denotes the vote obtained from x
by moving candidate ci into position rank(x, π(ci)), for i = 1, . . . , |C|. Clearly, all distances
listed above are neutral.
2.4. Distance Rationalizability. Intuitively, a consensus class is a collection of elec-
tions with an obvious winner. Formally, a consensus class is a pair (E ,W) where E is a set
of elections and W : E → C is a function. This function, for each election E ∈ E , outputs
the alternative called the consensus winner. The following four consensus classes have been
considered in the previous work on distance rationalizability:

Strong unanimity. Denoted S, contains elections E = (C, V ) where all voters report the
same preference order. The consensus winner is the candidate ranked first by all
voters.
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Unanimity. Denoted U , contains all elections E = (C, V ) where all voters rank the same
candidate first. The consensus winner is the candidate ranked first by all voters.

Majority. Denoted M, contains all elections E = (C, V ) where more than half of the
voters rank the same candidate first. The consensus winner is the candidate ranked
first by the majority of voters.

Condorcet. Denoted C, contains all elections E = (C, V ) with a Condorcet winner. The
consensus winner is the Condorcet winner.

We say that a voting rule R is compatible with a consensus class K if for any consensus
election E ∈ K it holds that W(E) = R(E). Similarly, R is said to be weakly compatible
with K if for any E ∈ K we have W(E) ∈ R(E). Essentially all well-known voting rules are
weakly compatible with S, U andM, but there are rules that are not compatible with any
of these consensus classes (e.g., k-approval for k > 1). The rules that are compatible with C
are also known as Condorcet-consistent rules; we use the term “compatibility” rather than
“consistency” to avoid confusion with the consistency property of voting rules.

We are now ready to define the concept of distance rationalizability. Our definition
below is taken from [EFS10b], which itself was inspired by [MN08, EFS09].

Definition 2.1. Let d be a distance over elections and let K = (E ,W) be a consensus class.
The (K, d)-score of a candidate c in an election E is the distance (according to d) between E
and a closest election E′ ∈ E such that c ∈ W(E′). A voting rule R is distance-rationalizable
via a consensus class K and a distance d over elections (is (K, d)-rationalizable) if for each
election E the set R(E) consists of all candidates with the smallest (K, d)-score.

A particularly useful class of distances to be used in distance rationalizability construc-
tions is that of votewise distances, which are obtained by combining a distance over votes
with a suitable norm. Formally, given a set of candidates C, consider a distance d over
P(C) and a family of norms N = (Ni)

∞
i=1, where Ni is a norm over Ri. We define a distance

d̂N over elections with the set of candidates C as follows: for any E = (C, V ), E′ = (C, V ′),

we set d̂N (E,E′) = (Ni ◦ d)(V, V ′) if |V | = |V ′| = i, and d̂N (E,E′) = +∞ if |V | 6= |V ′|.
A voting rule R is said to be N -votewise distance-rationalizable (or simply N -votewise)
with respect to a consensus class K if there exists a distance d over votes such that R
is (K, d̂N )-rationalizable. When N is the `p-norm for some p ∈ N ∪ {+∞}, we write d̂p

instead of d̂`p , and when N = `1, we omit the index altogether and write d̂. It is known
that any voting rule is distance-rationalizable with respect to any consensus class that is
compatible with it [EFS10b]. However, there exist voting rules that are not N -votewise
distance-rationalizable with respect to standard consensus classes for any reasonable norm
N [EFS10a].

Let us now consider some examples of distance-rationalizations of voting rules. Nitzan
[Nit81] was the first to show that Plurality is (U , d̂discr)-rationalizable and Borda is (U , d̂swap)-

rationalizable. It is easy to see that Dodgson is (C, d̂swap)-rationalizable and Kemeny is
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(S, d̂swap)-rationalizable. The distance d̂∞ser, combined with the majority consensus, yields
the Simplified Bucklin rule [EFS10b].

Let C = {c1, . . . , cm} be a set of candidates and let u and v be two votes over C.
For each scoring vector α = (α1, . . . , αm), paper [EFS10b] defines a (pseudo)distance
dα(u, v) as dα(u, v) =

∑m
j=1 |αrank(u,cj) − αrank(v,cj)|, and shows that if α1 = 0 then Rα

is (U , d̂α)-(pseudo)distance-rationalizable. The following lemma, proved as part of Theo-
rem 3 of [EFS09],2 will be useful for us later on.

Lemma 2.2 ([EFS09]). Let C = {c1, . . . , cm} be a set of candidates, α = (α1, . . . , αm) be
a normalized scoring vector, and c be a candidate. For each vote v over C it holds that
min{dα(v, u) | u ∈ P(C, c)} = 2|αrank(v,c) − α1|.

3 M-Counterparts of Classical Scoring Rules

The majority consensus is a very natural notion of agreement in the society; however, it has
received little attention in the literature so far. Here we will show how it leads to a series
of interesting rules with nice properties.

Definition 3.1. For any scoring vector α = (α1, . . . , αm), letM-Rα be a partial voting rule
defined on the profiles with m alternatives as follows. Given an election E = (C, V ) with
C = {c1, . . . , cm} and V = (v1, . . . , vn), for each candidate c ∈ C, we define the M-score
of c as the sum of

⌊
n
2

⌋
+ 1 lowest values among αrank(v1,c), . . . , αrank(vn,c). The candidates

with the lowest M-Rα scores are the M-Rα-winners. As in the classical case, for a family
of scoring vectors (α(i))i∈N we can define an M-scoring rule M-R(α(i)).

We will refer to voting rules from Definition 3.1 asM-scoring rules. Such rules (or their
slight modifications) are often used for score aggregation in real-life settings; for example, it
is not unusual for a professor to grade the students on the basis of their five best assignments
out of six or in some sport competitions to award winners on the basis of their several best
attempts.

It is not hard to see that M-Plurality is equivalent to Plurality: under both rules,
the winners are the candidates with the maximum number of first-place votes. However,
essentially all other scoring rules differ from their M-counterparts.

Proposition 3.2. For any normalized scoring vector α = (α1, . . . , αm) the rule M-Rα is
equivalent to Rα (i.e., outputs exactly the same set of winners on any preference profile) if
and only if (i) α1 = · · · = αm or (ii) αi = 0, αj = 1 for some i ∈ [1,m] and all j 6= i.

Proof. Clearly, if all coordinates of the scoring vector are equal, bothM-Rα and Rα output
the set of all candidates on any preference profile. Further, we have already argued that if
α1 = 0, αj = 1 for each j > 1, thenM-Rα is the Plurality rule. Clearly, this argument also
applies if the only 0 appears in a different position of the scoring vector.

2The proof in [EFS09] assumes that—in our notation—α1 ≤ · · · ≤ αm, but it is not hard to see that it
goes through as long as we require α1 = 0 ≤ αk for all k > 1.
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We will now show that the converse direction is also true. Note that we can assume
without loss of generality that α1 ≤ · · · ≤ αm: it is not hard to see that for any permutation
σ : [1,m] → [1,m] it holds that M-Rα is equivalent to Rα if and only if M-Rσ(α) is
equivalent to Rσ(α), where σ(α) is the scoring vector given by (ασ(1), . . . , ασ(m)). Thus for
any scoring rule that satisfies neither (i) nor (ii) we can assume that either (a) α1 = α2 = 0,
αm > 0 or (b) α1 = 0, α2 = 1, and αm > 1. We will argue that in both of these cases
M-Rα is not equivalent to Rα.

