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Summary: Fine and Gill [4] introduced the geometric representation for those
comparative probability orders on n atoms that have an underlying probability
measure. In this representation every such comparative probability order is rep-
resented by a region of a certain hyperplane arrangement. Maclagan [12] asked
how many facets a polytope, which is the closure of such a region, might have.
We prove that the maximal number of facets is at least Fn+1, where Fn is the nth
Fibonacci number. We conjecture that this lower bound is sharp. Our proof is com-
binatorial and makes use of the concept of flippable pairs introduced by Maclagan.
We also obtain an upper bound which is not too far from the lower bound.
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1 Introduction

Considering comparative probability orders from the combinatorial viewpoint,
Maclagan [12] introduced the concept of a flippable pair of subsets. This con-
cept appears to be very central for the theory as it has nice algebraic and geometric
characterisations. Algebraically, comparisons of subsets in flippable pairs corre-
spond to irreducible vectors in the discrete cone associated with the comparative
probability order, i.e., those vectors that cannot be split into the sum of two other
vectors of the cone [6,2]. Geometrically, a representable comparative probability
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order corresponds to a polytope in a certain arrangement of hyperplanes and flip-
pable pairs correspond (with one exception) to those facets of the polytope which
are also facets of one of the neighboring polytopes.

Christian et al [2] showed that in any minimal set of comparisons that define
a representable comparative probability order all pairs of subsets in those compar-
isons are flippable.

Maclagan formulated a number of very interesting questions (see [12, p. 295]).
In particular, she asked how many flippable pairs a comparative probability order
on n atoms may have. In this paper we show that a representable comparative
probability order may have up to Fn+1 flippable pairs, which is the (n + 1)th
Fibonacci number. We conjecture that this lower bound on the maximal number
of flippable pairs is sharp. This conjecture was put forward by one of us and we
call it Searles’ conjecture. We provide an upper bound on the maximal number of
flippable pairs in a representable comparative probability order that is not too far
from Fn+1.

Section 2 contains preliminary results and formulates Maclagan’s problem. In
Sections 3 and 4 we discuss Searles’ conjecture in relation to Maclagan’s problem
and prove the aforementioned lower and upper bounds. Section 5 concludes by
stating several open problems.

2 Preliminaries

2.1. Comparative Probability Orders. Given a (weak) order, that is, a reflexive,
complete and transitive binary relation, � on a set A, the symbols ≺ and ∼ will,
as usual, denote the corresponding (strict) linear order and indifference relation,
respectively.

Definition 1 Let X be a finite set. A linear order � on 2X is called a comparative
probability order onX if ∅ ≺ A for every nonempty subsetA ofX , and� satisfies
de Finetti’s axiom, namely

A � B ⇐⇒ A ∪ C � B ∪ C, (1)

for all A,B,C ∈ 2X such that (A ∪B) ∩ C = ∅.

As in [6,7] at this stage of investigation we preclude indifferences between
sets. For convenience, we will further suppose that X = [n] = {1, 2, . . . , n} and
denote the set of all comparative probability orders on 2[n] by Pn.

If we have a probability measure p = (p1, . . . , pn) on X , where pi is the
probability of i, then we know the probability p(A) of every event A which is
given by p(A) =

∑
i∈A pi. We may now define an order �p on 2X by

A �p B if and only if p(A) ≤ p(B).

If the probabilities of all events are different, then �p is a comparative probability
order on X . Any such order is called (additively) representable. The set of repre-
sentable orders is denoted by Ln. It is known [9] that Ln is strictly contained in
Pn for all n ≥ 5.
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Since a representable comparative probability order does not have a unique
probability measure representing it but a class of them, any representable compar-
ative probability order can be viewed as a credal set (a closed and convex set of
probability measures, see, e.g., [11]) of a very special type. We will return to this
interpretation slightly later.

As in [6,7], it is often convenient to assume that 1 ≺ 2 ≺ . . . ≺ n. This reduces
the number of possible orders under consideration by a factor of n!. The set of all
comparative probability orders on [n] that satisfy this condition will be denoted by
P∗n, and the set of all such representable comparative probability orders on [n] will
be denoted by L∗n.

