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mining the frequency that two rules pick the same winner. We use statistical techniques

such as hierarchical clustering and multidimensional scaling to further understand the

relationships between rules. We also investigate how the relationships change when

elections with Condorcet winners are excluded from the frequency data, and when the

homogeneity of the voting population is increased. Most common social choice rules are

included, 26 in total.
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1. Introduction

There are many possible voting rules (procedures) and the choice of voting rule does

affect the outcome of votes. It has been shown that for various sets of desirable properties,

no one voting rule can satisfy them all (Arrow 1963; Gibbard 1973; Satterthwaite 1975).

This clearly makes the choice of voting rule an important one.

There are many feasible voting systems, with much debate as to which is best. In fact

25 existing (and one new) voting rules are considered in this paper. The behaviour of

voting rules often cannot be predicted by simple inspection of their definitions.

Nurmi (1987, 1990) was the first to use simple computational techniques to determine

similarities between the rules. He examined the frequency that two rules chose the same

winner for several pairs of rules. In his investigation the number of agents ranged from
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five to 301 and the number of alternatives from three to seven. He concluded that dissim-

ilarities between the rules are significant. It is therefore desirable to have robust methods

for classifying voting rules.

Since all comparisons in Nurmi’s study were pairwise, the whole picture could not

be seen. In 1999 Slinko came up with the idea to use cluster analysis to understand

relationships between the rules and through the construction of hierarchical trees to try

to represent the whole universe of rules. The first such attempt was undertaken in Leung’s

thesis (2001) and published in Slinko and Leung (2003).

Their work was extended by Shah (2003), who used multidimensional scaling (see sec-

tion 3.6) to analyse the differences between the rules. He found that multidimensional

scaling required far more than three dimensions to fully capture the relationships between

voting rules. Shah also demonstrated the effectiveness of dendrograms for visualising the

results of hierarchical clustering of voting rules. He used the average clustering method

to generate the hierarchical clusters.

Another attempt to understand similarities of more than two rules was undertaken

in Gehrlein and Lepelley (2000) and Merlin et al. (2000), where they calculated the

probability that all scoring rules, all voting rules, respectively, elect the same winner.

In this paper, we use hierarchical clustering to examine the effect of the homogeneity

of the populations on the similarity of outcome of different voting rules. The effect of

excluding elections with Condorcet Winners is also considered in order to understand how

similar the rules are in resolving the difficulty presented by the absence of a Condorcet

winner.

Our method of classification is based on Single Clustering (described below) that proved

to be relatively stable when tested on our random populations

It is investigated how to visualise this data effectively. As visualisations of data can be

misleading, a formal test is developed to determine if changes in the clusters produced

are statistically significant. Based on this test, reports are generated that list various

statistically significant changes.

2. Social Choice Rules

Let A and N be two finite sets of cardinality m and n respectively. The elements

of A will be called alternatives, the elements of N agents. We assume that the agents
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have preferences over the set of alternatives. By L = L(A) we denote the set of all

linear orders on A; they represent the preferences of agents over A. The elements of the

Cartesian product

L(A)n = L(A) × . . . × L(A) (n times)

are called n-profiles or simply profiles. They represent the collection of preferences of an

n-element society of agents N . If a linear order Ri ∈ L(A) represents the preferences of

the i-th agent, then by aRib, where a, b ∈ A, we denote that this agent prefers a to b.

A family of mappings F = {Fn}, n ∈ N,

Fn : L(A)n → A,

is called a social choice function (SCF). Historically SCFs were often called rules.

2.1. Majority Relation and Advantages. A great number of voting rules are based

on computing the majority relation. Let R = (R1, . . . , Rn) be a profile. The majority

relation MR on A is the binary relation on A such that for any ak and a` in A we have

akMRa` if and only if

card ({i | akRia`}) ≥ card ({i | a`Riak}).

When n is odd, the majority relation is a tournament on A, i.e., complete and asym-

metric binary relation.

If a voting rule is based on the majority relation, then, given a profile R, one computes

MR first and then implements one or another algorithm to determine the winner using the

information contained in MR. These rules have category C1 in Fishburn’s classification.

They are also called tournament solutions (see the book Laslier (1997) devoted to them).

Some rules for their definition need a more refined information contained in the matrix

NR = (nk`), where nk` = card ({i | akRia`}). Many of them use the numbers

adv(ak, a`) = max(0, nk` − n`k),

which will be called advantages.

These rules have category C2 in Fishburn’s classification. Any rule that needs more

information that is contained in NR is of category C3. Any rule that requires more
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information than is contained in R will be assigned category C4 (this is our addition to

Fishburn’s classifications).

2.2. Scores. Many social choice rules are based on calculating the vector of scores which

are used either for selection of an alternative with the best score or repeated elimination

of the alternative with the worst score.

2.2.1. Tournament Scores. Let R be a profile and M = MR be the matrix of its majority

relation. Let the m-dimensional vector 1m = (1, 1, . . . , 1) be the vector consisting of m

ones. Then the vector

Sc(k)
c = Mk1m

is the vector of Copeland scores of order k. The ith coordinate of it Sc
(k)
c (ai) is the

Copeland score of order k of the alternative ai. The first order Copeland score of ai will

be denoted Sc c(ai).

The normalised eigenvector belonging to the Frobenius eigenvalue of M is called the

vector of long path scores and denoted Sclp. Its ith component is the long path score of

ai and it can be found as

Sc lp(ai) = lim
k→∞

Sc
(k)
c (ai)

Sc
(k)
c (ai) · 1m

.

It is also easy to observe that the matrix

P =
1

m − 1
(M + D) ,

where D is the diagonal matrix with dii = Sc c(ai), is stochastic. Then the stationary

state of the corresponding Markov process is called the vector of Markov scores and its

ith component is the Markov score Scma(ai).

