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Abstract

The concept of distance rationalizability has
several applications within social choice. In
the context of voting, it allows one to define
(“rationalize”) voting rules via a consensus
class (roughly, a set of elections in which it
is obvious who should win) and a distance
function: namely, a candidate is said to be
an election winner if it is ranked first in one
of the nearest (with respect to the given dis-
tance) consensus elections. It is known that
many classic voting rules can be represented
in this manner. In this paper, we provide new
results on distance rationalizability of several
well-known voting rules such as all scoring
rules, Approval, Young’s rule and Maximin.
We also show that a previously published
proof of distance rationalizability of Young’s
rule is incorrect: the consensus notion and
the distance function used in that proof give
rise to a voting rule that is similar to—but
distinct from—the Young’s rule. Finally, we
demonstrate that some voting rules cannot
be rationalized via certain notions of consen-
sus. To the best of our knowledge, these are
the first non-distance-rationalizability results
for voting rules.

1 Introduction

Preference aggregation is an important task both for
human societies and for multi-agent systems. Indeed,
it is often the case that a group of agents has to make
a joint decision, i.e., to select a unique alternative from
a space of available solutions, even though the agents
may have different opinions about the relative merits
of these solutions. A standard method of preference
aggregation is voting: the agents submit ballots, which
are usually rankings (total orders) of the alternatives

(candidates), and a voting rule is used to select the
best alternative. While in such settings the goal is
usually to select the alternative that best matches the
collective preferences, there is no universal agreement
on how to reach this goal. As a consequence, there is
a multitude of voting rules, each of which purports to
aggregate the voters’ preferences as faithfully as pos-
sible. These voting rules are remarkably diverse. For
example, in Plurality voting, each voter assigns a point
to her most preferred alternative, and the alternative
with the largest number of points wins. In contrast, in
Copeland voting, for each pair of candidates (c1, c2) we
determine if the majority of voters prefers c1 to c2, and
the winner is the candidate that wins the largest num-
ber of such pairwise contests. While both of these rules
select the alternative that is, in some sense, the most
preferred by the voters, it is well-known that their out-
puts can be very different. Moreover, there are many
other voting rules, such as Borda, STV, Maximin,
Bucklin, Dodgson, Ranked Pairs, etc., which behave
differently from both Plurality and Copeland, as well
as from each other; all of these rules are well-studied
and used in practice (see, e.g., [Brams and Fishburn,
2002]).

Why cannot we settle on a single voting rule, which
will aggregate the preferences optimally? One answer
to this question is provided by the famous Arrow’s im-
possibility theorem [Arrow, 1951 revised editon 1963]:
there is no voting rule (or, more precisely, no social
welfare function) that simultaneously satisfies several
natural desiderata, so in each real-life scenario we have
to decide which of these desiderata we are willing to
sacrifice. Another perspective on this issue is offered
by viewing each collection of preferences as an imper-
fect approximation to some kind of consensus. Under
this view, the winner for a given collection of pref-
erences, or a preference profile, is the most preferred
candidate in the “closest” consensus preference pro-
file. The differences among voting rules can then be
explained by the fact that there are several ways of
defining consensus, as well as closeness.



In more detail, there are certain situations where it
appears obvious which candidate is best liked by the
voters. For example, if all voters have identical pref-
erences (this situation is usually referred to as strong
unanimity), then the candidate that is ranked first by
all voters is obviously the best choice. A more realis-
tic scenario, known as unanimity, is where all voters
rank the same candidate first; again, it is natural to
assume that this candidate should be elected. Some-
what more controversially, if there is a candidate that
beats any other candidate in a pairwise election (such
a candidate is known as the Condorcet winner, and the
situation is known as Condorcet consensus), it can be
assumed that this candidate is the best choice. Now,
for many preference profiles, even the least restrictive
of these conditions does not hold, i.e., there is no obvi-
ous consensus. One can deal with this issue by trying
to tweak the voters’ opinions or the structure of the
election. Then a plausible outcome of the election is
a consensus profile (or, more precisely, the most pre-
ferred alternative in this profile) that can be obtained
from the given profile by making as few changes as
possible. In many situations, this approach can be
formalized using the notion of distance: given a pref-
erence profile, we identify the closest consensus prefer-
ence profile and let the winner be the top alternative in
this profile. The voting rules that can be described in
such terms are called distance-rationalizable: they can
be “rationalized” by describing an appropriate notion
of consensus and a distance function. For instance, we
can rationalize the Plurality rule via unanimity con-
sensus and the Hamming distance (where preference
profiles are interpreted as |V |-dimensional vectors); for
details, see Section 2.