Indeed, consider two candidates c and w and an election E with n voters where bn2 c+ 1
voters rank c first and w second, and the remaining voters rank w first and c last.

In case (a), theM-Rα-score of both c and w is 0, so both of them are among the winners
under M-Rα. On the other hand, c’s Rα-score is at least dn2 e − 1, while w’s Rα-score is
zero, so w is among the winners under Rα and c is not. Thus, we haveM-Rα(E) 6= Rα(E).

In case (b), c is the unique winner underM-Rα. On the other hand, underRα candidate
c gets αm(dn2 e − 1) points, and candidate w gets bn2 c + 1 points. Since αm > 1, for large
enough values of n (it suffices to pick n > αm+1

αm−1) candidate w has a lower score under Rα,
i.e., c cannot be the winner of E.

Indeed, M-scoring rule M-Rα for a particular scoring vector α = (α1, . . . , αm) may be
in some respect better than Rα. For example, it is known that Borda is highly manipulable.
M-Borda is also manipulable but the scope of possible manipulations seems to be much
more limited. In particular, moving an alternative to the bottom of your ranking may not
have an effect on the score of that alternative.

In this section we will show that these rules are also very interesting from the distance
rationalizability point of view: it turns out that they essentially coincide with the class of
rules that are `1-votewise rationalizable with respect to M.

We will first need to generalize a result from [EFS10b] to pseudodistances and weak
compatibility.

Proposition 3.3. If a voting rule is pseudodistance-rationalizable with respect to a consen-
sus class K, it is weakly compatible with K.

Proof. Consider a K-consensus E = (C, V ) with winner c and a (K, d)-rationalizable voting
rule R, where d is a pseudodistance. We have d(E,E) = 0, so d(E,E) ≤ d(E,E′) for any
election E′. Therefore, c ∈ R(E).

As a side remark, recall that in [EFS10b] the authors show that if we replace ‘pseu-
dodistance rationalizability’ and ‘weak compatibility’ with ‘distance rationalizability’ and
‘compatibility’ in the statement of Proposition 3.3, then the converse is also true: any K-
compatible rule is distance-rationalizable with respect to K. It is not clear if the same is
true in our case, as the proof given in [EFS10b] does not generalize immediately to our
setting.

We start by characterizingM-scoring rules that are (pseudo)distance-rationalizable with
respect to M.
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Proposition 3.4. Consider a normalized scoring vector α = (α1, . . . , αm). The ruleM-Rα
is `1-votewise distance-rationalizable with respect to M if and only if α1 = 0, αj > 0 for
all j 6= 1. Further, M-Rα is `1-votewise pseudodistance-rationalizable with respect to M if
and only if α1 = 0.

Proof. Suppose first that α1 6= 0. Since α is normalized, there exists a j 6= 1 such that
αj = 0. Consider a preference profile in which some candidate c is ranked first by everyone,
and some other candidate w is ranked in the j-th position by everyone. Clearly, c is the
majority winner, but under M-Rα w is a winner, and c is not. Thus, by Proposition 3.3
no such rule can be pseudodistance-rationalizable with respect to M.

Now, suppose that α1 = 0. Consider the pseudodistance dα, an election E = (C, V ),
a candidate c ∈ C, and a voter v ∈ V that ranks c in the j-th position. By Lemma 2.2,
min{dα(v, u) | u ∈ P(C, c)} = 2αj This implies that in E for any candidate c ∈ C his
M-Rα-score is twice the distance to the nearest M-consensus with winner c. Hence, the
rule M-Rα is (M, d̂α)-rationalizable.

Clearly, dα is not necessarily a distance. Indeed, if we have αj = 0 = α1 for some j 6= 1,
the distance between a vote v and the vote obtained from v by swapping the candidates
in the first and the j-th position is 0. This argument also shows that in this case M-Rα
is not distance-rationalizable. Indeed, if all voters rank c first and rank w in the j-th
position, then both c and w are winners underM-Rα, even though c is the unique majority
winner. Now, suppose that αj 6= 0 for all j 6= 1. It may still happen that αj = αk for some
j, k ∈ {2, . . . ,m}, in which case dα is still a pseudodistance. However, in this case we can set
ε = min{|αj − αk| | αj 6= αk} and let d′α(u, v) = 0 if u = v and d′α(u, v) = min{dα(u, v), ε}
otherwise. It is not hard to see that d′α is a distance; in particular, we have d′α(u, v) 6= 0 for
u 6= v by construction, and the triangle inequality is satisfied by our choice of ε. Further,
consider a vote v that ranks c in the j-th position, j > 1, and the nearest (with respect to
dα) vote u that ranks c first. We have dα(v, u) = 2αj > 0, so d′α(u, v) = dα(u, v). Therefore,

the argument showing thatM-Rα is (M, d̂α)-rationalizable applies to d̂′α as well, and hence
M-Rα is `1-votewise distance-rationalizable.

We remark that our characterization also applies to scoring rules and U , thus answering
a question left open in [EFS09], where the authors ask whether scoring rules with αi = αj
for i, j > 1 can be distance-rationalized (rather than pseudodistance-rationalized). Further,
in [EFS09] the authors consider only monotone scoring rules, i.e., rules that satisfy—in our
notation—α1 ≤ · · · ≤ αm, while our result holds for all scoring vectors.

The following lemma (proof omitted) explains how to find an M-consensus that is
nearest to a given election with respect to a given `1-votewise distance.

Lemma 3.5. Let R be a voting rule that is (M, d̂)-rationalized. Let E = (C, V ) be an
arbitrary election where V = (v1, . . . , vn) and let E′ = (C,U) be an M-consensus such that
d̂(E,E′) is minimal among allM-consensuses in Pn(C). Let c ∈ C be the consensus winner
of (C,U). Then, for each i = 1, . . . , n, either ui ∈ arg minx∈P(C,c) d(x, vi) or ui = vi.

Combining Lemma 3.5 with the argument in the proof of Theorem 4.9 in [EFS10b], we
can show that the converse of Proposition 3.4 is also true: any voting rule that can be
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pseudodistance-rationalized via M and a neutral `1-votewise pseudodistance is, in fact, an
M-scoring rule. Also, any M-scoring rule is obviously neutral. We can summarize these
observations in the following theorem.

Theorem 3.6. Let R be a voting rule. There exists a neutral `1-votewise pseudodistance d̂
such that R is (M, d̂)-rationalizable if and only if R can be defined as an M-scoring rule

M-R(α(i)) such that α
(i)
1 ≤ α

(i)
j for all j > 1 and all i ∈ N.

We stress that the above characterization applies to neutral `1-votewise rules and not,
for example, `∞-votewise rules, which can be substantially different and, as we will see in
the next section, can have quite different properties.

The discussion above suggests that using the majority consensus to rationalize a voting
rule is similar to using the unanimity consensus, except that we take the best “half-plus-
one” votes into account only. In fact, it turns out that under very weak assumptions we can
translate a votewise rationalization of a rule with respect toM to a votewise rationalization
of that rule with respect to U .

Definition 3.7. Let N = (Ni)
∞
i=1 be a family of functions where for each i, i ≥ 1, Ni is

a mapping from Ri to R. We define a family NM = (NMi )∞i=1 as follows. For each i ≥ 1,
NMi is a mapping from Ri to R given by

NMi (x1, . . . , xi) = N(|xπ(1)|, . . . , |xπ(b i
2c+1)|),

where π is a permutation of [1, i] such that |xπ(1)| ≥ |xπ(2)| ≥ · · · ≥ |xπ(i)|.