2.2.2. Positional Scores. Let

w1 ≥ w2 ≥ . . . ≥ wm ≥ 0

be m real numbers to which we shall refer to as weights. Given the profile R = (R1, . . . , Rn),

the score of an alternative a ∈ A is computed now as follows. Let w = (w1, . . . , wm) and

let v = (i1, . . . , im), be the vector, where ik is the number of times that the alternative
4



a was ranked kth best by agents from N . Then the score for this particular vector of

weights w is calculated as follows:

Scw(a) = w · v = w1i1 + . . . + wmim.

The most popular scores are:

• Plurality score Scp(a), where p = (1, 0, . . . , 0).

• Borda score Scb(a), where b = (m − 1, m − 2, . . . , 1, 0).

• Antiplurality score Sca(a), where a = (1, . . . , 1, 0).

• k-Approval score Sc
(k)
ap(a), where ap = (1, . . . , 1, 0, . . . , 0) (with k ones).

2.2.3. Advantages-based Scores. The Dodgson score Scd(a) of an alternative a is the min-

imum number of neighbouring preferences that must be swapped to make a a Condorcet

winner.

The Raynaud score Scr(ai) of an alternative ai is

Sc r(ai) = max
j 6=i

adv(ai, aj).

The Simpson score Scs(ai) of an alternative ai is

Sc s(ai) = max
j 6=i

adv(aj, ai).

The Dodgson Quick (DQ) score Scq(ai) of an alternative ai is

Scq(ai) =
∑

j 6=i

⌈

adv(aj, ai)

2

⌉

.

2.3. Rules. We list the rules in the alphabetical order. The complete list of rules is given

at the end of the section.

Antiplurality rule (AP) - The alternative with the best Antiplurality score is the winner.

The next three rules belong to the class of Approval Voting Rules. These rules take as

input not only a profile, but also a threshold separating the approved and disapproved

alternatives (Brams and Fishburn 1982). We model this threshold in three different ways

and obtain three different rules accordingly:
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Approval uniform (AR) - Each voter approves a random number k of her best alterna-

tives, where k is uniformly chosen from {1, 2, . . . , m − 1}. The alternative with the most

approvals is the winner.

Approval Poisson µ = 3 (A3) - Each voter approves her best k alternatives where k

is taken from the Poisson distribution with a mean of 3. Pritchard and Slinko (2003)

suggested that out of all scoring rules, 3-approval may best approximate approval voting

among scoring rules.
⌊

m
2

⌋

-Approval (KA) - The alternative with the best
⌊

m
2

⌋

-approval voting score is the

winner. As shown by Pritchard and Slinko (2003) it possesses certain optimal properties

among all scoring rules.

Black rule (BL) - If a Condorcet winner exists, then the Black winner is the Condorcet

winner. If no Condorcet winner exists, then the Black winner is the Borda winner.

Borda rule (BO) - The alternative with the greatest Borda score is the winner.

Carey rule (CA) - Eliminate those alternatives with below average plurality scores.

Continue this process until one alternative remains (or a set of tied alternatives).

Coombs procedure (CO) - If one alternative’s plurality score is greater than n/2, then

that alternative is the Coombs winner. Otherwise, eliminate the alternative with the

lowest Antiplurality score. Continue the process until one alternative remains.

Copeland rule (CP) - The alternative with the greatest first order Copeland score is

the winner. In case of a tie, the alternative with the greatest first order Copeland score is

the winner if it has the highest second order Copeland score. If several of them are tied

again, then the usual tie-breaking is used.

Dictatorship of the first voter (D1)

Dodgson rule (DE) - The alternative with the minimum Dodgson score wins (Black

1958; Tideman 1987).

Dodgson Quick rule (DQ) - The alternative with the minimum DQ-score wins.

Exhaustive procedure (EX) - Eliminate the alternative with the smallest Antiplurality

score. Continue until only one alternative remains. This is similar to Coombs procedure

except that the procedure is repeated until all but one of the alternatives are eliminated,

rather than stopping when one alternative is ranked first by more than 50% of agents,
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as is the case with Coombs. The distinction between the two rules is noted in Tideman

(1987, 191).

Hare rule (HA) (also known as Single Transferable Vote or Alternative Vote) - If one

alternative’s plurality score is greater than n/2, then that alternative is the Hare’s winner.

Otherwise, eliminate the alternative with the lowest plurality score. Continue until one

alternative remains.

Inverse Borda rule (IB) - Eliminate the alternative with the lowest Borda score. The

last alternative remaining is the Inverse Borda winner.

Kemeny rule (KE) - Kemeni (1959). This rule uses the concept of a distance between

relations to find a linear order whose sum of distances to the agents’ linear orders is

minimised and then takes the top alternative of that linear order. Also known as Slater

rule (e.g. Laslier (1997))

Long path rule (LP) - The alternative with the greatest long path score is the winner.

(Laslier 1997, 55).

Majoritarian Compromise (MC) - Let k be the smallest integer for which the set

{

a ∈ A | Sc(k)
ap(a) ≥

n

2

}

is nonempty. Then the winner is the alternative with the greatest k-Approval score.

(Sertel and Yilmaz, 1999, 620). For an odd number of alternatives the procedure was

clarified by Slinko (2002).

Markov rule (MA) - The alternative with the greatest Markov score is the winner.

(Laslier 1997)

Nanson’s procedure (NA) - Eliminate those alternatives with below average Borda

scores. Continue this process until one alternative remains or until all remaining al-

ternatives have tied Borda scores. (Other definitions of Nanson exist (Richelson 1981,

346) in which Nanson is defined exactly the same as the Inverse Borda rule above – that

definition was not used in this paper. The definition we used is the one used by Tideman

(1987, 194)).

Plurality rule (PL) - The alternative with the greatest plurality score is the winner.