This approach is not limited to Plurality. In fact,
it turns out that many well-known voting rules are
distance-rationalizable. To date, the most com-
plete list of such rules is provided by Meskanen and
Nurmi [2008] (but see also [Baigent, 1987; Klam-
ler, 2005b; 2005a]) There, the authors show how
to distance-rationalize many voting rules, including,
among others, Plurality, Borda, Veto, Copeland,
Dodgson, Kemeny, Slater, and STV1. However, the
treatment provided by Meskanen and Nurmi [2008]
is not exhaustive: there are well-known voting rules
(and, in fact, entire families of rules) whose distance
rationalizability was left open.

In this paper, we fill in some of the gaps in our un-
derstanding of distance rationalizability. In Section 3,
we focus on scoring rules—a natural class of voting

1Meskanen and Nurmi [2008] also claim that one can
distance-rationalize the well-known Young’s rule. How-
ever, as we show in Section 5, the construction provided
in [Meskanen and Nurmi, 2008] is incorrect.

rules that includes such important rules as Plural-
ity, Borda, Veto, and k-approval for any fixed value
of k. Each scoring rule can be described by a vec-
tor α = (α1, . . . , αm). The interpretation is that each
voter grants α1 points to his top candidate, α2 points
to his second most favorite candidate, etc., and the
candidate with the largest number of points wins. We
start by showing that all such rules can be rational-
ized with respect to the unanimity consensus via a
pseudodistance—a function that satisfies all distance
axioms except one that requires that the distance be-
tween two non-identical objects must be greater than
0. Moreover, if all entries of α are different, this
pseudodistance is, in fact, a distance, so all scoring
rules that correspond to such values of α are distance-
rationalizable. We then show that for a large class of
scoring rules that includes Veto and k-approval this
result cannot be improved: all rules in this class are
not distance-rationalizable with respect to the una-
nimity consensus. We conclude Section 3 by showing
that, when proving distance-rationalizability, it is im-
portant to choose an appropriate notion of consensus:
we demonstrate that no scoring rule can be rational-
ized with respect to Condorcet consensus. Our proofs
that some voting rules cannot be distance-rationalized
with respect to a particular notion of consensus are
quite simple. However, we find them interesting as,
to the best of our knowledge, these are the very first
negative results in the general area of distance ratio-
nalizability of voting rules.

In Section 4, we consider elections in which voters can
approve of one or more candidates, and each voter
chooses how many candidates she approves of. In such
settings, the winner is usually determined using the
Approval rule: the winners are the candidates with
the largest number of approvals. As such elections can-
not be represented in the traditional model, in which
the voters’ preferences correspond to total orders, the
three notions of consensus outlined above are not ap-
propriate for this setting. To remedy this, we propose
two alternative notions of consensus for this model,
and show that Approval can be rationalized with re-
spect to both of them.

We then move on to another notion of consensus,
namely, Condorcet consensus, and consider three re-
lated operations that can be used to define a distance
between preference profiles, namely, adding, deleting,
or replacing voters. We show that all three of these
transformations can be formalized as distances. We
then study the voting rules obtained by combining
these three distances with Condorcet consensus. It
turns out that deleting voters corresponds to the well-
known Young’s rule, while adding voters corresponds
to the equally well-known Maximin rule. However, for



replacing voters the situation is somewhat more com-
plicated. Indeed, Meskanen and Nurmi [2008] claim
that the corresponding voting rule is equivalent to
Young’s rule. However, we show that this is not the
case. Specifically, we construct a preference profile on
which Young’s rule and the voter replacement-based
rule produce different results. Since in [Meskanen and
Nurmi, 2008] this equivalence claim was used to prove
that Young’s rule is distance-rationalizable, it follows
that our Proposition 7 is the first proof that Young’s
rule is distance-rationalizable. We then proceed to
study the voter replacement-based rule in more de-
tail. While this rule has a very natural definition
via distance-rationalizability, it appears to be distinct
from all known voting rules. We conclude Section 5 by
showing that the winner determination problem under
this rule is computationally hard. We conclude the pa-
per by summarizing our results and presenting several
directions for future work.

