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1 Direct and Representative Democracy

Countrywide votes on a specific issue are an accepted way of resolving po-
litical issues in many countries around the world. Such votes are usually termed
“referenda.” A referendum gives the people the chance to vote directly on a specific
issue. Although people can also make choices at general elections, these elections
are usually fought on a number of issues and often no clear verdict on any one
issue is delivered. So instead of voting for only representatives, referenda allow
citizens to vote directly on some federal matters. In Switzerland and California,
for example, referenda are very common.

It is a commonplace that an ideal democratic political system should combine
both referenda and representative government. A key issue is the relative weight-
ings of these two ingredients. Referenda are costly. However, in the fully com-
puterized society, to which we are gradually moving, referenda could be cheap
and fast. Hence the relative weightings of the two ingredients may be expected to
change.

⋆ Correspondence to:A.Slinko
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Another development that might drive this change is the relative simplicity of
lobbying such legislative bodies as the American Congress and House of Repre-
sentatives. In his book, Phillips observes that Washingtonhas become increasingly
dominated by an interest-group elite which is now so deeply entrenched and so re-
sistant to change that the proper functioning of governmentis impossible [21]. He
suggests that representative democracy be restored to Athenian direct democracy
through the use of referenda.

In this paper we show that lobbying in conditions of “direct democracy” is
computationally virtually impossible, even in conditionsof complete information
about voters’ preferences. We use the apparatus of parametrized complexity for
this purpose. We envision that computational complexity may play a positive role
in voting, protecting the integrity of social choice. Such arole would resemble the
situation in public-key cryptography [8] where computational complexity protects
the privacy of communication. As far as we know, this is the first paper which
considers applications of parametrized complexity to social choice. Previously,
complexity issues in social choice were considered in [1–5,7,11–13,17,18].

A preliminary version of this paper was published in Proceedings of the 1st
International Workshop on Computational Social Choice (COMSOC–2006). [6].

2 Parametrized Complexity
For those not familiar with computational complexity, we provide a quick

sketch of concepts and terminology. The reader should consult [9,15] for more
details.

The standard paradigm of complexity theory is embodied in the contrast be-
tweenP andNP problems. Problems inP are those which admit an algorithm
that, given any inputx of sizen, produces the outputOutput(x) required by the
problem specification in timeO(nα), that is in time bounded byCnα, whereα
andC are constants. The notationP designates the class of problems solvable in
polynomial time. Such algorithms are generally consideredto be tractable.NP de-
notes the class of non-deterministic polynomial time solvable problems. For such
problems, for each inputx, there is a polynomial time algorithm that justifies that
Output(x) is indeed the output required by the specifications of the problem.NP
containsP and it is believed thatP 6= NP . The hardest problems inNP are
calledNP -complete. They are all equivalent in a sense that any such problem can
be reduced to an instance of any otherNP -complete problem and such reduction
can be made in polynomial time. So, if oneNP -complete problem can be solved
in polynomial time, then all of them can be solved in this way and it would fol-
low thatNP = P . NP -completeness is therefore taken as evidence of inherent
intractability.

However, in reality we are often interested in the tractability of problems when
values of a certain parameterk (representing some aspect of the input) are small. In
this case we need to undertake the parametrized complexity analysis as developed
by Downey and Fellows in [9]. A problem is said to be in the class FPT (Fixed
Parameter Tractable) if there exists an algorithm solving the problem and running
in timef(k)nc, wherec is a fixed constant andf is an arbitrary computable func-
tion. If our problem belongs to this class, then it is tractable for small values of
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k. Unlike theP versusNP paradigm, here we obtain a hierarchy of parametrized
complexity classes

FPT = W [0] ⊆ W [1] ⊆ W [2] ⊆ . . .

which is intuitively based on the complexity of circuits required to check a solu-
tion. The classW [t] is defined to be the class of all problems that are reducible to
a parameterized version of the satisfiability problem for Boolean circuits of weft
t (see [9] for the exact definition). BeingW [2]-complete is considered a strong
evidence that the problem is not tractable even for small values of the parameter.
The best known algorithm for anyW [2]-complete problem is still just the brute
force algorithm of trying allk subsets which has a running timeO(nk+1). Two
W [2]-complete problems that will be important later in this paper are described
below.