Also known as First Past the Post.
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Plurality Runoff procedure (RU) This is two-stage elimination rule. In the first round

two alternatives with the best plurality scores are determined (it might be necessary to

break ties for this). In the second round the winner is decided by a simple majority.

Simpson rule (SI) (also known as the minimax/maximin rule) - The alternative with

the smallest Simpson score is the winner. E.g. Laslier (1997)

Top cycle rule (TO) - We define a weak linear order (sometimes called a complete

preorder) �R as follows. We say that a �R b for two alternatives a, b ∈ A iff there exist

alternatives a1, . . . , am such that

aMRa1MRa2MR . . .MRamMRb.

We have a partition

A = A1 ∪ A2 ∪ . . . ∪ Ar

of A into indifference classes of �R and �R induces a (strict) linear order

A1 �R A2 �R . . . �R Ar

on these classes. Then the Top Cycle of R is TC(R) = A1 and this rule chooses the whole

top cycle. Laslier (1997)

Uncovered set rule (UN) - Let a, b ∈ A. We say that a covers b and denote it a AR b,

if aRMb and

∀c∈A [(bMRc) =⇒ (aMRc)] .

We define the uncovered set of R as

UC(R) = {a ∈ A | ∀b∈A[ (b AR a) =⇒ (b = a) ]} .

This rule chooses the whole uncovered set. Laslier (1997)

Raynaud procedure (RY) - Eliminate the alternative with the smallest Raynaud score.

Repeat until only one alternative, which is the Raynaud winner, is left (Lansdowne 1997,

126).

In the table below we give two letter abbreviations for Social Choice Rules (in alphabetic

order) and their respective categories.

[Insert Table 1 about here]
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3. Method

3.1. Creating a Profile. For an arbitrary number of alternatives m and an arbitrary

number of agents n, we wish to create random profiles of variable homogeneity that we

can specify. Homogeneity is loosely a measure of the tendency of the population to contain

a sizable groups of agents, who share the same order of alternative preferences.

Our population creation method is based on the Pólya-Eggenberger Urn Model (Nor-

man and Samuel 1969).

3.1.1. Pólya-Eggenberger Urn Model. Under this model we start with a big urn containing

balls, each of a different colour and a non-negative integer a. To generate each random

sample, we pull a ball out of the Urn at random and note its colour. After removing each

ball, we return the ball that was taken to the urn together with a additional balls of the

same colour to the urn.

For generation of random voter profiles, we can replace colours with linear orders. The

parameter a characterises homogeneity; for a = 0 we obtain the well known Impartial

Culture conjecture and for a = 1 the so-called Impartial Anonymous Culture conjecture

(Berg and Lepelly 1994). In this paper we wish the value of the parameter of homogeneity

to have the same meaning for different numbers of alternatives. Therefore we use a

normalized parameter b = a
m!

as our main parameter of homogeneity. For example, if

b = 1 the second voter copies the first voter half of the time regardless of the number of

alternatives.

3.2. Comparing Outcomes.

3.2.1. Distance between voting rules. For a randomly generated set of profiles P , e.g. a

sample of profiles created using the same homogeneity, we define distance between rules

as the frequency that rules fail to pick the same alternatives. Let p ∈ P and s = |P|,

then the winning alternative chosen by rule applied to profile p is W (p, rule). We set

Distance(rule1, rule2) =
1

s

∑

p∈P

∆(W (p, rule1), W (p, rule2))

Where ∆(x, x) = 0 and ∆(x, y) = 1 for x 6= y. The distance, so-defined, is a random

variable. Thus for each set P we have a 26 × 26 matrix of distances.
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3.3. Hierarchical Clustering. Hierarchical clustering methods group elements together

into clusters, and clusters together into super-clusters. An example of a set of hierarchical

clusters is the grouping of individual organisms into subspecies, subspecies into species,

species into genus and so on. We use the single clustering algorithm to generate hierar-

chical clusters from the distances defined above.

3.3.1. Clustering of voting rules. We use the “Single” clustering method (Duda et al.

2001). As is discussed in section 3.4, this clustering method allows us to develop a

statistical test to determine whether the difference between two clusterings could be due

to random fluctuations.

Algorithm 3.1. Single clustering method

(1) Start with a minimum spanning tree.

(2) Remove the longest remaining edge e to form two sub-clusters of one of the existing

parent clusters.

(3) The distance within the parent cluster is defined as the length of the removed edge

e.

(4) If no edges remain then stop, otherwise return to (2).

3.4. Clustering Methods and Statistical Significance. Consider a sub-cluster A and

its super-cluster B. Let a, b be the distances within A and B, respectively. As the lengths

of the edges that the single clustering method removes are monotonically decreasing,

b ≥ a. However random fluctuations may cause the edge, whose length corresponds to a,

to become longer than b. In this case the single clustering method will no longer choose

A as a sub-cluster of B. We develop a Z-test with the null hypothesis that µ(b) ≤ µ(a)

such that if the Z-score is greater than 3.5 we may safely conclude that the choice of A as

a sub-cluster was not merely due to random fluctuations. Hence we consider such clusters

to be “stable” clusters.

3.5. Measures of Distance between Distance Matrices and Trees. We would like

to quantify the magnitude of changes that occur in the distance matrices and dendrograms

when we change homogeneity, so we need to define a distance between matrices and a

distance between trees.
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3.5.1. Flattened Distance Matrix (FDM) Distance. The flattened distance matrix is pro-

duced from the distance matrix by replacing each element with its position on a sorted

list of all elements in the matrix. The distance between the two matrices is defined as the

sum of the absolute differences between their elements. For example:

[Insert Table 2 about here]

As we can see from the table above, M2 and M3 have a vastly different magnitude.