For a family of symmetric norms N = (Ni)
∞
i=1 that are monotone in the positive orthant,

the family NM is also a family of norms, which we will call the majority variant of N .

Proposition 3.8. Let N = (Ni)
∞
i=1 be a family of norms, where each Ni is a norm on Ri

that is symmetric and monotone in the positive orthant. Then the family NM = (NM)∞i=1

is also a family of norms that are symmetric and monotone in the positive orthant.

Proof. Let us fix a positive integer n. We will first show that NMn is a norm. It is easy to see
that since Nbn

2
c is a norm, for every (x1, . . . , xn) ∈ Rn it holds that (a) NMn (x1, . . . , xn) ≥ 0,

(b) NMn (x1, . . . , xn) = 0 if and only if x1 = · · · = xn = 0, and (c) for each α ∈ R it holds
that NMn (αx1, . . . , αxn) = |α|NMn (x1, . . . , xn).

Let us now show thatNMn satisfies the triangle inequality. Let (x1, . . . , xn) and (y1, . . . , yn)
be two vectors in Rn. We need to show that NMn (x1 +y1, . . . , xn+yn) ≤ NMn (x1, . . . , xn) +
NMn (y1, . . . , yn). Let π, σx and σy be permutations of [1, n] such that |xπ(1) + yπ(1)| ≥ · · · ≥
|xπ(n) + yπ(n)|, |xσx(1)| ≥ . . . ≥ |xσx(n)|, |yσy(1)| ≥ . . . ≥ |yσy(n)|. Let h = bn2 c+ 1. We have

NMn (x1 + y1, . . . , xn + yn) = Nh(|xπ(1) + yπ(1)|, . . . , |xπ(h) + yπ(h)|)
≤ Nh(|xπ(1)|+ |yπ(1)|, . . . , |xπ(h)|+ |yπ(h)|)
≤ Nh(|xπ(1)|, . . . , |xπ(h)|) +Nh(|yπ(1)|, . . . , |yπ(h)|)
≤ Nh(|xσx(1)|, . . . , |xσx(h)|) +Nh(|yσy(1)|, . . . , |yσy(h)|)
= NMn (x1, . . . , xn) +NMn (y1, . . . , yn),
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where the second inequality follows by triangle inequality for Nh, and the third one follows
by Nh’s symmetry and monotonicity in the positive orthant. As a result, NMn is a norm.

By construction, M-Nn is both symmetric and monotone in the positive orthant. This
completes the proof.

As an immediate corollary we get the following result.

Corollary 3.9. Let N be a family of symmetric norms that are monotone in the positive or-

thant and let d be a distance over votes. Let R be a voting rule that is (M, d̂N )-rationalized.

Then R is (U , d̂NM)-rationalized.

This discussion illustrates that when a rule can be rationalized in several different ways,
the right choice of a consensus class plays an important role, as it may greatly simplify the
underlying norm and hence the distance. This is why it pays to keep a variety of consensus
classes available and search for best distance rationalizations possible. Corollary 3.9 also
has a useful application: Paper [EFS10a] shows that STV3 cannot be rationalized with
respect to U by any neutral N -votewise distance, where N is a family of symmetric norms
monotone in the positive orthant. Corollary 3.9 allows us to extend their result to M.

Theorem 3.10. For three candidates, STV (together with any intermediate tie-breaking
rule) is not distance-rationalizable with respect to the majority consensus and any anony-
mous neutral N -votewise distance, where N is monotone in the positive orthant.

4 Homogeneity

Homogeneity is a very natural property of voting rules. It can be interpreted as a weaker
form of another appealing property, namely, consistency. Recall that a voting rule R is said
to be consistent if for any two elections E1 = (C, V1) and E2 = (C, V2) withR(E1)∩R(E2) 6=
∅ it holds that R(C, V1 +V2) = R(E1)∩R(E2), where V1 +V2 denotes the concatenation of
V1 and V2. Thus, homogeneity effectively imposes the same requirement as consistency, but
only for the restricted case V1 = V2. Now, consistency is known to be hard to achieve: by
Young’s famous theorem [You75], the only voting rules that are simultaneously anonymous,
neutral and consistent are the scoring rules (or their compositions). In contrast, we will
now argue that for many consensus classes and many values of p ∈ N ∪ {+∞}, the rules
that are `p-votewise rationalizable with respect to these classes are homogeneous.

We start by showing that this is the case for `p, p ∈ N, and consensus classes S and U .
We then provide a complete characterization of all homogeneous rules that are `1-votewise
distance rationalizable with respect to M, assuming that the underlying distance on votes
is neutral. Next, we show that combining `∞ with S, U or M results in homogeneous
rules, too. However, for C this is not the case, and we conclude the section by discussing
the homogeneity (or lack thereof) of the rules that are votewise rationalizable with respect
to C.

3We skip the description of STV due to space constraints, but we mention that STV is one of the very
few nontrivial election systems that are in practical use in real-life political systems.
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Theorem 4.1. Suppose that a voting rule R is (K, d̂p)-rationalizable, where K ∈ {S,U}
and p ∈ N. Then R is homogeneous.

Proof. Let us consider the case of U and some `p-votewise distance d̂p first. LetR be (U , d̂p)-
rationalizable and let E = (C, V ) be an election with C = {c1, . . . , cm} and V = (v1, . . . , vn).
Let s be an arbitrary positive integer. We will show that R(E) = R(sE).

Let c be a candidate in R(E) and let (C,U), where U = (u1, . . . , un), be a U-consensus
witnessing this fact. For the sake of contradiction assume that c /∈ R(sE). Let d be some
R-winner of sE and let (C,W ) be a U-consensus witnessing this fact. It is easy to see that
we can pick W so that it is of the form sW ′, where W ′ = (w1, . . . , wn). Since c is not a
winner of sE, it holds that(

n∑
i=1

s (d(vi, ui))
p

) 1
p

>

(
n∑
i=1

s (d(vi, wi))
p

) 1
p

.

Since c is a winner of E, we also have(
n∑
i=1

(d(vi, ui))
p

) 1
p

≤

(
n∑
i=1

(d(vi, wi))
p

) 1
p

.

However, it is easy to see that these two inequalities are contradictory, and hence c ∈ R(sE).
Using the same reasoning we can show that any winner of sE must be a winner of E.

For the consensus class S we can use essentially the same argument as for U . Indeed,
in the case of S we simply have u1 = u2 = · · · = un and w1 = w2 = · · · = wn, and the rest
of the argument goes through without change.

In contrast, M-Borda, i.e., the rule obtained by combiningM with d̂swap, is not homo-
geneous.

Example 4.2. Consider the following election.

v1 v2 v3 v4 v5 v6
b a c c c d
a b b b d a
d d a a a b
e e e e e e
c c d d b c

A simple calculation shows that to become a majority winner a needs four swaps, b needs
three swaps, c needs four swaps, and d needs five swaps. Thus, b is a winner according
to M-Borda. However, if we replace each voter by two identical ones, it turns out that b
needs five swaps to become a majority winner, but c requires only four (and, in fact, is the
M-Borda winner of the election).
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More generally, we can fully characterize homogeneous rules that can be rationalized via
M and a neutral `1-votewise pseudodistance (recall that by Theorem 3.6 all such rules are
necessarily M-scoring rules). For convenience, we state the following theorem for scoring
vectors that satisfy α1 ≤ · · · ≤ αm; obviously this can be done without loss of generality.