We can also define a representable comparative probability order by any vector
of positive utilities u = (u1, . . . , un) by

A �u B if and only if
∑
i∈A

ui ≤
∑
i∈B

ui.

We do not get anything new since this will be the order �p for the measure
p = 1

Su, where S =
∑n
i=1 ui. However, sometimes it is convenient to have

the coordinates of u integers. In this case we will call u(A) =
∑
i∈A ui the utility

of A.
Kraft et al [9] gave necessary and sufficient conditions for a comparative prob-

ability order to be representable. They are not so easy to formulate and they have
appeared in the literature in various forms (see, e.g., [15,6]). The easiest way to
formulate them is through the concept of a trading transform introduced in [16].

Definition 2 A sequence of subsets (A1, . . . , Ak;B1, . . . , Bk) of [n] of even length
2k is said to be a trading transform of length k if for every i ∈ [n]

|{j | i ∈ Aj}| = |{j | i ∈ Bj}| .

In other words, sets A1, . . . , Ak can be converted into B1, . . . , Bk by rearranging
their elements.

Now the result of [9] can be reformulated as follows.

Theorem 1 (Kraft-Pratt-Seidenberg) A comparative probability order � is rep-
resentable if and only if for no k there exist pairs Ai ≺ Bi, i = 1, 2, . . . , k such
that (A1, . . . , Ak;B1, . . . , Bk) is a trading transform of length k.

2.2. Discrete Cones. To every linear order � ∈ P∗n, there corresponds a dis-
crete cone C(�) in Tn, where T = {−1, 0, 1} (as defined in [10,6]).

Definition 3 A subset C ⊆ Tn is said to be a discrete cone if the following prop-
erties hold:

D1. {e1, e2, . . . , en} ⊆ C, where {e1, . . . , en} is the standard basis of Rn,
D2. for every x ∈ Tn, exactly one vector of the set {−x,x} belongs to C,
D3. x+ y ∈ C whenever x,y ∈ C and x+ y ∈ Tn.
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We note that in [6] Fishburn requires 0 /∈ C because his orders are anti-reflexive.
In our case, condition D2 implies 0 ∈ C.

For each subsetA ⊆ X we define the characteristic vector χA of this subset by
setting χA(i) = 1, if i ∈ A, and χA(i) = 0, if i /∈ A. Given a comparative proba-
bility order� onX , we define the characteristic vector χ(A,B) = χB−χA ∈ Tn
for every possible pair (A,B) such that A � B. The set of all characteristic vec-
tors χ(A,B) is denoted by C(�). The two axioms of comparative probability
guarantee that C(�) is a discrete cone (see [6, Lemma 2.1]).

2.3. Critical and flippable pairs. Not all relations A ≺ B for pairs of sub-
sets (A,B) in a comparative probability order are equally informative. Some of
these may be implied by others through transitivity or de Finetti’s axiom. This
is certainly true for any pair consisting of two nonadjacent sets or two sets with
nonempty intersection.

Definition 4 Let A and B be disjoint subsets of [n]. The pair (A,B) is said to be
critical for� ifA ≺ B and (A,B) are adjacent, i.e., there is no C ⊆ [n] for which
A ≺ C ≺ B.

In the above definition we follow Fishburn [8], while Maclagan [12] calls such
pairs primitive.

It is known [12] that, if � and �′ are distinct comparative probability orders,
then there exists a critical pair (A,B) for � such that B ≺′ A. This shows that
critical pairs are of interest due to the fact that they define orders. But there are
even more interesting pairs.

Definition 5 A critical pair (A,B) is said to be flippable for � if for every D ⊆
[n], disjoint from A ∪B, the pair (A ∪D,B ∪D) is adjacent in �.

We note that the set of flippable pairs is not empty, since the central pair of any
comparative probability order is flippable [9]. Indeed, this consists of a certain set
A and its complementAc = X\A, and there is noD which has empty intersection
with both of these sets. It is not known whether this can be the only flippable pair
of the order.