Given a graphG = (V, E) with a set of verticesV and the set of edgesE, we
say that a subset of the set of verticesV ′ ⊆ V is adominating setif every vertex
in V is adjacent to at least one vertex inV ′. If V ′ is dominating and consists ofk
vertices we will say that it is ak-dominatingset. The setV ′ is calledindependent
if no two vertices ofV ′ are adjacent. The picture below shows a 3-dominating set
which is not independent and an independent 4-dominating set.
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3-dominating set
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Independent 4-dominating set

The k-DOMINATING SET problem takes as input a graphG and a positive
integerk, which is considered as parameter. The question asks whether there ex-
ists ak-dominating set inG. Thek-DOMINATING SET problem has been shown
to be W [2]-complete by Downey and Fellows (1999). They consider that “k-
DOMINATING SET problem represents some fundamental “wall of intractability”
where there is no significant alternative to trying allk-subsets for solving the prob-
lem.” [9], p.15.

The INDEPENDENTk-DOMINATING SET problem is alsoW [2]-complete. The
input is the same as for thek-DOMINATING SET, and the question asks whether
G has an independent dominating set of sizek.
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1 Lobbying on a Restricted Budget

We consider the problem faced by an actor that wishes to influence the vote of a
certain legislative body or a referendum on a number of issues by trying to exert
influence on particular agents. We will refer to this actor as“The Lobby”. It is
assumed that The Lobby has complete information about agents’ preferences. The
Lobby has a fixed budget and has to be selective in choosing agents to distribute the
limited budget among them. It is reasonable to assume that the number of agentsk
that can realistically be influenced is relatively small, and hence this aspect of the
input is appropriate as a parameter for the complexity analysis. Hence the use of
parametrized complexity developed by Downey and Fellows (1999) is completely
appropriate for this problem. Our formal model of the problem is as follows:

The problem: OPTIMAL LOBBYING (OL)

Instance:An n by m 0/1 matrixE , a positive integerk, and a lengthm
0/1 vectorx. (Each row ofE represents an agent. Each column represents a
referendum in the election or a certain issue to be voted on bythe legislative
body. The 0/1 values in a given row represent the natural inclination of the
agent with respect to the referendum questions put to a vote in the election.
The vectorx represents the outcomes preferred by The Lobby.)

Parameter:k (representing the number of agents to be influenced)

Question:Is there a choice ofk rows of the matrix, such that these rows
can be edited so that in each column of the resulting matrix, amajority vote
in that column yields the outcome targeted by The Lobby?

Proposition 1 OPTIMAL LOBBYING is W [2]-hard.

Proof One of the standard techniques of proving a problem isW [2]-hard is to
reduce a problem that is already known to beW [2]-hard to our problem. We
reduce from theW [2]-completek-DOMINATING SET problem. Given a graph
G = (V, E), and a positive integerk for which we wish to determine whether
G has ak-element dominating set, we produce the following set of inputs to the
OPTIMAL LOBBYING problem. (We will assume that the number of verticesn is
odd, and that the minimum degree ofG is at leastk, sincek-DOMINATING SET

remainsW [2]-complete under these restrictions.)

– The 0/1 matrixE consists of two sets of rows, thetop set, indexed byV =
{1, ..., n}, and thebottom set, consisting ofn − 2k + 1 additional rows. The
matrixE hasn + 1 columns, with the first column being thetemplate column,
and the remainingn columns indexed byV .

– The template column has 0’s in all of the top set row entries, and 1’s in all of
the bottom set row entries.

– A column indexed by a vertexv, in the top row positions, has 0’s in those rows
that are indexed by verticesu ∈ N [v] whereN [v] stands for the set of all
neighbours ofv. In the bottom row positions, the entries can be computed by
first setting all of these entries to 1, and then changing (arbitrarily) n − k −
|N [v]|+ 1 of these entries to 0. (This ensures that in every column indexed by
a vertex the total number of 0’s is one more than the total number of 1’s.)
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– The vectorx = (1, 1, . . . , 1) of lengthn + 1 has a 1 in each position.
– The parameterk remains the same.