Theorem 4.3. A voting ruleM-Rα with a normalized scoring vector α = (α1, . . . , αm) that
satisfies α1 ≤ · · · ≤ αm is homogeneous if and only if αm = 1 (i.e., the rule is k-approval
for some k ≥ 1) or αdm

2
e = 0.

Proof. Suppose first that αm = 1. Then there exists some k, 1 ≤ k < m, such that αi = 0
for i ≤ k, αi = 1 for i > k. Consider an election E = (C, V ) with V = (v1, . . . , vn) and fix
an integer s > 1. If there are candidates ranked in top k positions by a majority of voters,
these candidates form the set of winners both in E and in sE. Otherwise, each candidate
has a strictly positive score under M-Rα. Moreover, in this case the M-Rα-score of each
c ∈ C is simply the difference between bm2 c+ 1 and the number of voters that rank c in top
k positions. Hence the winners in both E and sE are the candidates that are ranked in top
k positions by the maximum number of voters.

Now, set h = dm2 e and suppose that αh = 0. Again, consider an election E = (C, V )
with V = (v1, . . . , vn) and an integer s > 1. If m is odd or αh+1 = 0, then by the pigeonhole
principle there is at least one candidate c ∈ C that is ranked in top h positions by a majority
of voters. In this case, the sets of winners in both E and sE consist of all such candidates.
It remains to consider the case m = 2h, αh+1 = 1. If there exists a candidate c ∈ C
that is ranked among the top h positions by more than half of the voters, then the same
argument as in the previous case shows that M-Rα(E) =M-Rα(sE). On the other hand,
if no candidate is ranked among the top h positions by more than half of the voters, then
we see—again by the pigeonhole principle—that each candidate is ranked among the top h
positions by exactly n

2 voters (note that this case is possible only if n is even). Thus, the
M-score of each candidate is of the form αj , j > h. Further, each candidate’s score remains
the same in E and in sE. Thus, E and sE have the same sets of winners under M-Rα.

It remains to argue that in all other cases, i.e., if αm > 1 and αh > 0, the rule M-Rα
is not homogeneous. For readability, we will first consider the case α3 > 1 (note that this
implies α2 = 1). This will be done in the following lemma. Later, we will show how to use
ideas from this proof for the general case.

Lemma 4.4. If α3 > 1 then the rule M-Rα is not homogeneous.

Proof. Recall that we have α1 = 0, α2 = 1. Set α = α3. We start by considering the case
m = 3; later, we will generalize our construction to arbitrary values of m. Suppose first
that α is a rational number, i.e., α = p

q , where p and q are relatively prime. We construct
an election E = (C, V ), where C = {a, b, c} and V consists of the following votes:

1. 2p+ q + 1 votes a � b � c,

2. 2q + p+ 1 votes b � c � a, and
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3. p+ q − 2 votes c � b � a.

We observe that |V | = 4(p + q), each of the candidates a and b gets p points as their
M-scores, and c gets p + q + 3 points (we use the fact that q ≥ 2). Thus, the M-score of
candidate c is higher than that of a and b, and hence both a and b are winners of E.

The reader can verify that if we consider the election 2E = (C, 2V ), then the M-scores
of candidates a and b are, respectively, (2q − 1)α = 2p − α and 2p − 1. Since α > 1, it
cannot be the case that both a and b are winners of 2E. Thus, in this case M-Rα is not
homogeneous.

Now, if α is irrational, consider its continued fraction expansion α = (a0, a1, . . . ), and
the successive convergents hi

ki
, i = 0, 1, . . . , where h0 = a0, k0 = 1, h1 = a1h0 + 1, k1 = a1,

and hi = aihi−1 + hi−2, ki = aiki−1 + ki−2 for i ≥ 2. We know that for even values of i we
have hi

ki
< α and |α − hi

ki
| < 1

kiki+1
. Also, it is not hard to show that for any N > 0 there

exists an even value of i such that ki+1 > N . Thus, we pick an even i such that ki+1 >
2

α−1
(recall that α > 1). We obtain

0 < α− hi
ki
<

1

kiki+1
<
α− 1

2ki
.

Now, set p = hi, q = ki, let ε = α − p
q , and use the same construction as above. In E,

the M-score of a is qα, the M-score of b is p < qα, and the M-score of c exceeds that
of a and b, so b is the unique winner. On the other hand, in 2E the M-score of a is
(2q − 1)α = 2p + 2qε − α, while the M-score of b is 2p − 1. We have ε < α−1

2q , so a has a
lower M- score than b, and hence b cannot be the winner of 2E. Thus, in this case, too,
our rule is not homogeneous.

Finally, it is easy to see that for the case of m > 3 it suffices to modify the above
construction by addingm−3 dummy candidates that each voter ranks last (in some arbitrary
order).

We will now consider the general case. Since we have αm > 1, the scoring vector can be
written as

(0, . . . , 0︸ ︷︷ ︸
x

, 1, . . . , 1︸ ︷︷ ︸
y

, α, . . . , α︸ ︷︷ ︸
z

, αx+y+z+1, . . . , αm)

for some α > 1 and x, y, z ≥ 1. If x = y = 1, the condition of Lemma 4.4 is satisfied, so we
can assume that this is not the case. Also, since αh 6= 0, we have x < h.

We will now modify the construction of the election E = (C, V ) from the proof of
Lemma 4.4 as follows. We set C = {a, b, c} ∪ D, where D = {d1, . . . , dm−3}. If α is a
rational number, we set α = p

q , where p and q are relatively prime; otherwise, we construct
p and q as in the proof of Lemma 4.4.

We replace each voter in V with a voter that grants the same number of points to a, b,
and c as the replaced voter. Thus, we construct

1. 2p+ q+ 1 voters that rank a in the 1-st position, b in the (x+ 1)-st position and c in
the (x+ y + 1)-st position,
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2. 2q+ p+ 1 voters that rank b in the 1-st position, c in the (x+ 1)-st position and a in
the (x+ y + 1)-st position, and

3. p+ q − 2 voters that rank c in the 1-st position, b in the (x+ 1)-st position and a in
the (x+ y + 1)-st position.

The candidates in D are ranked in an arbitrary order among the remaining positions in
these votes.

We also construct additonal voters so as to ensure that the candidates in D are not
among the winners of E. Set s = 3p + 2q. For each candidate d ∈ D we create s pairs
of voters with the following preferences. In each pair, the first voter ranks a in the 1-st
position and b in the (x+y+1)-st position, and the second voter ranks b in the 1-st position
and a in the (x+ y + 1)-st position. Both of these voters rank d in the (x+ 1)-st position.
Finally, the voters in each pair rank the candidates in (D \ {d}) ∪ {c} in each of the votes
in the opposite order in the remaining positions. Since x < h, this ensures that no voter in
D ∪ {c} is ranked in the top x positions by both voters in the pair. Altogether, we have
4p+ 4q + 2s(m− 3) voters.

Since both a and b are ranked in the first position by exactly one voter in each newly
constructed pair, these new votes do not affect the M-scores of a and b. Indeed, it is easy
to see that a has qα points and b has p points. Similarly, the M-score of c is still at least
p+ q + 3. Finally, the M-score of any d ∈ D is at least s+ 1− 2(p+ q) > p by our choice
of s. Thus, for the resulting election E we have M-Rα(E) = {a, b} if α is rational and
M-Rα(E) = {b} if α is irrational. On the other hand, as in the proof of Lemma 4.4, in
2E the M-score of a is (2q − 1)α, the M-score of b is 2p − 1, and (2q − 1)α < 2p − 1, so
M-Rα(2E) 6=M-Rα(E).