Suppose now that a pair (A,B) is flippable for a comparative probability order
�, and A 6= ∅. Then reversing each comparison A ∪ D ≺ B ∪ D (to B ∪ D ≺
A∪D), we will obtain a new comparative probability order�′, since the de Finetti
axiom (1) will still be satisfied. We say that�′ is obtained from� by flipping over
A ≺ B. The orders � and �′ are called flip-related. This flip relation turns Pn
into a graph which we will denote Gn.

Definition 6 An element w of the cone C is said to be reducible if there exist two
other vectors u,v ∈ C such that w = u+ v, and irreducible otherwise. The set of
all irreducible elements of C will be denoted as Irr(C).

Theorem 2 ([12,2]) A pair (A,B) of disjoint subsets is flippable for� if and only
if the corresponding characteristic vector χ(A,B) is irreducible in C(�). So the
cardinality |Irr(C(�))| is the total number of flippable pairs in �.
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Flippable pairs uniquely define a representable order but this does not hold for
nonrepresentable orders [2].

As we know, the flip relation turns Pn into a graph Gn. Let � and �′ be
two comparative probability orders which are connected by an edge in this graph
(and so are flip-related). We say that � and �′ are friendly if they are either both
representable or both nonrepresentable.

2.4. Geometric Representation of Representable Orders and Maclagan’s
Problem. Let A,B ⊆ [n] be disjoint subsets, of which at least one is nonempty.
Let H(A,B) be a hyperplane consisting of all points x ∈ Rn satisfying the equa-
tion ∑

a∈A
xa −

∑
b∈B

xb = 0.

We denote the corresponding hyperplane arrangement by An. Also let J be the
hyperplane x1 + x2 + . . . + xn = 1, and let Hn = AJn be the induced hyper-
plane arrangement. Fine and Gill [4] showed that the regions ofHn in the positive
orthant Rn+ of Rn correspond to representable orders from Pn.

Now we can see what is special in the credal sets that correspond to compara-
tive probability orders. They are not only convex, as credal sets must be, but they
are in fact interiors of polytopes. When in the future we refer to a region of this
hyperplane arrangement we will refer to the polytope which is the closure of that
region. This will invite no confusion.

Problem 1 (Maclagan [12]) What is an upper bound for the number of repre-
sentable neighbors for a representable comparative probability order on n atoms?
In other words, how many facets can regions ofHn have?

The maximal number of facets of regions of Hn we will call the nth Maclagan
number and denote M(n), while the maximal number of flippable pairs for a rep-
resentable order on n atoms will be denotedm(n). In this paper we provide bounds
on these functions, some of which we suspect to be sharp. It is clearly sufficient to
solve Maclagan’s problem (Problem 1) for comparative probability orders in L∗n.

The main combinatorial tool for calculating or estimating M(n) is the follow-
ing semi-obvious proposition.

Proposition 1 ([12,2]) Let � be a representable comparative probability order,
and let P be the corresponding convex polytope, which is a region of the hyper-
plane arrangement Hn. Then the number of facets of P equals the number of
representable comparative probability orders that are flip-related to� (plus one if
the pair ∅ ≺ 1 is flippable).

Corollary 1 M(n) ≤ m(n).

Proof From the proposition it follows that M(n) cannot be greater that m(n).
However theoretically it can be smaller since not all flips of the representable com-
parative probability order that has the maximal number of flips may be friendly.

It is worth noting that the minimal number of facets of a region inHn is known
and equal to n [3,2].
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3 The Lower Bound

It is known that M(3) = m(3) = 3 and M(4) = m(4) = 5 [2]. Computations
in MAGMA [2] show that 5 ≤ |Irr(C)| ≤ 8 for n = 5 and 5 ≤ |Irr(C)| ≤ 13 for
n = 6 with all intermediate values being attainable for both values of n. It was
also observed that for n = 5 and n = 6, all comparative probability orders with
the largest possible number of flips (namely 8 for n = 5, and 13 for n = 6) are
representable, and all of their flips are friendly. This means thatM(5) = m(5) = 8
and M(6) = m(6) = 13.