2 Preliminaries

An election E is a pair (C, V ), where C = {c1, . . . , cm}
is a set of candidates and V = (v1, . . . , vn) is a collec-
tion of voters. Each voter vi is usually represented via
her preference order �i, which is a total order over
the candidates in C (see, however, Section 4). For ex-
ample, given a candidate set C = {c1, c2, c3}, a voter
vi that likes c2 best, then c1, and then c3 is repre-
sented as c2 �i c1 �i c3. To simplify notation, we
will sometimes denote the position of a candidate cj
in the preference order of a voter v by vj ; thus, in the
example above we have v1

i = 2, v2
i = 1, v3

i = 3.

A voting rule R is a function that given an election
E = (C, V ) outputs a set R(E) ⊆ C of winners of the
election. Note that we do not require |R(E)| = 1. In-
deed, there are cases where, e.g., due to symmetry, it
is impossible to declare a single winner, in which case
we may have R(E) = ∅ or |R(E)| > 1. In practice,
one may then need to use a draw resolution rule, which
can be either deterministic (e.g., lexicographic) or ran-
domized (e.g., a fair coin toss); however, in the rest of
this paper we will ignore this issue. Perhaps the best
known voting rule is the Plurality rule Rplur defined in
the introduction; note that there can be two or more
candidates that have the largest number of first-place
votes, so we may have |Rplur(E)| > 1. Another impor-
tant rule is that of Condorcet [1785]: Given an election
E = (C, V ), a candidate ci is a Condorcet winner (we
write ci ∈ RCond(E)) if for each cj ∈ C, ci 6= cj , a
strict majority of voters prefers ci to cj . It is easy to
see that for any election E we have |RCond(E)| ≤ 1,
and it can be the case that RCond(E) = ∅. We will
define several other voting rules later in the paper.

Intuitively, a preference profile corresponds to a con-
sensus among the voters when there exists an alter-
native that is clearly better from the collective point
of view than any other alternative. There are several
ways of formalizing this intuition, which correspond
to different classes of consensus elections. Specifically,
fix an election E = (C, V ). We say that an election
E = (C, V ) is strongly unanimous if �i =�j for all
vi, vj ∈ V . We denote the set of all strongly unani-
mous elections by S.2 Further, we say that E = (C, V )
is unanimous if there exists a candidate ci ∈ C such
that all voters in V rank ci first. The set of all unan-
imous elections is denoted by U . The elections in S
and U are clearly consensus elections: in both cases,
the top alternative of all voters should be elected. An-
other class of consensus elections is given by elections
that have a Condorcet winner; we denote the set of
all such elections by C. Clearly, each strongly unani-
mous election is also unanimous, and each unanimous
election has a Condorcet winner, but the converse is
not true. Our list of consensus classes is not meant to
be exhaustive. Indeed, depending on the setting, one
may want to define other types of consensus elections.
However, any such definition should have the property
that any “consensus” election has an obvious winner.

Given a set X, we say that a function d : X × X →
R ∪ {+∞} is a distance (or metric) over X if for each
x, y ∈ X it satisfies the following four axioms:

(1) d(x, y) ≥ 0 (non-negativity),
(2) d(x, y) = 0 if and only if x = y (identity of indis-

cernibles),
(3) d(x, y) = d(y, x) (symmetry), and
(4) for each z ∈ X, d(x, y) ≤ d(x, z)+d(z, y) (triangle

inequality).