We have demonstrated that many voting rules that are `1-votewise distance rationaliz-
able with respect to M are not homogeneous. However, if we use the `∞-norm instead of
`1, the resulting voting rules are more likely to be homogeneous. For example, Simplified
Bucklin has been shown to be distance-rationalizable via M and an `∞-votewise distance
d̂∞ser [EFS10b] and it is not hard to see that Simplified Bucklin is homogeneous. Indeed, this
follows from a more general result stating that `∞-votewise rules are homogeneous as long
as they are rationalized via a consensus class that satisfies a fairly weak requirement.

Definition 4.5. We say that a consensus class K is split-homogeneous if the following two
conditions hold:

(a) If U is a K-consensus then for every positive integer s it holds that sU is a K-consensus
with the same winner;

(b) If U and W are two profiles, with n votes each, such that U + W is a K-consensus,
then at least one of U and W is a K-consensus with the same winner.

It turns out that combining a split-homogeneous consensus class with an `∞-votewise
distance produces a homogeneous rule.
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Theorem 4.6. Given a set of alternatives C, let d be a pseudodistance on P(C), let K be a

split-homogeneous consensus class, and let R be a (K, d̂∞)-rationalizable voting rule. Then
R is homogeneous.

Proof. We will prove that for any election E = (C, V ) we have R(E) = R(2E); the general
case is similar. Let c be a winner of E and let U be the consensus profile that witnesses
this. Then for each U ′ ∈ K we have

k = d̂∞(V,U) ≤ d̂∞(V,U ′). (1)

Due to the nature of `∞-metric we have

d̂∞(2V, 2U) = d̂∞(V,U) = k, (2)

and 2U is a consensus profile by condition (a) of Definition 4.5. Suppose that c ∈ R(U) =
R(2U) is not a winner of 2E. Then there exist a profile X + Y ∈ K, |X| = |Y | = n, such

that d̂∞(2V,X + Y ) < k. Since our distance is an `∞ one, we have

d̂∞(V,X) < k and d̂∞(V, Y ) < k.

However by condition (b) either X ∈ K or Y ∈ K which contradicts (1) and (2).

It is not hard to see that the consensus classes S, U and M are split-homogeneous.
Thus, we obtain the following corollary.

Corollary 4.7. For any K ∈ {S,U ,M} and any pseudodistance d on votes, the voting rule

that is (K, d̂∞)-rationalizable is homogeneous.

In contrast, the Condorcet consensus is not split-homogeneous as the following example
demonstrates.

Example 4.8. Consider the following election E = (C, V ) with C = {a, b, c, d, e} and
V = (v1, . . . , v12).

v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 v11 v12
a b c d e c e a b c d c
b c d e a a d e a b c a
c d e a b b c d e a b b
d e a b c d b c d e a d
e a b c d e a b c d e e

Here, voters v1, . . . , v5 form a Condorcet cycle, and voters v7, . . . , v11 are obtained from
voters v1, . . . , v5 by reversing their preferences. Voters v6 and v12 are identical and rank
candidate c on top. It is not hard to verify that c is the Condorcet winner in E. On the
other hand, consider elections E1 = (C, V1) and E2 = (C, V2), where V1 = (v1, . . . , v6) and
V2 = (v7, . . . , v12). In E1, b is ranked above c in 4 votes, so c is not a Condorcet winner in
E1. Similarly, in E2, d is ranked above c in 4 votes, so c is not a Condorcet winner in E2

either.
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v1 v2 v3 v4 v5 v6
c a c b a c
↓ b a ↓ ↓ ↓
b c b a b a
↓ ↓ ↓ ↓ ↓ ↓
a ↓ ↓ c c b
↓ ↓ ↓ ↓ ↓ ↓

Table 1: Election E = (C, V ) from the proof of Proposition 4.9.

There are `∞-votewise distances that combined with the Condorcet consensus yield
nonhomogeneous rules.

Proposition 4.9. There exists a set of candidates C and a distance d on P(C) such that

the voting rule rationalized by (C, d̂∞) is not homogeneous.

Proof. We first define two additional types of swap operations for preference orders. A
forward distance-two swap of candidate c transforms this preference order as follows: the
candidate ranked two positions higher than c, is moved from his current position and placed
directly below c. If c were ranked first or second, a forward distance-two swap is not defined.
For example, if C = {a, b, c, d, e} and the preference order is a � b � c � d � e, then the
result of a forward distance-two swap of candidate c will be b � c � a � d � e. A backward
distance-two swap is defined similarly.

It is easy to see that a single forward distance-two swap can be reversed by applying a
single backward distance-two swap and the other way round.

We can now define our distance d. Let us fix some candidate set C = {c1, . . . , cm}.
For each two preference orders u and v over C we define d(u, v) to be the minimal number
of swaps of adjacent candidates and distance-two swaps of candidates needed to transform
vote u into vote v. It is easy to see that d indeed is a distance because it counts the number
of reversible operations that transform one preference order into the other. As before, d̂∞

is the `∞-votewise extension of d to a distance over elections.
Let R be a voting rule that is (C, d̂∞)-rationalized. We will now build an election

E = (C, V ) such that R(E) 6= R(2E). We set C = {a, b, c, x1, . . . xt} where t is a sufficiently
large integer. (After reading our description of the votes in V it will become clear what we
mean by sufficiently large.) The set of voters V will contain six voters, v1, . . . , v6, whose
preference orders are presented in Table 1. Note that in this table we only showed how
candidates in {a, b, c} are ranked. Remaining candidates are ranked in the places of arrows,
in such a way that (a) each candidate in {a, b, c} is preferred to each candidate xi, 1 ≤ i ≤ t,
by a majority of voters, and (b) one needs at least three swaps or distance-two swaps to
change the relative order of two candidates from {a, b, c} that are separated by an arrow.

We have the following results of head-to-head contests in E: four voters prefer a to b,
a and c are tied, and b and c are tied. Thus, a single swap of a and c in vote v3 makes a a
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Condorcet winner of the election. On the other hand, it is easy to see that being allowed one
(possibly distance-two) swap per vote, it is impossible to make either b or c the Condorcet
winner. Thus, a is the unique R-winner of E.

In 2E, similarly, a single swap (within one of the copies of v3) suffices to make a the
Condorcet winner. However, now also a single swap per vote suffices to make c a Condorcet
winner. Indeed, in one copy of v2 we transform a � b � c into a � c � b and in the other
into b � c � a. These two transformations allow c to break a tie with both a and b, and
become the Condorcet winner.

The combination of C and `1-votewise distance does not necessarily lead to a homo-
geneous rule either: it is well known that the Dodgson rule is not homogeneous (see,
e.g., [Bra09] for a recent survey of Dodgson voting deficiencies) and yet it is (C, d̂swap)-
rationalizable. In fact, we are not aware of any homogeneous voting rule that is `1-votewise
distance-rationalizable with respect to C.

On the other hand, for the case of `∞-votewise distances there is indeed an example
of a homogeneous voting rule that is rationalized via such a distance and the Condorcet
consensus. This rule, which we will call Dodgson∞, is rationalized by (C, d̂∞swap). (The next
section will explain better the name of the rule.) We claim that Dodgson∞ is homogeneous.
To prove this, we will first explain how to determine Dodgson∞’s winners; it turns out
that, in constrast to the Dodgson rule itself, Dodgson∞ admits a polynomial-time winner
determination algorithm.