Searles noticed that the four known values are Fibonacci numbers, i.e., belong
to the sequence defined by F1 = F2 = 1 and Fn+2 = Fn+1 +Fn. He conjectured
that

Conjecture (Searles, 2007) The maximal number of facets of regions of Hn is
equal to the maximal cardinality of Irr(C(�)) for �∈ L∗n, and equal to the Fi-
bonacci number Fn+1 or, alternatively, M(n) = m(n) = Fn+1.

The first part of this conjecture will be proved if we show that for some rep-
resentative comparative probability order �, for which |Irr(C(�))| is maximal, all
flips of � are friendly. The existence of such an order was checked for all n ≤ 12.

In this section we prove that M(n) ≥ Fn+1. To this end we prove

Theorem 3 InPn there exists a representable comparative probability order which
(a) has Fn+1 flippable pairs and (b) whose flips are all friendly.

The proof will be split into several observations. Let us introduce the following
notation first. Let u = (u1, . . . , un) be a vector such that 0 < u1 < . . . < un and
q > 0 be a number such that uj < q < uj+1 for some j = 0, 1, 2, . . . , n (we
assume that u0 = 0 and un+1 = ∞). In this case we set (u, q) to be the vector of
Rn+1 such that

(u, q) = (u1, . . . , uj , q, uj+1, . . . , un).

We also denote `n = (1, 2, 4, . . . , 2n−1) and 2`n = (2, 4, 8, . . . , 2n). We start with
an easy and well-known observation.

Proposition 2 �`n is the lexicographic order on 2[n]. The utilities of subsets from
2[n] cover the whole range of integers between 0 and 2n−1 and the utilities of any
two consecutive subsets in it differ by 1.

Proof This is equivalent to every natural number possessing a unique binary rep-
resentation. We leave the verification to the reader.

Proposition 3 Let q be an odd positive integer smaller than 2n and m = (2`n, q).
Consider the order �m on 2[n+1]. Then the difference between the utilities of any
two consecutive subsets in this order is not greater than 2.

Proof Suppose 2j−1 ≤ q < 2j , that is, q is the utility of j in�m. By Proposition 2
the utilities of the subsets from [n + 1] \ {j} cover the range of even values from
0 to 2n+1 − 2. Suppose B is a subset in �m, where B 6= ∅. If u(B) ≤ 2n+1 − 2,
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then by Proposition 2 there exists a subset A such that 0 < u(B) − u(A) ≤ 2.
If u(B) > 2n+1 − 2, then we must have j ∈ B, and since u(j) < 2n, B′ =
B \{j} 6= ∅. As j /∈ B′ we have u(B′) ≤ 2n+1−2, and so by Proposition 2 there
existsA′ ⊆ [n+1]\{j} such thatA′ ≺m B′ and u(B′)−u(A′) = 2. Then adding
j to both subsets we obtain u(B) − u(A) = 2 for A = A′ ∪ {j}. Therefore, for
any nonempty B in �m, there exists a subset A such that 0 < u(B)− u(A) ≤ 2,
and so for any adjacent pair (C,D) of subsets, we have 0 < u(D)− u(C) ≤ 2.

Let us denote by Sn+1 the class of orders on X = {1, 2, . . . , n + 1} of type
�m, where m = (2`n, q) for some odd 0 < q < 2n. And let j denote the number
such that 2j−1 ≤ q < 2j . Obviously, j < n+ 1. By u1, . . . , un+1 we will denote
the respective utilities of elements of X , that is m = (u1, . . . , un+1).

Proposition 4 From the position at which the subset {j} appears in the order �m

until the position after which all subsets contain j, subsets not containing j alter-
nate with those containing j, with the difference in utilities for any two consecutive
terms being 1.

Proof All subsets not containing j have even utility and all those containing j
have odd utility. If we consider these two sequences separately, by Proposition 2
the difference of utilities of neighboring terms in each sequence will be equal to 2.
Hence they have to alternate in �m.

Lemma 1 Let �m be an order from the class Sn+1 and let (A,B) be a critical
pair for �m. Then the following conditions are equivalent:

(a) (A,B) is flippable;
(b) either A or B contains j but not both;
(c) u(B)− u(A) = 1.