Since the smallest element of M2 occupies the same position as the smallest element M3,

second smallest element of M2 occupies the same position as the second smallest element

M3, and so on, their flattened matrices are the same; the FDM distance between M2 and

M3 will be 0.

This measure of distance has the following advantages; it is not affected by changes in

the overall magnitude of the distances; comparing the flattened distance matrices we lose

less information than comparing the trees or clusters.

We will use FDM Distance investigating how the effect of increasing homogeneity is

compared to the effect of lowering the number of agents.

3.5.2. Tree Distance. As the single clustering method is hierarchical, its results may be

represented as a tree of clusters known as a Dendrogram.

To compare differences between trees, we define the distance between trees as follows:

Let T1 and T2 be two trees with the same set of leaves l1, . . . , ln. For each tree Ti

(i = 1, 2) we define the edge-distance d
(i)
e (lj, lk) between leaves lj and lk as the number of

edges between lj and lk in Ti. Then the tree distance between T1 and T2 is defined as

treedistance(T1, T2) = Σj<k

∣

∣d(1)
e (lj, lk) − d(2)

e (lj, lk)
∣

∣

Tree distance has the advantage that it is not affected by changes in the overall mag-

nitude of the distance matrix, and that the distance between tree represents differences

in the topology of these trees. Its main weaknesses are that its results may depend upon

the clustering method used, and as some of the information in the distance matrix is lost

in the tree representation, so this measure of distance is more granular than the FDM

measure of distance.
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3.6. Multidimensional Scaling. Multidimensional scaling (see e.g. Young and Hamer

1987 ), also known as principle coordinates analysis (Gower 1966), takes a pairwise set of

distances and forms a n dimensional map. The distances on this map are the best possible

n-dimensional approximation to the original distances used as input to the algorithm.

The example used to demonstrate multidimensional scaling in the R statistical package

takes a matrix of the distances between the major cities in Europe, and produces a map

of the position of the cities. Because only the distances are given, the correct rotation of

the map cannot be calculated. Hence the axes of maps produced are arbitrary.

Shah (2003) used multidimensional scaling to analyse the reasons why some rules are

similar to others. In this paper multidimensional scaling is instead used to visualise the

effect that changing the parameters of the population has on the distance between the

voting rules considered. We take the distances defined in section 3.5 and map these

distances onto an ordinary two dimensional page.

4. Results

4.1. Impartial Culture. We may visually present the hierarchical clusters that are

produced by the single clustering method in the form of the Dendrogram below.

[Insert Figure 1 about here]

The results show that there is a big ”Condorcet” cluster

{BL, CP, DE, DQ, IB, KE, LP, MA, NA, RY, SI},

which contains all C1 and C2 rules plus the Dodgson rule which has category C3. All

of them are Condorcet efficient rules, i.e. choose the Condorcet winner if it exists. Since

there is a significant percent of the profiles, which have a Condorcet winner, it is expected

that these rules will have the tendency to be close to each other. This cluster has two

strongly pronounced subclusters {CP, LP, MA} and {DE, DQ, IB, KE, NA, RY, SI}. We

conjecture that, when n → ∞ Dodgson rule and Dodgson Quick converge very fast.

Simpson and Dodgson rules are also close and we expect them to coincide asymptotically,

when n → ∞.

Borda is the closest rule to the Condorcet cluster which reflects its special intermediate

status: it is the only point-scoring rule which belongs to C2.
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Three other clusters, which are much smaller, are as follows. The first one consists of

the Carey, Hare and Plurality Runoff rules {CA, HA, RU}, all are multistage elimination

rules which use the plurality score for elimination. The second, consists of the Coombs

and Exhaustive procedures {CO, EX}, which are both multistage elimination rules which

use the Antiplurality score for eliminating alternatives. The third cluster consists of the

Top Cycle and the Uncovered Set {TO, UN}. Both often choose a large set of alternatives

and the tie-breaking adopted in this paper might have made them look closer than they

are in reality.

Al the remaining rules are “outliers.”

It is also very interesting to compare these results with the results obtained with the use

of other clustering methods. The R statistical language provides 7 hierarchical clustering

methods as follows: ‘ward’, ‘single’, ‘complete’, ‘average’, ‘mcquitty’, ‘median’, ‘centroid’.

Out of these Ward’s method produced the Dendrogram that looked the least like the

dendrograms produced using the single clustering method.

[Insert Figure 2 about here]

We see that the clusters singled out by the single clustering method are easily detectable

here too. The Dendrogram looks nicer since all rules are initially divided into two big

clusters: Condorcet efficient rules and those which are not. However, we have to remember

that Ward’s method is strongly biased toward producing clusters with roughly the same

number of observations. It is also very sensitive to outliers (Milligan 1980).

We have repeated the results of sections 4.1 to 4.3 using each of the seven clustering

methods above and thus believe that these results are robust with respect to choice of

clustering method.

4.2. The Effect of Excluding Condorcet Winners. If we were to choose an electoral

system, we may decide that we always want to choose the Condorcet winner when it

exists. When deciding which rule to use as a backup, we would only be interested in

elections where Condorcet winners do not exist. Thus we may be interested in which

clusters form when we only include simulations where no Condorcet winner occurs.

For the following graphs an Impartial Culture with 5 alternatives and 85 agents was

used.
13



[Insert Figure 3 about here]

There does not appear to be a large difference in the topology of this tree, and the

tree including Condorcet winners in Figure 1. As we would expect, excluding Condorcet

winners had no effect on the clustering of Condorcet Efficient rules. The large number of

profiles where Condorcet winners exist holds the Condorcet efficient rules close together.

When the Condorcet winners are removed the Condorcet efficient rules become further

apart, but they all become further apart by the same amount so the clustering between

Condorcet efficient rules is unaffected.

What is surprising is that excluding elections with Condorcet winners has little effect

on most of the clusters containing Condorcet inefficient rules such as Antiplurality (AP)

and Random Approvals (AR).