We claim that this is a yes-instance of OL if and only ifG has ak-dominating set.
One direction is easy. IfG has ak-dominating set, then The Lobby corrupts the

corresponding agents, or formally, we edit the corresponding rows. With respect
to the first (template) column, we thus have the opportunity to changek of the 0’s
to 1’s. Since in the first column, initially, the “1” outcome was losing by2k − 1
votes, and since each of thesek edit operations decreases thedifferenceby 2 (as
there is one more 1 and one less 0), the outcome in the first (template) column is
a victory for the “1” outcome, by 1. Since the chosen rows for editing represent a
dominating set inG, we are similarly able to advantage each vertex column contest
by at least 2, and since each of these was losing by one vote, weare able to secure
majorities of 1 in every column.

Conversely, suppose the described instance of OL has a solution. Necessarily,
the rows chosen to be edited must be in the top set of rows (indexed by vertices
of G), since otherwise obtaining a majority of 1’s in the first column will not be
possible. Any solution that consists of rows in the top set ofrows must therefore
provide at least one opportunity, for each vertex column (indexed byv), of editing
in a row that is indexed by a vertexu ∈ N [v]. Thus, any such solution corresponds
to ak-dominating set inG.

Proposition 2 OPTIMAL LOBBYING (OL) is in W [2].

Proof One of the standard techniques of proving that a problem is inthe class
W [2] is to reduce our problem to another problem which is already known to be
in W [2]. We reduce to theW [2]-complete INDEPENDENTk-DOMINATING SET

problem [9], page 464. Given ann by m 0/1 matrixE = (eij), a positive integer
k, and a lengthm 0/1 vectorx, proceed as follows:

1. Calculatew = ⌊n/2⌋ + 1, which is the number of votes required to pass any
particular referendum question.

2. For1 ≤ j ≤ m, let

δ(j) =

{

max(0, w −
∑

i eij), xj = 1,
max(0,

∑

i eij − w + 1), xj = 0.

3. Sinceδ(j) is the number of votes that The Lobby is away from the desired
outcome in thejth referendum, whenδ(j) > k, for at least onej, we have a
trivial negative instance.

4. For eachj = 1, . . . , m, letCj = {i | eij 6= xj , 1 ≤ i ≤ n}. ThenCj is the set
of voters who are naturally inclined to vote against the interests of The Lobby
in thejth referendum.

An OL solution of sizek will be any setK ⊆ {1, . . . , n} such that the cardinality
of K is k and|K ∩ Cj | ≥ δ(j) for everyj = 1, . . . , m.

Let us construct the graphG as specified below. The vertex set ofG consists
of the following vertices:

– xab is a vertex, for1 ≤ a ≤ k, 1 ≤ b ≤ n.
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– xa∞ is a vertex, for1 ≤ a ≤ k.
– ycd is a vertex, for1 ≤ c ≤ m, 1 ≤ d ≤

(

k
k−δ(c)+1

)

.

The edges ofG are as follows:

– For every1 ≤ a ≤ k, the subgraph induced on{xab | 1 ≤ b ≤ n or b = ∞} is
complete.

– For every1 ≤ b ≤ n (but not b = ∞) the subgraph induced on{xab |
1 ≤ a ≤ k} is complete.

– For every1 ≤ c ≤ m, let fc be a bijection from{1, 2, . . . ,
(

k
k−δ(c)+1

)

to the
set of all subsets of{1, . . . , k} of cardinalityk − δ(c) + 1. Then the vertexycd

is connected by an edge to each member of{xab | a ∈ fc(d), b ∈ Cc}.

We will show now thatG has ak-Independent Dominating SetS if and only if
(E , k, x) is a positive instance of OL. First, assume thatG has ak-Independent
Dominating SetS. Then eachxa∞ is dominated, and, since it is connected only
to verticesxab, where1 ≤ b ≤ n, at least one vertexxab must be inS for each
1 ≤ a ≤ k. As S is of sizek, it includes exactly one of thexab for eacha. As S is
independent, it cannot includexsb andxtb for s 6= t.