Proof (a) =⇒ (b): Suppose (A,B) is flippable. As (A,B) is critical, it is impos-
sible for A and B each to contain j as A ∩ B = ∅. We only have to prove that
it is impossible for both of them not to contain j. If j /∈ A and j /∈ B, then
u(A)+2 = u(B). Since the pair is critical, by Proposition 4 both A and B appear
in the order earlier than {j}. Hence u(A)+2 = u(B) < u(j). Then, in particular,
u(A) < u(B) < u(n+ 1) = 2n, hence neither A nor B contains n+ 1. But then
for A′ = A ∪ {n + 1} and B′ = B ∪ {n + 1} we have u(j) < u(A′) < u(B′).
BothA′ andB′ do not contain j, hence they are in the alternating part of the order,
and since u(B′) − u(A′) = 2, they cannot be consecutive terms. As (A,B) is
flippable, this is impossible, which proves that either A or B contains j.

(b) =⇒ (c): This follows from Proposition 4.
(c) =⇒ (a): This is true not only for orders from our class, but also for all

orders defined by integer utility vectors. Indeed, if u(B)− u(A) = 1, then for any
C ∩ (A ∪B) = ∅ we have u(B ∪ C)− u(A ∪ C) = 1, and so A ∪ C and B ∪ C
are consecutive.

Up to now, the values of q and j did not matter. Now we will try to maximise
the number of flippable pairs in �m, so we will need to choose them carefully. It
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should come as no surprise that the optimal choice of j and q will depend on n, so
we will talk about jn and qn now. For the rest of the proof we will set

jn = n− 1, qn =
(−1)n+1 + 2n

3
. (2)

An equivalent way of defining qn would be by the recurrence relation

qn = qn−1 + 2qn−2 (3)

with the initial values q3 = 3, q4 = 5. We also note:

Proposition 5 qn ≡ 2 + (−1)n+1 (mod 4).

Proof Easy induction using (3).

Let us now consider a flippable pair (A,B) for �m, where m = (2`n, qn).
Since jn = n−1, we have eitherA = A′∪{n−1} orB = B′∪{n−1} but not both.
In the first case, (A′, B) is a pair of nonintersecting subsets from the lexicographic
order induced by 2`n on [n + 1] \ {n − 1} with u(B) − u(A′) = qn + 1. In the
second, (B′, A) is a pair of nonintersecting subsets from the same lexicographic
order with u(A)− u(B′) = qn − 1.

As [n+1]\{n−1} can be identified with [n], we let gn be the number of pairs
(A,B) in the lexicographic order�2`n on n atoms with u(B)−u(A) = qn+1, and
let hn be the number of pairs (A,B) in the same order with u(B)−u(A) = qn−1.
What we have proved is the following:

Lemma 2 Let m = (2`n, qn). Then the number of flippable pairs in �m is gn +
hn.

This reduces our calculations to a rather understandable lexicographic order
�2`n .

For convenience we will denote q+n = qn + 1 and q−n = qn − 1. We note that
Proposition 5 implies

Proposition 6 q−n ≡ 1 + (−1)n+1 (mod 4), and q+n ≡ 3 + (−1)n+1 (mod 4).
In particular, if n is even, q−n ≡ 0 (mod 4) and q+n ≡ 2 (mod 4) and if n is odd,
q−n ≡ 2 (mod 4) and q+n ≡ 0 (mod 4).

A direct calculation also shows that the following equations hold:

Proposition 7

q−n+1 = 2q−n for all odd n ≥ 3, (4)

q−n+1 = 2q−n + 2 for all even n ≥ 4, (5)

q+n+1 = 2q+n − 2 for all odd n ≥ 3, (6)

q+n+1 = 2q+n for all even n ≥ 4. (7)
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Lemma 3 The following recurrence relations hold: for any odd n ≥ 3

gn+1 = gn + hn, hn+1 = hn,

and for any even n ≥ 4

gn+1 = gn, hn+1 = gn + hn.