Proposition 4.10. Given an election E = (C, V ), the problem of computing the (C, d̂∞swap)-
score of a given candidate c ∈ C is in P.

Proof. Consider the following algorithm:

1. Set k = 0.

2. If c is a Condorcet winner of E then return k.

3. For each vote where c is not ranked first, swap c and its predecessor.

4. Increase k by 1.

5. Go to Step 2.

Suppose that c’s (C, d̂∞swap)-score is k. Since our algorithm does not stop until it finds
a Condorcet consensus, it will not stop before step k. On the other hand, there exists
a Condorcet consensus U with winner c such that d̂∞swap(E,U) = k. Note that we can
assume that U has been obtained from E by shifting c upwards, and, moreover, c has been
shifted by k positions in at least one vote, and by at most k positions in all remaining votes.
Now, consider an election U ′ in which c has been shifted upwards by exactly k positions in
each vote or moved to the top position if its rank is smaller than k. Clearly, U ′ is also a
Condorcet consensus, and d̂∞swap(E,U ′) = k. Moreover, U ′ will be discovered at the k-th
step of our algorithm.
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Since the algorithm terminates after at most |C| iterations, it is easy to see that it runs
in polynomial time. This completes the proof.

Proposition 4.11. Dodgson∞ is homogeneous.

Proof. Let E = (C, V ) be an election where V = (v1, . . . , vn) and let c be a candidate
in C. The algorithm in the proof of Proposition 4.10 finds the smallest value of k such
that after shifting a given candidate upwards by k positions in each vote, this candidate
becomes the Condorcet winner. Therefore, if two votes are identical before running the
algorithm, these votes remain identical in the resulting Condorcet consensus. This shows
that Dodgson∞-score of c is the same in E and in kE.

5 An Interlude: `1-Votewise Rules versus `∞-Votewise Rules

Inspired by Proposition 4.11, in this section we take a brief detour from the discussion of
homogeneity and monotonicity in votewise rules, and discuss the relationship between `1-
votewise rules and `∞-votewise rules. It turns out that in a certain weak sense, `∞-votewise
rules are approximations of the corresponding `1-votewise rules. The next theorem expresses
this “weak sense” precisely.

Theorem 5.1. Consider a voting rule R that is distance-rationalized via some consensus
class K ∈ {S,U ,M, C} and a distance d̂, where d is a distance over votes. Let R∞ be the

voting rule rationalized via K and d̂∞. For any candidate c ∈ C, let scoreRE (c) (respectively,

scoreR
∞

E (c)) denote the (K, d̂)-score (respectively, (K, d̂∞)-score) of c in E. Then for each
election E = (C, V ) and each candidate c ∈ C we have

scoreR
∞

E (c) ≤ scoreRE (c) ≤ |V | · scoreR
∞

E (c).

Proof. Consider an election E = (C, V ) with C = {c1, . . . , cm} and V = (v1, . . . , vn), and
fix a candidate c ∈ C.

We first claim that scoreRE (c) ≤ |V | · scoreR
∞

E (c). Let (C,W ), where W = (w1, . . . , wn),

be a K-consensus where i is a winner and such that scoreR
∞

E (c) = d̂∞(V,W ). By defini-

tion, we have scoreRE (c) ≤ d̂(V,W ) =
∑n

i=1 d(vi, wi) ≤ nmax{d(vi, wi) | 1 ≤ i ≤ n} =

nd̂∞(V,W ) = |V | · scoreR
∞

E (c), which proves the claim.
On the other hand, let (C,U), where U = (u1, . . . , un), be a K-consensus where c is

the winner and for which scoreRE (c) = d̂(V,U). By definition, it holds that scoreRE (c) =

d̂(V,U) =
∑n

i=1 d(vi, ui) ≥ max{d(vi, ui) | 1 ≤ i ≤ n} = d̂∞(V,U) ≥ scoreR
∞

E (c), and so
scoreR

∞
E (c) ≤ scoreRE (c). This completes the proof.

In other words, any `∞-votewise rule is a |V |-approximation of a corresponding `1-
votewise rule in the sense of Caragiannis et al. [CCF+09, CKKP10]. It is easy to see that
for the case of majority consensus we can slightly strengthen our result, using the fact
that we only need the majority of the voters to rank a candidate first for him to be the
M-winner.
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Corollary 5.2. For any distance d over votes, let R be the rule that is (M, d̂)-rationalized

and let R∞ be the rule that is (M, d̂∞)-rationalized. Then for each election E = (C, V )

and each candidate c ∈ C it holds that scoreR
∞

E ≤ scoreRE (c) ≤
(⌈
|V |
2 + 1

⌉)
scoreR

∞
E (c).

Of course, these approximations are very weak as they depend linearly on the number
of voters. The reason why we find them interesting is that they are obtained by a very
general method and thus illustrate the power of the distance rationalizability framework.
Further, for the Dodgson rule its `∞ variant is polynomial-time computable, and one may
hope that this will be the case for other rules, too. However, so far, we have not been
able to prove this for the genetal case. In particular, it would be interesting to resolve the
following question.

Question 5.3. Let R be (S, d̂∞swap)-rationalizable. Is the problem of deciding whether a
given candidate is a winner of R-elections in P?

Note that the rule in the above question is an `∞ variant of Kemeny (we omit the formal
definition here due to space constraints; effectively, Kemeny is the rule that is rationalized
by S and d̂swap). Of course, there are much better approximation algorithms known for
Kemeny [ACN08, CFR10, KMS07] and the value of resolving the above question lays in it
enhancing our understanding of Kemeny and relations between `1- and `∞-votewise rules.

6 Monotonicity

There are two main reasons why one should study monotonicity in the context of distance-
rationalizability. The first one is that monotonicity is believed to be a very desirable prop-
erty of voting rules. Thus, it is important to know which (votewise) distance-rationalizable
rules are monotone. The second reason regards the core nature of distance-rationalizability
framework. The role of a preference order submitted by a voter is to indicate which can-
didates are more preferred by this voter (those ranked at higher positions) and which are
less preferred (those ranked at lower positions). However, as illustrated by our discussion
of M-scoring rules, distance-rationalizable rules may ignore this intuition altogether (ex-
cept for the requirements imposed by compatibility with a given consensus notion). In this
section we attempt to formulate conditions on (votewise) distances that refine distance-
rationalizability framework to respect the intuition. Corollary 6.12 is a sign of our success
in this respect.

In this section we will not discuss the Condorcet consensus. The reason for it is as
follows. It is well known that Dodgson rule is not monotone (see [Bra09]). Yet, it is
(C, d̂swap)-rationalizable and d̂swap is about the best-behaved distance one can think of.

Thus, if even using d̂swap does not ensure monotonicity for C, then it appears that finding a
reasonable condition on distances that ensures monotonicity for C may not be possible. The
reason is that C is, in some sense, the least “local” of the consensus classes we consider. As
a result, conditions regarding just the distance among votes may be very hard to translate
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to conditions regarding the whole profile (and monotonicity is a condition of that sort). For
simplicity, we focus on `1-votewise rules and `∞-votewise rules.

Let C be a set of candidates and let d be a distance among votes. How can we specify
a condition on d so that voting rules rationalized using this distance are monotone? Intu-
itively, the condition should ensure that if candidate c is a winner and some voter ranks
him higher, then the distance to a consensus where c is the winner decreases more than the
distance to a consensus with any other winner. The next definition tries to capture this
intuition.