A function that satisfies axioms (1), (3), and (4)
is called a pseudodistance, and a function that sat-
isfies axioms (1), (2), and (4) is called a quasidis-
tance. In what follows, the elements of the set X
will usually be either voters (total orders over can-
didates) or elections. Note that any distance d(v, w)
over voters with preferences over a candidate set C
can be extended to a distance d̂(E,E′) over elections
E = (C, (v1, . . . , vn)), E′ = (C, (v′1, . . . , v

′
n)) by set-

ting d̂(E,E′) =
∑n
i=1 d(vi, v′i). Clearly, d̂ satisfies all

distance axioms as long as d does. We now provide
two examples of distances defined over pairs of vot-
ers with preferences over a set of candidates C. Our
first example is the discrete distance ddiscr(v, w), given

2In this paper we do not treat strongly unanimous elec-
tions directly, but we mention this notion due to its nat-
uralness and the fact that it is very useful in distance-
rationalizing some natural voting rules [Meskanen and
Nurmi, 2008].



by ddiscr(v, w) = 1 if v 6= w and ddiscr(v, w) = 0
otherwise. Clearly, the corresponding distance over
elections d̂discr(E,E′) is equivalent to the Hamming
distance dH(E,E′), which is defined as dH(E,E′) =
|{i | vi 6= v′i}|. Our second example is the Dodg-
son distance, or swap distance, dswap(v, w), defined as
dswap(v, w) = |{(c, c′) ∈ C2 | c �v c′, c′ �w c}|. It is
not hard to check that both Dodgson distance and the
discrete distance (and hence the Hamming distance)
satisfy the distance axioms listed above. We are now
ready do define distance rationalizability.

Definition 1. Let d be a distance over elections, let
E be a set of elections, and let W be a voting rule that
for each election E ∈ E satisfies W(E) 6= ∅. We define
the (E ,W, d)-score of a candidate ci in an election E
to be the distance (according to d) between E and a
closest election E′ ∈ E such that ci ∈ W(E′). The set
of (E ,W, d)-winners of an election E = (C, V ) consists
of those candidates in C whose (E ,W, d)-score in E is
the smallest.

Definition 2. A voting rule R is distance-
rationalizable via a set of elections E, a voting rule
W, and a distance d, or (E ,W, d)-rationalizable, if for
each election E, a candidate c ∈ C is an R-winner of
E if and only if he is a (E ,W, d)-winner of E.

Throughout this paper, we only use Definitions 1
and 2 in settings where E is a consensus class (i.e.,
E ∈ {S,U , C}, or E is one of the two classes de-
fined in Section 4). In such cases, we assume that
the rule W outputs the consensus winner(s), and omit
W from the notation. Further, when a voting rule
R is distance-rationalizable via one of the consensus
classes defined above, i.e., R is (E , d)-rationalizable
for some distance d and E ∈ {S,U , C}, we will simply
say that R is distance-rationalizable. One can define
pseudodistance-rationalizable rules and quasidistance-
rationalizable rules in the same manner; we omit the
details to avoid repetition.

One of the most natural examples of a distance-
rationalizable rule is Dodgson’s rule [Dodgson, 1876],
defined as follows. Fix an election E = (C, V ). The
Dodgson score of a candidate ci ∈ C is the minimum
number of swaps of adjacent candidates in the pref-
erence lists of the voters in V after which ci becomes
the Condorcet winner. A candidate ci is a Dodgson
winner if she has the minimum Dodgson score (natu-
rally, there may be multiple Dodgson winners). Thus,
in the nomenclature of Definition 2, Dodgson’s rule is
(C, d̂swap)-rationalizable. Similarly, it is not hard to
see that the Plurality rule is (U , dH)-rationalizable.

3 Scoring Rules

In this section, we will show that all scoring
rules—an important class of voting rules that in-
cludes such famous rules as Plurality, Borda, Veto,
and k-approval—are very close to being distance-
rationalizable. More precisely, we prove that all such
rules are pseudodistance-rationalizable, i.e., can be de-
fined via a consensus class and a pseudodistance.

We start by formally defining scoring rules. For any
m-element vector α = (α1, . . . , αm) of nonnegative in-
tegers, where α1 ≥ α2 ≥ · · · ≥ αm, a scoring ruleRα is
defined as follows. Fix an election E = (C, V ), where
C = {c1, . . . , cm} and V = (v1, . . . , vn). The α-score
of a candidate cj ∈ C is given by

∑n
i=1 αvj

i
. That is,

candidate cj receives αk points from each voter that
puts her in the kth position. The winners of E under
Rα are the candidates with the maximum α-score.