Proof Firstly we assume that n is odd. Then n + 1 is even. We know from (4)
that q−n+1 = 2q−n . Given any nonintersecting pair (A,B) of subsets in [n], with
A ≺2`n B and u(B)−u(A) = q−n , we may shift both subsets to the right, replacing
each element i in them with the element i + 1, to obtain a nonintersecting pair
(A,B) of subsets in [n + 1], where A precedes B in �2`n+1

. This procedure of
shifting doubles the difference in utilities, so u(B) − u(A) = 2q−n = q−n+1. This
proves hn+1 ≥ hn. Moreover, by (4) and Proposition 6, q−n+1 ≡ 0 (mod 4),
hence no nonintersecting pair (C,D) in �2`n+1

with difference of utilities q−n+1

can include 1, either in C or in D, as u1 = 2. Therefore C = A and D = B
for some nonintersecting pair (A,B) in [n] with u(B) − u(A) = q−n . This shows
hn+1 = hn.

Let (A,B) be one of the hn = hn+1 nonintersecting pairs of subsets of [n+1]
with u(B) − u(A) = q−n+1 as above. As before, since q−n+1 ≡ 0 (mod 4), nei-
ther of the sets contain 1. We can use these pairs to construct the same number
of nonintersecting pairs of �2`n+1

with utility difference q+n+1 = q−n+1 + 2. In-
deed, adding 1 to B will create a pair (A,B ∪ {1}) with a utility difference
q−n+1+2 = q+n+1. We can also use (6) and a shifting technique to create another gn
nonintersecting pairs with utility difference q+n+1. Indeed, if (A,B) is one of the gn
nonintersecting pairs in�2`n with utility difference q+n , then the pair ({1}∪A,B)
will be nonintersecting in �2`n+1 with utility difference 2q+n − 2 = q+n+1. We ob-
serve that the hn+1 pairs (C,D) constructed in the first method all have 1 ∈ D
while the gn pairs (C,D) constructed in the second method all have 1 ∈ C, and
so the two methods never construct the same pair. Thus gn+1 ≥ gn + hn.

Now, let (C,D) be any nonintersecting pair in �2`n+1 with utility difference
u(D)− u(C) = q+n+1. As n+ 1 is even, Proposition 6 gives q+n+1 ≡ 2 (mod 4).
This implies that either 1 ∈ C or 1 ∈ D. Now as above, we can show that (C,D)
can be obtained as ({1}∪A,B) or (A, {1}∪B) by the second or the first method,
respectively. Thus gn+1 = gn + hn.

For even n, the statement can be proved similarly, using the other two equations
in Proposition 7 and congruences in Proposition 6.

Proof of Theorem 3 (a). Let us consider the case n = 3. We have q3 = 3, so q−3 = 2
and q+3 = 4. We have three nonintersecting pairs in �2`3 with utility difference
two, namely ∅ �2`3 {1}, {1} �2`3 {2}, and {1, 2} �2`3 {3}, and two noninter-
secting pairs with utility difference four, namely, ∅ �2`3 {2} and {2} �2`3 {3}.
Thus g3 = 2 and h3 = 3. Alternatively, we may say that (g3, h3) = (F3, F4). It
is also easy to check that (g4, h4) = (5, 3) = (F5, F4). A simple induction argu-
ment with the use of Lemma 3 now shows that (gn, hn) = (Fn, Fn+1) for odd n
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and (gn, hn) = (Fn+1, Fn) for even n. By Lemma 2 we find that the number of
flippable pairs of �m is

gn + hn = Fn+1 + Fn = Fn+2.

It remains to notice that �m is in Gn+1.

Proof of Theorem 3 (b). Let � be obtained from �m by a flip. Assume it was
the pair B ≺m A in �m which was flipped, so in � we have A ≺ B. As-
sume � is not representable. By Theorem 1 there must exist a trading transform
(A1, . . . , Ak;B1, . . . , Bk) such that Ai ≺ Bi for i = 1, . . . , k. For each i we may
assume that Ai ∩ Bi = ∅ since otherwise we could remove the intersection for
each pair and obtain another trading transform with empty intersections.