Definition 6.1. Let C be a set of candidates and let d be a distance between votes over
C. We say that d is relatively monotone if for every candidate c ∈ C, each two preference
orders y and y′ such that y′ is identical to y except that y′ ranks c higher than y, and every
two preference orders x and z such that x ranks c first and z does not, it holds that

d(x, y)− d(x, y′) ≥ d(z, y)− d(z, y′).

As a quick sanity check, we note that the swap distance, dswap, satisfies the relative
monotonicity condition.

Proposition 6.2. Distance dswap is relatively monotone.

Proof. Let d = dswap and let C be a set of candidates, c be a candidate in C, and let y, y′, x,
and z be as in the definition of relative monotonicity. In addition, let k be a positive integer
such that y′ is identical to y except in y′ candidate c is ranked k positions higher. We need
k swaps to get y′ from y so d(y, y′) = k. We first note that d(x, y) − d(x, y′) = k. This
is so because the swap distance measures the number of inverses between two preference
orders. As x ranks c on top and y′ ranks it k positions higher than y does (without any
other changes), the number of inverses between x and y′ is the same as that between x and
y less k. By the triangle inequality. We have d(z, y) ≤ d(z, y′) + d(y′, y) = d(z, y′) + k,
hence d(z, y)− d(z, y′) ≤ k and this completes the proof.

Relative monotonicity of an `1-votewise distance (or, strictly speaking, of the distance
among votes that underlies this `1-votewise distance) naturally translates to the monotonic-
ity of a resulting voting rule, provided we use of either S or U as a consensus.

Theorem 6.3. Let R be a voting rule rationalized by (K, d̂), where K ∈ {S,U} and d is a
relatively monotone distance on votes. Then R is monotone.

Proof. Let E = (C, V ) be an election, where V = (v1, . . . , vn), and c ∈ C be a candidate
such that c ∈ R(E). Let E′ = (C, V ′), where V ′ = (v′1, . . . , v

′
n), be an arbitrary election

that is identical to E except one voter, say v′1, ranks c higher ceteris paribus. It suffices to
show that c ∈ R(E′).

To show this, we give a proof by contradiction. Let (C,U) ∈ K, where U = (u1, . . . , un),
be a consensus witnessing that c ∈ R(E), and let (C,W ), where W = (w1, . . . , wn), be
any consensus in K such that c is not a consensus winner of (C,W ). For the sake of
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contradiction, let us assume that d̂(U, V ′) > d̂(W,V ′). If K is either U or S, then we know
that u1 ranks c first and that w1 does not rank c first. By relative monotonicity, this means
that

d(u1, v1)− d(u1, v
′
1) ≥ d(w1, v1)− d(w1, v

′
1). (3)

However, since d̂(U, V ′) > d̂(W,V ′) and V differs from V ′ only on the first voter, it holds
that

d(u1, v
′
1) +

n∑
i=2

d(ui, vi) > d(w1, v
′
1) +

n∑
i=2

d(wi, vi). (4)

If we add inequality (3) sideways to inequality (4), we obtain

d(u1, v1) +

n∑
i=2

d(ui, vi) > d(w1, v1) +

n∑
i=2

d(wi, vi).

That is, d̂(U, V ) > d̂(W,V ), which is a contradiction by our choice of U .

Relative monotonicity is a remarkably strong condition, not satisfied even by some very
natural distances that, intuitively, should be monotone.

Example 6.4. Consider a scoring vector α = (0, 1, 2, 3, 4, 5), i.e., the 6-candidate scoring
vector for Borda rule and a candidate set C = {c, d, x1, x2, x3, x4}. Distance dα does not
satisfy the relative monotonicity condition. Indeed, let us consider the following four votes:

x : c > d > x1 > x2 > x3 > x4,

z : x1 > c > x2 > x3 > x4 > d,

y : x1 > x2 > d > c > x3 > x4,

y′ : x1 > x2 > c > d > x3 > x4.

Note that y and y′ are identical except that in y′ candidate c is ranked one position higher,
and that c is ranked on top x and is not ranked on top z. We can easily verify that
d(x, y)− d(x, y′) = 0 but d(z, y)− d(z, y′) = 2. Thus, dα is not relatively monotone.

For the case of U we can weaken the assumptions of Theorem 6.3 to relative min-
monotonicity from the definition below. It is easy to modify the proof of Theorem 6.3 to
work for U and relative min-monotone distances.

Definition 6.5. Let C be a set of candidates and let d be a distance between votes over
C. We say that d is relatively min-monotone if for each candidate c ∈ C and each two
preference orders y and y′ such that y′ is identical to y except that y′ ranks c higher than
y, it holds that for each candidate e ∈ C \ {c}:

min
x∈P(C,c)

d(x, y)− min
x′∈P(C,c)

d(x′, y′) ≥ min
z∈P(C,e)

d(z, y)− min
z′∈P(C,e)

d(z′, y′).
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Corollary 6.6. Let R be a voting rule rationalized by (U , d̂), where d is relatively min-
monotone distance on votes. Then R is monotone.

On the other hand, if we want to obtain monotonicity for voting rules based on votewise
distances and the majority consensus, it seems that we have to give up the “relative” part of
the definition of relative min-monotone distances. The next definition explains this formally.

Definition 6.7. Let C be a set of candidates and let d be a distance between votes over C.
We say that d is min-monotone if for every candidate c ∈ C and every two preference orders
y and y′ such that y′ is the same as y except that it ranks c higher, for each e ∈ C \ {c} it
holds that:

min
x∈P(C,c)

d(x, y) ≥ min
x′∈P(C,c)

d(x′, y′),

min
z∈P(C,e)

d(z, y) ≤ min
z′∈P(C,e)

d(z′, y′).

In other words, a distance is min-monotone if ranking a certain candidate c higher never
increases his distance from the closest vote where he is ranked first, and, for every candidate
e other than c, never decreases his distance from a vote where e is ranked first. It is easy to
see that min-monotonicity is a relaxation of relative min-monotonicity and so Corollary 6.6
applies to min-monotone distances as well.

Proposition 6.8. Each min-monotone distance d over votes is relatively min-monotone.

Proof. Immediate from the definition.

Using min-monotone distances, we can now show an analog of Theorem 6.3 for the case
of the majority consensus.

Theorem 6.9. Let R be a voting rule rationalized by (M, d̂) such that d is a min-monotone
distance on votes. Then R is monotone.

Proof. Let R and d̂ be as in the statement of the theorem. Let E = (C, V ) be an election
where V = (v1, . . . , vn) and let c ∈ R(E) be one of the winners of E. Let (C,U) be
a majority consensus witnessing that c is an R winner of E. Let E′ = (C, V ′), where
V ′ = (v′1, v

′
2, . . . , v

′
n), be an election where v′1 is identical to v1 except that it ranks c higher

and for each i, 2 ≤ i ≤ n, v′i = vi.
For the sake of contradiction, we assume that c is not an R winner of E′, but that some

candidate e ∈ C \ {c} is. Let (C,W ′), where W ′ = (w′1, . . . , w
′
n) be a majority consensus

witnessing that e is a winner of E′. Let us form two new M consensuses, U ′ and W .

1. U ′ = (u′1, . . . , u
′
n). For each i, 2 ≤ i ≤ n, u′i = ui. If u1 ranks c first then u′1 ∈

arg minx′∈P(C,c) d(x′, v′1), and otherwise u′1 = v′1.