Perhaps the best-known voting procedure that is tra-
ditionally defined via a scoring rule is the Borda rule,
which corresponds to the scoring vector (m − 1,m −
2, . . . , 0). Under this rule, the number of points a can-
didate c receives from a voter v is equal to the number
of candidates that v ranks below c. The Plurality rule
can also be represented as a scoring rule: the corre-
sponding scoring vector is given by (1, 0, . . . , 0). An-
other prominent rule in this class is Veto, which can
be described by the scoring vector (1, . . . , 1, 0). For
k-approval, the corresponding scoring vector is given
by α1 = · · · = αk = 1, αk+1 = · · · = αm = 0.

Any vector α = (α1, . . . , αm) can be used to define
a pseudodistance dα over voters with preferences over
candidates in C, |C| = m, as follows. Fix two vot-
ers v and w. Set dα(v, w) = |αv1 − αw1 | + |αv2 −
αw2 | + · · · + |αvm − αwm |. It is not hard to see that
dα satisfies all pseudodistance axioms. Moreover, if
αi 6= αi+1 for all i = 1, . . . ,m − 1 (we will call such
vectors, and the corresponding distances and scoring
rules non-degenerate), then dα also satisfies axiom (2),
i.e., it is a distance. On the other hand, if αi = αi+1

for some i = 1, . . . ,m, then we have dα(v, w) = 0 for
the two voters v, w such that w is obtained from v by
swapping the ith and the (i+1)st candidate in v’s pref-
erence ordering, i.e., dα is a pseudodistance, but not
a distance. Note that for α = (m − 1, . . . , 1, 0) (the
vector that corresponds to the Borda rule) we have
dα(v, w) = 2dswap(v, w). More generally, dα(v, w) can
be interpreted as the cost of transforming v into w by
a sequence of swaps of adjacent candidates, where the
cost of swapping the candidate in the kth position with
the one just below him is given by 2(αk − αk+1).

We will now prove that any scoring rule Rα is (U , d̂α)-
rationalizable, where d̂α is the pseudodistance over



elections that corresponds to dα. Note that this im-
plies that all non-degenerate scoring rules are distance
rationalizable. While distance rationalizability of the
Borda rule was proven by Meskanen and Nurmi [2008],
no such result was previously known for other scoring
rules.

Theorem 3. For each scoring vector α =
(α1, . . . , αm) and each election E = (C, V ) with |C| =
m, a candidate cj ∈ C is a winner of E according to
Rα if and only if cj is a (U , d̂α)-winner of E.

Proof. Fix a candidate cj ∈ C, and consider a voter
v ∈ V that ranks cj in the kth position, i.e., vj = k.
Consider an arbitrary preference order w in which cj
is ranked first. We have

∑m
`=1 αv` =

∑m
`=1 αw` =

m(m + 1)/2, so
∑m
`=1(αw` − αv`) = 0. On the other

hand, we have αwj − αvj = α1 − αk. Clearly, for
any m real numbers a1, . . . , am such that

∑m
i=1 ai = 0

and a1 = x ≥ 0, we have
∑m
i=1 |ai| ≥ 2x. Thus,

for dα(v, w) =
∑m
`=1 |αw` − αv` | we have dα(v, w) ≥

2(α1−αk). On the other hand, for the preference order
w′ that is obtained from v by swapping cj with the top
candidate in v, we have dα(v, w′) = 2(α1−αk). Hence,
the dα-distance from v to the nearest vote that ranks
cj first is exactly 2(α1 − αk), and, consequently, the
d̂α-distance from E to the nearest unanimous election
in which all voters rank cj first is exactly

∑n
i=1 2(α1−

αvj
i
). On the other hand, the score that cj receives in

Rα is equal to
∑n
i=1 αvj

i
. Thus, any candidate in E

with the highest score under Rα is a (U , d̂α)-winner of
E and vice versa.