Only 3 new stable (as defined in section 3.4) clusters have formed, {D1, TO, UN},

{KA, PL}, and {BL, BO}. Let us discuss the reasons for their appearance.

Dictatorship, Top Cycle and Uncovered Set (D1, TO, UN) - The top cycle and un-

covered set rules can pick a very large set of tied winners if no Condorcet winner exists.

Since we break ties by the preferences of the first agent, these rules will approximate a

dictatorship when no Condorcet winner exists.

K-Approval and Plurality (KA, PL) - The plurality rule chooses the alternative with

the most first place preferences, k-approval for 5 alternatives will pick the alternative with

the most first and second place votes. It is not obvious why removing Condorcet winners

would cause these two rules to cluster together.

Black rule and Borda Rule (BL, BO) - By definition Black’s rule picks the Borda count

winner if no Condorcet winner exists, so it is unsurprising that these rules would cluster

together when we exclude Condorcet winners.

4.3. Effect of Increasing Homogeneity.

4.3.1. Condorcet Efficiency. Let ∆ : Ln → [0, 1] be a probability distribution on the set

of all n-profiles. Given the rule, we will define the Condorcet efficiency of this rule as the

conditional probability that the rule selects a Condorcet winner if there is one.
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For the distribution ∆ obtained by using a Pólya-Eggenberger model with parameter

of homogeneity b we will denote this number as CEb(rule).

In the following table the Condorcet efficiencies were measured for 10000 profiles gener-

ated from a population with 85 agents and 5 alternatives. For each row we used a different

parameter of homogeneity b to generate the population.

[Insert Table 3 about here]

Borda and Antiplurality display an interesting behaviour, for which we do not have an

explanation, as CEb(AP ) and CEb(BO) are not monotonic functions of b. We also note

that Slinko and Leung (2003) observed a high degree of correlation between the Condorcet

efficiency of the rule and its distance from the Condorcet cluster.

4.3.2. Comparing Clustering Trees with and without Homogeneity. Below we see two den-

drograms obtained from two different sets of 10000 profiles generated using two different

parameters of homogeneity b = 0 and b = 1.

Like Figure 1, the dendrogram below is produced from a set of 10000 profiles with 85

agents. Unlike Figure 1, these profiles were generated with parameter of homogeneity

b = 1.

[Insert Figure 4 about here]

4.3.3. Borda Cluster. A new cluster forms in the partially homogeneous population, con-

taining the Borda (BO) Rule, Approval with uniform random approvals (AR), Approval

with Poisson (µ = 3) random approvals (A3). The Borda rule is a point scoring rule: each

alternative is given a number of points for each vote, depending on where the alternative

is ranked on the vote. Approval voting is similar, giving a point to each alternative the

voter approves. Rational agents will always approve their first k preferences, for some k

(Brams and Fishburn 1982), and we assume that agents are rational in this sense. The

mean approval score for AR is a linear function of the Borda score. For this reason, we

conjecture that when there are a large number of agents with the same preferences and k is

uniformly random, AR will approximate the Borda rule. Since there are five alternatives,

the Poisson with mean 3 roughly approximates the uniform distribution on 1,2,3,4,5 and

AR also approximates BO. Borda’s cluster forms for b ≥ 0.5.
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4.3.4. Increasing Distances. We would expect that the distance between of the voting

rules would decrease with b. The more homogeneous the population the more likely a

clear winner is to exist, which should be selected by all voting rules. These graphs mostly

support that hypothesis, however there are a few exceptions to the rule. The most drastic

is the Coombs (CO) and Exhaustive (EX) rules. Where the agents are impartial, these

two rules are almost identical, giving the same result in all 10000 simulations. However

when the parameter of homogeneity is increased to one, the rules split into two, and are

not even in the same cluster.

Coombs and Exhaustive rules (CO-EX). Shah (2003) found that for 85 agents the Coombs

and Exhaustive rules are identical, but they diverge as the number of agents decreases.

Shah explains that both rules work by successively eliminating alternatives with the most

last place votes. The only difference between the rules is that the Coombs rule will stop

if an alternative has the most first place votes, while the Exhaustive rule will continue

until only one alternative remains. Clearly, if no alternative achieves more than half

the first place votes until the last step, both rules will choose the same winner. Shah

further explains that the less agents there are, the more likely it is that an alternative will

gain more than half the first place votes; causing the Coombs rule to choose a different

alternative to the Exhaustive rule.

We can explain our result in a similar fashion. An increase in homogeneity will also

increase the chance that an alternative gets a majority of the first place vote.

Antiplurality and other rules (AP). We can also see that the Antiplurality rule remains

dissimilar to the other rules once b increases to 1. If a majority of agents votes the same

way we would expect that most rules would usually select the majority’s first preference.

However the Antiplurality rule will only select the majority’s first place vote if it also has

the least last place votes. Since the majority all vote the same way, they will only lower

the Antiplurality score of one of the four other alternatives. There is, therefore, no good

reason to believe that the Antiplurality rule will pick the majorities first preference, even

if the majority is very large. Hence we would expect a moderate increase in homogeneity

to result in no substantial decrease in distance between the Antiplurality rule and other

rules.
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A large increase in homogeneity will decrease the distance between Antiplurality and

the Dictatorship rules. We use the preferences of the first voter to break ties. In a very

homogeneous population the most alternatives will be tied, having an Antiplurality score

equal to 0. As we break ties according to the preferences of the first voter, the first voter’s

choice is likely to be chosen; further it is likely that many other agents will have copied

the first voter’s vote, making the first voter a part of a majority.