Since each element of [n] appears in the sequenceA1, . . . , Ak exactly as many
times as inB1, . . . , Bk, for the weight function u of�m, we must have

∑k
i=1 u(Ai) =∑k

i=1 u(Bi). However the only nonintersecting pair C ≺ D in � with u(C) ≥
u(D) is the flipped pair A ≺ B, and furthermore we know from Lemma 1 that
u(A)−u(B) = 1 and for every other pair (Ai, Bi) different from (A,B), u(Ai)−
u(Bi) ≤ −1. Hence for

∑k
i=1 u(Ai) =

∑k
i=1 u(Bi) to hold at least half of the

pairs Ai ≺ Bi must be the pair A ≺ B. Without loss of generality assume that
Ai ≺ Bi is the pair A ≺ B for i = 1, 2, ..., r with r ≥ k

2 .
Let j ∈ A be any element of A. Then j appears r times in the the sequence

A1, . . . , Ar and no times in the sequenceB1, . . . , Br. Hence it must appear r times
in (Br+1, . . . , Bk), but r ≥ k

2 and j can appear at most once in each Bi and so we
must have r = k

2 , j ∈ Bi and u(Ai) − u(Bi) = −1 for i = r + 1, ..., k. But j
was an arbitrary element of A, so A ⊆ Bi for i = r+1, ..., k. The same argument
shows that B ⊆ Ai for i = r + 1, ..., k. But if Ai = B ∪ Ci and Bi = A ∪ Di

with Ci, Di, A and B all disjoint for i = r + 1, ..., k then

u(Ai)−u(Bi) = u(B∪Ci)−u(A∪Di) = u(B)+u(Ci)−u(A)−u(Di) = −1.

But u(A) − u(B) = 1 and so u(Ci) = u(Di). Since �m is a linear order, this
implies Ci = Di = ∅ and so B ≺ A which gives the desired contradiction.

4 The Upper Bound

We now present a result giving an upper bound on the number of flippable pairs in
any comparative probability order, representable or not. This will give us an upper
bound for m(n) and hence for M(n). The basic result is in the following lemma
which estimates the number of flippable pairs from above.

Lemma 4 Let� be a comparative probability order on n atoms. If s is any positive
integer such that

∑s
i=0 2

i
(
n
i

)
≥ 2n − 1, then |Irr(C(�))| ≤

∑s
i=0

(
n
i

)
.

Proof We first prove that if A ≺ B and E ≺ F are two distinct flippable pairs
then A ∪ B 6= E ∪ F . Let A ≺ B be a flippable pair and consider � restricted
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to the subsets of D = A ∪ B and call this order �′. Clearly �′ is a comparative
probability order:

∅ = D1 ≺′ D2 ≺′ D3 ≺′ . . . ≺′ D2r−1 ≺′ D2r = D

where r = |D|, Di ⊆ D and Di ≺′ Dj ⇐⇒ Di ≺ Dj . Because A and B were
adjacent in�, they will also be adjacent in�′, and sinceA andB are complements
in D, they must be the central pair of �′, i.e. A = D2r−1 and B = D2r−1+1.
However if E ≺ F was also a flippable pair with E ∪F = D, then it must also be
the central pair of �′, and hence A = E and B = F .

We now look at �:

∅ = A1 ≺ A2 ≺ A3 ≺ . . . ≺ A2n−1 ≺ A2n = [n].

Call the gap between two adjacent subsets an adjacency. There are a total of
2n − 1 adjacencies, one for each ≺ sign in the order above. Consider a flippable
pair A ≺ B in � and let r = |(A ∪ B)c|, which the size of the complement of
A∪B. From the definition of flippable pairs, every pair of the formA∪C ≺ B∪C,
where C ⊆ (A∪B)c, is adjacent. Let C1, C2, . . . , C2r be the subsets of (A∪B)c.
Every pair A ∪ Ci ≺ B ∪ Ci will take up an adjacency, and hence the flippable
pair A ≺ B will take up exactly 2r adjacencies.