Now, let K = {b | xab ∈ S for somea}. The cardinality ofK is k, so, if
|K ∩ Cj | ≥ δ(j) for everyj, thenK is an OL solution of sizek.

For everyj, consider the setYj = {yjd | 1 ≤ d ≤
(

k
k−δ(j)+1

)

}. Since each
of these vertices is dominated, some member of{xab | a ∈ fj(d), b ∈ Cj} is in
S for eachd. Sincefj(d) ranges over all subsets of{1, . . . , k} of cardinalityk, at
leastδ(j) members of{xab | a ∈ {1, . . . , k}, b ∈ Cj} are inS and therefore at
leastδ(j) members ofCj are inK. ThusK is an OL solution.

Conversely, imagine thatK is an OL solution of sizek. Choose an arbitrary
enumerationθ of elements ofK and denoteS = {xiθ(i) | 1 ≤ i ≤ k}. S is inde-
pendent, because there is no edge betweenxiθ(i) andxjθ(j) unlessi = j. Since
i ranges over1, . . . , k, each vertexxab is dominated. SinceK is an OL solution,
for eachj at leastδ(j) members ofCj are inK. Thus, by the construction ofS,
at leastδ(j) members of{xab | a ∈ {1, . . . , k}, b ∈ Cj} are inS, so that some
member of{xab | a ∈ fj(d), b ∈ Cj} is in S for eachd, andyjd is dominated for
eachj and eachd. ThusS is an Independent Dominating Set of sizek.

Together, the two propositions above give the following complete classification
of the parametrized complexity of the problem.

Theorem 1 OPTIMAL LOBBYING is W [2]-complete.

2 Conclusion

This paper shows that parameterized complexity is a very appropriate tool for an-
alyzing the computational difficulty of problems in social choice. We believe that
the methods of parameterized complexity will be especiallyuseful when dealing
with problems regarding voting. Indeed, any voting situation stipulates the exis-
tence of two parameters: the number of votersn and the number of alternativesm.
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The sizes of these two parameters are very different. While the number of voters
can be, and usually is, very large, the number of alternatives is small, seldom ex-
ceeding 20. Hence, the contribution of the relatively smallnumber of alternatives
to the complexity of the problem is limited, and this should be reflected in the
method of investigation. We believe the best way to do so is touse the conceptual
framework of parameterized complexity.

Some 15 years ago, Bartholdi, Tovey and Trick [1] pioneered the study of vot-
ing procedures from the viewpoint of complexity theory. In particular, they proved
that DODGSON SCORE and KEMENY SCORE are NP-complete and DODGSON

WINNER and KEMENY WINNER are NP-hard. The latter two problems were proved
to be complete for parallel access to NP [17,18]. A similar result was also estab-
lished for YOUNG SCOREand YOUNG WINNER.

It has been known for some time as folklore that the problems DODGSON

SCOREand KEMENY SCORE, as well as DODGSON WINNERand KEMENY WIN-
NER, are Fixed Parameter Tractable if the number of candidates is chosen as pa-
rameter (see, e.g. [20]). The same is true for YOUNG WINNER [16]. It looks like the
number of voters has relatively small impact on complexity in comparison to the
number of candidates. This view is supported by the fact thatKEMENY RANKING

remains NP-complete even for four voters [10]. Probably thenumber of candi-
dates is not the most natural parameter for measuring the exact complexity of such
problems.

The parametrized complexity of DODGSONSCORE (and similarly DODGSON

WINNER) in the following formulation remains open and is of considerable inter-
est.

The problem: DODGSONSCORE (DS)

Instance:Set of candidatesA, and a distinguished membera ∈ A; a profile
of preference orders onA.

Parameter:k (representing the bound for the Dodgson’s score)

Question:Is the Dodgson score of candidatea less then or equal tok?

This is a parametrized version of the original question studied by Bartholdi et al
[1].1

3 Acknowledgements
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1 Note added in proof: in the meantime Mike Fellows and Fran Rosamond have shown
that this problem is in FPT.
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