The complete list of distances that increased when we increased b to 1 is “BL-AP BO-

AP BO-BL EX-AP CP-AP IB-AP LP-AP MC-AP NA-AP SI-AP TO-AP UN-AP RY-AP

CO-AP CO-EX MA-AP DE-AP DQ-AP DQ-DE KE-AP”.That is, the Black rule (BL)

became less similar to Antiplurality (AP), Borda’s (BO) rule became less similar to AP,

and so on.

We may ask if this list would be the same or similar if we had used different assumptions

about the voting population. As Table 4 shows, the list is reduced to its small subset

when we reduce the number of agents to 25. However, for small b there are a number

of intervals where several distances will increase, most notably the interval 0 → 0.5. For

larger b, the distances all decrease as expected.

[Insert Table 4 about here]

In the first row of Table 4, the distances between Borda and Black (BO-BL), between

Coombs and Exhaustive (CO-EX), Dodgson quick approximation and Dodson exact (DQ-

DE) increase. If we had further reduced the number of agents to 5 then only BO-BL would

have increased.

Black and Borda rules (BL-BO). The Black rule will pick the Condorcet winner if it

exists, choosing the Borda winner otherwise. Thus we would expect the distance between

the Black and Borda rules to increase as the frequency of that a Condorcet winners exist

increases, and increase with Borda’s Condorcet efficiency.

[Insert Table 5 about here]

As shown by the table above we find that for small b, the frequency of Condorcet winners

increases rapidly with b, causing the distance to increase. For larger b, the increase in

Borda’s Condorcet efficiency will cause the distance to decrease with b. Shah (2003)

demonstrated a similar result for varying the number of agents.
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The Dodgson Quick approximation and the Dodgson rule (DQ-DE). The DQ-score ap-

proximation to the Dodgson score, is a lower bound on the Dodgson Score. This lower

bound was developed in this paper as a way to quickly eliminate alternatives which could

not possibly be Dodgson Winners, improving the computational efficiency of the Dodg-

son Exact (DE) algorithm. This approximation works well on the assumption that if

adv(b, a) > 0 there will be at least one voter that ranks b just over a, allowing us to

reduce this advantage by 2 with only one swap of neighbouring alternatives. This as-

sumption is less likely to hold with a homogeneous population, so the approximation

diverges from the exact value with an increase in homogeneity.

4.4. Two Dimensional Map of Changes. The map of changes in Figure 5 was gen-

erated using multidimensional scaling, described in section 3.6. From b = 0 to b = 0.5

the points, which represent clustering trees corresponding to the parameter b, move down

the graph; from b = 1 to b = 3 there does not appear to be much movement; the graph

changes direction and from b = 5 to b = ∞ the points move to the right.

[Insert Figure 5 about here]

The downwards movement from 0 to 0.5 may represent the changes in clustering that

occur when homogeneity is added. That the points do not move significantly as b goes

from 1 to 3 may suggest that no further changes occur in the clustering. Where b is

3, the population is very homogeneous, the second voter will copy the vote of the first

voter three-quarters of the time. It is plausible that as the population becomes even more

homogeneous, it will become impossible to distinguish between the rules, effectively the

tree collapses. The change in direction of the graph may represent this different type of

change.

This interpretation of the graph suggests the truth of the following statements:

• increasing b up to 0.5 will form new clusters, but increasing it further will not.

• there is little difference between the clusters produced for b = 1, 2, 3.

• increasing b beyond 3 will cause clusters to be lost, as they become subsumed by

larger clusters.

We shall demonstrate that these statements are mostly true.
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Are there new clusters after b = 0.5? Each element of Table 6 represents the number of

new clusters that form as we increase the parameter b from the value at the top of the

column to the value at the left of the row. Increasing b from 0 to 1/5 induces 5 new

clusters; increasing b from 1/5 to 1/3 induces 3 new clusters; increasing b from 1/3 to 1/2

or from 1/2 to 1 induces one additional cluster; increasing b from 1 to any of the other

values presented does not induce any more clusters. This table was generated with the

newclusters function which returns only clusters that we can be sure did not occur just

by chance (see section 3.4).

From Table 6, we see that at least one cluster was added after b = 0.5, so it is not

strictly accurate to say that no new clusters occur after 0.5. However it does appear that

most of the new clusters occur before 0.5. Also our dataset fails to demonstrates the

existence of any new clusters occurring after b = 1. So it appears that few new clusters

occur after b = 0.5.

[Insert Table 6 about here]

[Insert Table 7 about here]

Do any changes in the clusters occur between b = 1 and b = 3? Each element of the Table

7 represents the number of clusters we know exist for the smaller value of b but not the

larger value. From this table we can see that our dataset does not demonstrate the loss

of any clusters between b = 1 and b = 3. Similarly from Table 6, we can see that no new

clusters are known to occur between b = 1 and b = 3. As we expected, no statistically

significant changes occur within this interval.

4.5. Magnitude of Changes. Looking at Figure 5, the distance between b = 0 and the

points b = 1/2, 1, 2, 3 appears to be around 600. The exact distances are 596, 620, 620

and 630 respectively. As discussed in section 4.4, new clusters are formed till b ≈ 1. After

b ≈ 3 it becomes impossible to reliably distinguish some of the rules.We are primarily

interested in the region where new clusters are being formed. Whether we take this region

as ending at 1/2, 1, 2 or 3 we have a distance in the range 596 to 630. This is 300 times

the minimum possible change and 17-20% of the maximum distance between two graphs,

hence it is significant. The maximum tree distance for a tree with 25 leaves is between

3176 and 3422. The maximum is likely to be 3176 although we do not have a proof of

this.
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4.5.1. Magnitude of Distance induced by Change in Number of Agents. We may wish to

compare the magnitude of the effect of varying of parameter of homogeneity b with that

of varying the number of agents. As will be discussed below, varying the number of

agents between reasonable values has a slightly greater effect than varying the parameter

of homogeneity. From Table 8, The distance of from 7 to 1025 agents is 620, the same

distance caused by varying b from 0 to 1 or 2.