For some scoring rules the statement of Theorem 3
cannot be strengthened to distance rationalizability.

Proposition 4. Any scoring rule defined by a vector α
with α1 = α2 is not distance-rationalizable with respect
to consensus class U .

Proof. Fix a scoring rule Rα with α1 = α2. Consider
an election E in which all voters rank some candidate
c1 first and another candidate c2 second. Under Rα,
both c1 and c2 are winners. On the other hand, E is
clearly unanimous, with c1 being the consensus winner.
Thus, for any distance d, the distance between E and
the closest election in U is 0. Therefore, for c2 to be
a (U , d)-winner, there must exist a unanimous election
E′ in which c2 is ranked first such that d(E,E′) = 0.
However, as E′ is necessarily different from E, this is
impossible for any distance d.

Observe that the condition of Proposition 4 is satisfied
by Veto and k-approval for k > 1, so these rules are
not distance-rationalizable with respect to U .

What about scoring rules with α1 6= α2, but αj = αj+1

for some j = 2, . . . ,m− 1? As argued above, for such
rules dα is a pseudodistance, but not a distance. It is
tempting to conjecture that we can extend the proof
of Proposition 4 to this case in order to show that no
such rule is distance-rationalizable with respect to U .
However, this conjecture is easy to refute: indeed, the
Plurality rule for m candidates is a scoring rule with
α2 = · · · = αm = 0, but we have seen that Plurality
can be distance-rationalized with respect to U . Ob-
serve that the distance ddiscr that we have used for
this purpose is different from d(1,0,...,0): for example,
for v = a � b � c and w = a � c � b we have
ddiscr(v, w) = 1, d(1,0,...,0)(v, w) = 0. However, it is
not clear how to generalize this construction to other
scoring rules with α1 > · · · > αj = αj+1. Thus, dis-
tance rationalizability of such rules with respect to U
remains an interesting direction for future work.

We have shown that any non-degenerate scoring rule
can be rationalized with respect to the consensus class
U . We will now argue that there is no scoring rule that
can be rationalized with respect to Condorcet consen-
sus; the proof is similar to that of Proposition 4.

Proposition 5. No scoring rule is distance-
rationalizable with respect to the consensus class C.

Proof. It is known that no scoring rule is Condorcet-
consistent [Moulin, 1991]. That is, for any scoring
rule R there exists an election E = (C, V ) such that
R(E) = {c}, E has a Condorcet winner c′, but c 6= c′.
Now, consider any distance d. Since d satisfies axiom
(2) (identity of indiscernibles), the election E has ex-
actly one candidate with the (C, d)-score of 0. Hence,
the set of (C, d)-winners of E consists of c′ only, and is
therefore different from the set of R-winners of E.

4 Approval Voting

Under Approval voting, each voter may approve of
(give a point to) one or more candidates; the winners
are the candidates with the largest number of points.
In this setting, a voter’s actual vote is not completely
determined by her preference order, as we also need to
know how many of her top candidates she approves of.
We can ask the voter to provide this number in addi-
tion to the ordering, or, instead, require her to simply
list the approved candidates. In this section, we will
work with the latter model. Thus, we identify each
voter v with a subset of the candidate set C.

As should be clear from the previous paragraph, to
rationalize Approval voting, we need a notion of con-
sensus and a metric that are defined on sets of can-
didates rather than preference orderings. A natural
class of consensus elections in this setting corresponds



to situations where there is a single candidate that all
voters approve of. Formally, we let A be the set of all
elections (C, V ) such that |∩v∈V v| = 1. Alternatively,
we can allow the voters to agree on several candidates;
the corresponding consensus class mA consists of all
elections that satisfy | ∩v∈V v| ≥ 1.

Furthermore, we define the distance between two vot-
ers as the size of the symmetric difference of the cor-
responding candidate sets, i.e., we set dA(v, w) =
|(v \ w) ∪ (w \ v)|. We extend this definition to a dis-
tance d̂A on entire elections in the standard manner.
We are now ready to present the main result of this
section.

Theorem 6. Approval voting is (A, d̂A)-
rationalizable, as well as (mA, d̂A)-rationalizable.