Hence we know that for every r at most
(
n
r

)
flippable pairs take up exactly 2r

adjacencies. This is because if there were more than
(
n
r

)
such flippable pairs then

by the pigeonhole principle two of the flippable pairs A1 ≺ B1 and A2 ≺ B2

will have (A1 ∪ B1)
c = (A2 ∪ B2)

c and so must be the same pair. Hence there
can be at most

(
n
0

)
= 1 flippable pair that takes up 1 adjacency, at most

(
n
1

)
flippable pairs that take up 21 adjacencies, at most

(
n
2

)
flippable pairs that take

up 22 adjacencies, etc. But we have only 2n − 1 adjacencies, so if we choose s
such that

∑s
i=0 2

i
(
n
i

)
≥ 2n − 1 then the number of flippable pairs cannot exceed∑s

i=0

(
n
i

)
.

While the result is true for any such s, to maximize the strength of the upper
bound we clearly wish to take the smallest value of s possible. We will further
need the binary entropy function H(λ) = −λ log λ− (1− λ) log(1− λ) where
the logarithms are of base 2. Using known approximations to the binomial coeffi-
cient we obtain the following:

Corollary 2 Let λ be the solution to the equation λ+H(λ) = 1 and λ < c < 1
2 .

Then m(n) ≤ 2H(c)n for sufficiently large n. In particular, for any λ < c < 1
2 we

have m(n) = O
(
2H(c)n

)
.

Proof Let λ < c < 1
2 and λ < c′ < c (e.g. c′ = λ+c

2 ). Then c′ +H(c′) > 1 since
H(x) is strictly increasing for 0 < x < 1

2 , and for sufficiently large n it holds that
bcnc > dc′ne. Hence

bcnc∑
i=0

2i
(
n

i

)
> 2dc

′ne
(

n

dc′ne

)
≥ 2c

′n

√
π

2

1√
2πnc′(1− c′)

2H(c′)n > 2n
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where the second inequality is obtained from [14, p. 466] and the last inequality
holds for sufficiently large n. So by Lemma 4, we have for sufficiently large n

m(n) ≤
bcnc∑
i=0

(
n

i

)
≤ c−cn(1− c)−(1−c)n = 2H(c)n

where the second inequality is also obtained from [14, p. 468].

Example 1 Take c = 0.25 and consider s = bcnc. It can be checked that for
n ≥ 102 and c′ = c− 1

102 ≤
s
n we have dc′ne ≤ s and the following inequalities

hold
s∑
i=0

2i
(
n

i

)
> 2dc

′ne
(

n

dc′ne

)
≥ 2c

′n

√
π

2

1√
2πnc′(1− c′)

2H(c′)n > 2n.

Hence by Lemma 4 it holds that

m(n) ≤
bcnc∑
i=0

(
n

i

)
≤ 2H(c)n.

Here 2H(c) < 1.7548. Along with Theorem 3 and standard bounds on the Fi-
bonacci sequence, we have the following bounds for n ≥ 102:

Fn+1 =

[
φn+1

√
5

]
≤ m(n) ≤ 1.7548n,

where φ ≈ 1.6180 is the golden ratio and [x] is the closest integer to x.

Clearly in this example the exponent of 2 in the upper bound of m(n) can be
brought arbitrarily close to H(λ) for sufficiently large n. As 2H(λ) ≈ 1.7087, this
gives the rough bounds 1.6180n < M(n) ≤ m(n) < 1.7087n up to constant
factors.

Corollary 3 For sufficiently large n

1.6180n < M(n) < 1.7087n

up to constant factors.

5 Further Research

We would like to know, of course, if Searles’ conjecture is true. Or at least, we
would like to reduce the gap between the current bounds for M(n) further. There
are some interesting questions that are not directly related to Searles’ conjecture
but nevertheless interesting. One of them is the question of connectedness of Gn.
Since the subgraph of representable comparative probability orders is clearly con-
nected, this question shows that we do not really understand much about nonrep-
resentable orders. In particular, this question will be answered in the affirmative
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if we could show that any order is connected to a representable order by a series
of flips. A similar question is to find the minimum value of |Irr(C)| in Gn. For
representable orders this minimum is n but for nonrepresentable orders we cannot
even say if it is possible that the central pair is the only flippable pair in the order.
Maclagan also emphasised these questions [12].
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