[Insert Figure 6 about here]

We can see from Figure 6 that the tree with 3 agents is substantially different from

the other trees. It would be intuitive to believe that this difference is at least in part due

to most of the rules giving the same result when there are only three agents; however

as shown in Figure 7 only two pairs of rules are identical. However the rules in the

Condorcet cluster {CO, CP, DE, DQ, IB, KE, LP, MA, NA, RY, SI, TO, UN} join

together at approximately the same height, making the sub-clustering very unstable.

[Insert Figure 7 about here]

As, shown in Figure 7 above, three agents is enough to generate interesting elections

where most of the rules are distinct. Thus we may consider 3 a reasonable number of

agents, when comparing the effect of varying b and varying the number of agents within

reasonable ranges.

The elements of the matrix presented below represent the distances between the clus-

tering trees produced from populations with different numbers of agents.

[Insert Table 8 about here]

From Table 8 above we can see that the minimum distance between the tree where

n = 3 and the other trees is 672. This suggests that changing the number of agents from

3 to anything ≥ 5 has more effect than varying b from 0 to 3.

4.6. Is Varying the Homogeneity Equivalent to Varying the Number of Agents?

As we increase the homogeneity of the Pólya-Eggenberger Urn Model, the number of

unique votes decrease. We discovered a number of similarities between reducing the

number of agents, and introducing homogeneity in the last section. For example, we

found that increasing the homogeneity could increase the distance between the Coombs
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and Exhaustive rules (CO-EX), which mirrored Shah’s (2003) finding that reducing the

number of agents could increase the distance between these two rules.

We may see from the following graph that varying the homogeneity has a substantially

different effect to varying the number of agents. It uses multi-dimensional scaling to rep-

resent the flattened distance matrix distances as closely as possible on a two dimensional

surface. The labels on the vertices are of the format b:v, where b is the parameter of

homogeneity and v is the number of agents. If varying b were equivalent to varying v, we

would expect that the graph would form a line. However, as we can see the graph forms

a clearly defined grid. Changing the homogeneity, is represented by a horizontal change,

varying the number of agents results in a primarily vertical change. Thus, though similar,

the effect of the parameter of homogeneity is not the same as the effect of varying the

number of agents.

[Insert Figure 8 about here]

5. Conclusions

The Pólya Eggenberger Urn is an effective model of partially homogeneous voting pop-

ulations. Introducing homogeneity from the Urn model has some similarities to reducing

the number of agents, for example both may cause the Coombs and Exhaustive rules to

diverge. There are also a number of differences between introducing homogeneity and

reducing the number of agents. For example, introducing moderate homogeneity causes

the Borda rule to cluster with the Random Approval rule, but reducing the number of

agents does not. For a fixed parameter of homogeneity a the Urn model will not gen-

erate a consistent degree of homogeneity. This weakness can be remedied by defining a

parameter of homogeneity b = fracam!, which is adjusted for the number of alternatives.

The most interesting range of b is 0 to 0.5. In general the distance between most

rules decreases as we increase the homogeneity. Within the range 0 to 0.5, increasing the

homogeneity actually increases the distance between a number of rules.

Removing elections in which a Condorcet winner occurs resulted in little difference in

the clustering of the social choice rules. When Condorcet winners were removed only

three new clusters formed.

We have found the single clustering method an effective tool for studying social choice

rules. Combined with the test described in section 3.4, the single clustering method can be
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used to quickly find significant differences between the clustering of different populations,

differences that we can know are not due to chance. This certainty provides a foundation

for the reports developed for this paper, such as the number of new clusters that form.

We have also found that multidimensional scaling is an effective tool for visualising

the effect that varying the parameters, of a randomly generated population, has on the

relationships between the voting rules.
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7. Appendix

Sample dendrograms with increasing homogeneity b follow:

[Insert Figure 9 about here]

[Insert Figure 10 about here]

[Insert Figure 11 about here]

[Insert Figure 12 about here]

[Insert Figure 13 about here]
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Figure 4. Partially Homogeneous Culture (b = 1), with 5 Alternatives
and 85 Agents
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Figure 5. Map of Distances between Clustering Trees, Varying Homogeneity
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Figure 6. Map of Tree Distances, Varying number of Agents, b = 0
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Figure 7. Dendrogram for Impartial Culture (b = 0), m = 5 Alternatives,
n = 3 agents
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Figure 8. Multidimensional Scaling Plot of Parameter of Homogeneity b
v.s. Number of Agents
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Figure 13. b = 1, 85 Agents, 7 Alternatives, 10000 samples

A
P D
1

A
R

B
O K
A A
3

M
C

TO U
N

C
P LP M
A B
L

E
X

C
O IB N
A

K
E

D
E

D
Q S
I

R
Y P
L

C
A

H
A

R
U

0.
0

0.
1

0.
2

0.
3

0.
4

PE1−10000−7−85 single Cluster Dendrogram

D
is

si
m

ila
rit

y

Table 1. The two letter abbreviations for the Social Choice Rules (Summary)

SCR Social Choice Rule Cat
A3 Approval Poisson µ = 3 C4
AR Approval Uniform C4
AP Antiplurality C3
BL Black C2
BO Borda C2
CA Carey C3
CO Coombs C3
CP Copeland C1
D1 Dictatorship C3
DE Dodgson Rule C3
DQ Dodgson Quick C2
EX Exhaustive C3
HA Hare C3

SCR Social Choice Rule Cat
IB Inverse Borda C2
KA

⌊

m
2

⌋

-Approval C3
KE Kemeny C1
LP Long Path C1
MA Markov C1
MC Majoritarian Compromise C3
NA Nanson C2
PL Plurality C3
RU Plurality Runoff C3
RY Raynaud C2
SI Simpson C2
TO Top Cycle C1
UN Uncovered Set C1