2. W = (w1, . . . , wn). For each i, 2 ≤ i ≤ n, wi = w′i. If w′1 ranks e first then
w1 ∈ arg minz∈P(C,e) d(z, v1), and otherwise w1 = v1.
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Thus, by Lemma 3.5 and min-monotonicity of d it is easy to see that:

d(u′1, v
′
1) ≤ d(u1, v1), (5)

d(w′1, v
′
1) ≥ d(w1, v1). (6)

Now, using the fact that V and V ′ agree on all voters but the first one, our choice of W ,
and the two above inequalities, we can see that the following inequality holds:

d̂(U, V ) = d(u1, v1) +

n∑
i=2

d(ui, vi) ≥ d(u′1, v
′
1) +

n∑
i=2

d(ui, vi)

> d(w′1, v
′
1) +

n∑
i=2

d(ui, vi) ≥ d(w1, v1) +
n∑
i=2

d(ui, vi) = d̂(W,V ).

However, this is a contradiction because by our choice of U , d̂(U, V ) is a minimal distance
between V and any majority consensus with n voters.

We can use essentially the same proof for the case of `∞-votewise distances.

Corollary 6.10. Let R be a voting rule rationalized by (M, d̂∞), where d is a min-monotone
distance on votes. Then R is monotone.

Note that it is hard to apply the notion of min-monotone distances to prove monotonicity
of voting rules that are distance rationalized via strong unanimity consensus. The reason
is that given a profile V of voters over some candidate set C, finding a S consensus closest
to V requires finding a single preference order u that minimizes the aggregated distance
from V to this order. However, it may be the case that for neither of the votes in V , u is a
preference order that minimizes the distance from this vote to a preference order that ranks
top(u) first.

The next proposition, together with Example 6.4, shows that indeed min-monotonicity
is a considerably weaker condition than relatvie monotonicity.

Proposition 6.11. Let α = (α1, . . . , αm) be a normalized scoring vector. (Pseudo)distance
dα is min-monotone if and only if α is nondecreasing.

Proof. Let us fix some two distinct candidates c = ci and e = cj in C. Let y and y′ be two
votes that are identical, except that c is ranked on some position k in y and in y′ candidate
c is shifted to position k′, where k′ < k. By Lemma 2.2, it holds that minx∈P(C,ci) d(x, y) =
2|αk − α1| and minx′∈P(C,ci) d(x′, y′) = 2|αk′ − α1|. If α is nondecreasing then 2|αk − α1| =
2αk ≥ 2αk′ = 2|αk′−α1|. On the other hand, if α is not nondecreasing, then it is possible to
choose k and k′, where k′ < k, such that 2|αk−α1| < 2|αk′ −α1|. Thus, the first inequality
from the definition of min-monotonicity is satisfied if and only if α is nondecreasing. One
can analogously show that the same holds for the second inequality (in essence, the proof
works by arguing that either rank(y, e) = rank(y′, e) or rank(y, e) = rank(y′, e)−1, and then
showing that pushing a candidate back does not decrease his distance from being ranked
first if and only if α is nondecreasing).
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The above proposition, combined with the proof of Theorem 4.9 of [EFS10b] gives the
next corollary.

Corollary 6.12. A voting rule R is (U, d̂)-rationalizable for some min-monotone neutral
pseudodistance d on votes if and only if R can be defined via a family of nondecreasing
scoring vectors (one for each number of candidates).

In essence, Proposition 6.11 ensures that for every nondecreasing scoring vector α, Rα
is `1-votewise with respect to U via a min-monotone distance over votes, and the definition
of min-monotonicity ensures that the scoring vector derived in the proof of Theorem 4.9
of [EFS10b] is nondecreasing.

7 Conclusions

We discussed homogeneity and monotonicity of voting rules that are distance-rationalizable
via votewise distances, focusing on `p-votewise rules, p ≥ 1, and `∞-votewise rules. Mono-
tonicity and homogeneity are among the most essential properties of voting rules. Mono-
tonicity guarantees that a voting rule is—at least to some degree—responsive to voter pref-
erences, and homogeneity ensures that the winners of an election depend on the proportions
of each possible vote cast and not on the specific counts for each possible vote.

Regarding homogeneity, we have shown that with respect to strong unanimity consensus
and weak unanimity consensus all `p-votewise rules, p ≥ 1, and all `∞-votewise rules are
homogeneous. For majority consensus we have provided a complete dichotomy theorem
for homogeneity of neutral `1-votewise rules and have shown that all `∞-votewise rules are
homogeneous. We have also given a simple criterion for consensus classes, split-homogeneity,
such that if a given consensus class is split-homogeneous then with respect to that class any
`∞-votewise rule is homogeneous. Finally, we have shown that Condorcet consensus is not
split-homogeneous and we have shown several examples of interesting behaviors of votewise
rules with respect to the Condorcet consensus.

Studying monotonicity under the distance-rationalizability framework is much more
difficult than studying homogeneity. The reason is that homogeneity is, to a large extent, a
property of the underlying norm and the consensus notion, whereas monotonicity is mostly
a property of the underlying distance among votes (though, of course, the particular norm
and consensus notion also play a role). Thus, for the case of monotonicity we have shown
several conditions on distances that, when used with a matching consensus notion, ensure
monotonicity, and—to show that our notions are not vacuous—have shown that practically
useful distances satisfy our definitions.

In addition to studying monotonicity as a voting-rule property, our study is deeply
motivated by the role of monotonicity in making distance-rationalizability a framework
fitting one’s intuition more closely. In particular, we have used our study of monotonicity
to refine a result of Elkind, Faliszewski, and Slinko [EFS10b] characterizing the class of
scoring rules in terms of distance-rationalizability (our Corollary 6.12).
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As a “side effect” of our study of monotonicity and homogeneity, we also discovered
several other results and notions. In particular, we have identified the family of M-scoring
rules, which constitute a (provably distinct) variant of scoring rules that, when counting
points for a given candidate, ignore the less favorable half of the votes. Similar mechanisms
are often used in practice (e.g., some grading methods can be interpreted in a similar
manner). During our study of M-voting rules we also closed an open issue regarding
distance-rationalizability of scoring rules asked in [EFS09] (namely, we have shown how to
convert the pseudodistances of [EFS09] into distances).

We have also explored relations between votewise rules rationalized using the same
underlying distance over votes, but a different norm. For example, we have shown that `∞-
votewise rules form weak approximations of corresponding `1-votewise rules, and we have
shown that every voting rule that is N -votewise with respect toM, where N is a symmetric
norm that is monotone in the positive orthant, is also M -votewise with respect to U , where
M is also a symmetric norm monotone in the positive orthant. Using this observation we
answered, in the negative, an open question regarding votewise distance-rationalizability of
STV with respect to M asked by Elkind, Faliszewski, and Slinko [EFS10a].

Our work leads to several open problems. First, we are very much interested in char-
acterizing for which votewise distances are rules rationalized with respect to the Condorcet
consensus homogeneous. Are there any such `1-votewise distances? Which `∞-votewise
lead to homogeneous rules? This question might be difficult to answer because, as opposed
to the case of the weak unanimity consensus and the majority consensus, we do not have
good characterizations of rules votewise with respect to C, and the nonlocal nature of Con-
dorcet consensus makes it hard to analyze in terms of homogeneity (as opposed to strong
unanimity consensus which also is nonlocal, but much easier to work with).

We are also very much interested in finding less-demanding, yet practically useful, con-
ditions on distances that lead to monotone rules.
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