Table 2. Example of forming a Flattened Distance Matrix (FDM)

M1 M2 M3

Distance M
1

0.03 1
0.02 0.01 1

1
0.01 1
0.02 0.03 1

1
0.1 1
0.4 0.9 1

Flattened M
X

3 X

2 1 X

X

1 X

2 3 X

X

1 X

2 3 X

|Mi − M2|
X

2 X

0 2 X

X

0 X

0 0 X

Distance 4 0
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Table 3. Condorcet Efficiencies of Rules for different homogeneities

b = 0 0.04 0.1 0.2 0.3 0.4 0.5 1
A3 0.6086 0.7701 0.8172 0.8449 0.8610 0.8668 0.8769 0.9061
AP 0.5314 0.4556 0.4056 0.3780 0.3616 0.3507 0.3606 0.4521
AR 0.5183 0.6952 0.7566 0.7842 0.8014 0.8036 0.8111 0.8552
BL 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
BO 0.8487 0.8523 0.8490 0.8373 0.8425 0.8440 0.8469 0.8736
CA 0.8226 0.8496 0.8723 0.8911 0.9178 0.9292 0.9352 0.9688
CO 0.9055 0.9220 0.9484 0.9690 0.9854 0.9890 0.9935 0.9988
CP 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
D1 0.2441 0.3181 0.3790 0.4637 0.5159 0.5617 0.5932 0.7104
DE 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
DQ 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
EX 0.9055 0.9167 0.9285 0.9400 0.9513 0.9531 0.9584 0.9791
HA 0.8872 0.9010 0.9096 0.9185 0.9371 0.9464 0.9487 0.9746
IB 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

KA 0.7339 0.8029 0.8433 0.8696 0.8859 0.8963 0.9107 0.9423
KE 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
LP 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

MA 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
MC 0.6959 0.7275 0.7194 0.7855 0.8414 0.8749 0.9052 0.9659
NA 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
PL 0.5868 0.6858 0.7494 0.8153 0.8568 0.8830 0.8983 0.9494
RU 0.8140 0.8634 0.8878 0.9112 0.9309 0.9439 0.9480 0.9745
RY 0.9983 0.9973 0.9994 0.9998 0.9988 0.9988 0.9992 0.9994
SI 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

TO 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
UN 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

Table 4. Distances that Increase with Homogeneity

#alter #voter b distances that increase

5 25 0 → 1 BO-BL CO-EX DQ-DE
5 25 0 → 0.5 TO-AP UN-AP RY-AP CO-AP CO-EX MA-AP

DE-AP DQ-AP DQ-DE KE-AP BL-AP BO-AP
BO-BL EX-AP CP-AP HA-AP IB-AP LP-AP MC-
AP NA-AP SI-AP

5 25 0.5 → 1 none increase
5 25 0.2 → 0.5 BO-BL

Table 5. Analysis of distance between Borda and Black

%Condorcet BO Condorcet BL-BO
#alter #voter b Winners Efficiency Distance

5 25 0 76% 86% 0.11
5 25 0.2 84% 84% 0.13
5 25 0.5 91% 85% 0.14
5 25 1 95% 87% 0.12
5 25 2 98% 90% 0.09
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Table 6. Number of New Clusters that Form as b Increases

b 0 1/5 1/3 1/2 1 2 3 5 9 25 27 81 125 243 625 729
1/5 5
1/3 7 3
1/2 6 2 1
1 6 2 2 1
2 5 2 2 1 0
3 4 1 1 1 0 0
5 4 2 2 1 0 0 0
9 3 1 1 1 0 0 0 0
25 3 1 1 1 0 0 0 0 0
27 3 1 1 1 0 0 0 0 0 0
81 2 0 0 0 0 0 0 0 0 0 0
125 1 0 0 0 0 0 0 0 0 0 0 0
243 0 0 0 0 0 0 0 0 0 0 0 0 0
625 0 0 0 0 0 0 0 0 0 0 0 0 0 0
729 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Inf 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
b 0 1/5 1/3 1/2 1 2 3 5 9 25 27 81 125 243 625 729

Table 7. Number of Clusters Lost as b Increases

b 0 1/5 1/3 1/2 1 2 3 5 9 25 27 81 125 243 625 729
1/5 5
1/3 7 1
1/2 7 2 1
1 9 4 2 0
2 10 6 6 3 0
3 9 6 4 3 0 0
5 10 7 7 4 1 0 0
9 9 6 6 4 0 0 0 0
25 13 10 11 8 5 4 3 1 0
27 13 10 11 9 5 4 3 1 0 0
81 13 10 10 9 5 4 3 1 0 0 0
125 12 10 11 9 6 5 3 2 0 0 0 0
243 13 10 11 9 5 4 3 1 0 0 0 0 0
625 13 10 11 9 6 5 3 2 0 0 0 0 0 0
729 13 10 11 9 7 6 4 3 1 1 1 0 0 0 0
Inf 13 12 13 11 9 8 6 5 3 3 3 2 1 0 0 0
b 0 1/5 1/3 1/2 1 2 3 5 9 25 27 81 125 243 625 729
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Table 8. Distance Matrix, Varying # Agents, 5 Alternatives, impartial
culture (b = 0)

3 5 7 9 15 17 33 129 1025
3 0 716 672 744 754 770 794 758 786
5 716 0 406 466 624 632 672 690 774
7 672 406 0 298 482 436 482 514 620
9 744 466 298 0 368 378 430 490 592

15 754 624 482 368 0 136 148 346 376
17 770 632 436 378 136 0 106 348 362
33 794 672 482 430 148 106 0 296 354

129 758 690 514 490 346 348 296 0 172
1025 786 774 620 592 376 362 354 172 0
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