Proof. We will prove the theorem for A; the argument
for mA is similar. Consider an election E = (C, V ),
|V | = n. For each ci ∈ C, set ni = |{v ∈ V | ci ∈ v}|.
Now, fix a candidate ci. First, suppose that there is
no candidate that is approved by all voters. Then, to
obtain an election in A in which ci is the unique con-
sensus winner, we need to make n− ni voters approve
of ci, so ci’s (A, d̂A)-score is n − ni. Thus, the can-
didates with the lowest (A, d̂A)-score are exactly the
candidates with the highest Approval score. Now, sup-
pose that in E there is exactly one candidate cj that
all voters approve of. In this case, cj is the unique
Approval winner, and E ∈ A. Clearly, cj is also the
unique candidate with the (A, d̂A)-score of 0, so ci is
a (A, d̂A)-winner if and only if ci = cj . Finally, sup-
pose that in E there are several candidates that are
approved by all voters, i.e., for W = ∩v∈V v we have
|W | > 1. Now, to turn a candidate cj ∈ W into the
unique candidate approved by all voters, we can ask
some voter to withdraw his approval from all other
candidates in W ; thus, the (A, d̂A)-score of cj is at
most |W | − 1. On the other hand, to make a can-
didate ck 6∈ W the unique candidate approved by all
voters, we need to take away at least one point from
each candidate in W as well as to ask some additional
voters to approve of ck, so the (A, d̂A)-score of ck is at
least |W |. Thus, in this case, too, the set of Approval
winners coincides with the set of candidates with the
smallest (A, d̂A)-score.

On the other hand, it is not hard to see that Approval
voting cannot be rationalized with respect to any con-
sensus class that is defined on preference profiles only,
such as unanimity consensus. Indeed, there can be two
(unanimous) approval elections E, E′ that correspond
to the same preference profile, but have different sets of
winners, because the number of candidates approved
by each voter in E and E′ is different.

5 Rationalizability via Condorcet
Concensus

In this section, we focus on voting rules that can be
rationalized with respect to Condorcet consensus via
distances that correspond to adding, deleting, or re-
placing voters.

To begin, observe that, given an election E = (C, V )
with |V | = n, we can make any candidate c ∈ C the
Condorcet winner by adding at most n+ 1 voters that
rank c first. Similarly, we can make c the Condorcet
winner by replacing at most bn/2c+1 voters in V with
voters that rank c first. While not every candidate can
be made the Condorcet winner by voter deletion—for
example, if a candidate is ranked last by all voters, he
will not become the Condorcet winner no matter how
many voters we delete—it is still the case that, if at
least one voter ranks a given candidate first, this can-
didate can be made the Condorcet winner by removing
at most n−1 voters. Thus, for each candidate c we can
define her score with respect to each of these opera-
tions as the number of voters that need to be inserted,
replaced, or removed, respectively, to make c the Con-
dorcet winner (for deletion, some candidates will have
a score of +∞). We will refer to these scores as the
insertion score, the replacement score and the dele-
tion score, respectively. Intuitively, for each of these
scores, the candidates with a lower score are closer to
being the consensus winners than the candidates with
a higher score, so each of these scores can be used to
define a voting rule.

In fact, there is a well-known voting rule that is defined
in these terms, namely, Young’s rule, which elects the
candidates with the lowest deletion score. Thus, it is
natural to ask if the two other scores defined above,
i.e., the replacement score and the insertion score, also
correspond to well-known voting rules. Another inter-
esting question is whether all three of these scores can
be transformed into distances, i.e., whether the corre-
sponding voting rules are distance-rationalizable with
respect to Condorcet consensus; observe that this is-
sue is more complicated than might appear at the first
sight, since we have to satisfy the symmetry axiom.
In the rest of this section, we will provide answers to
these two questions.

We will first answer the second question by showing
how to transform each of our three scores into a dis-
tance. The easiest case is that of the replacement
score. Formally, given an election E = (C, V ), the
replacement score sr(c) of a candidate c ∈ C is the
smallest value of k such that there exists an election
E = (C, V ′) obtained by changing the preferences of
exactly k voters in V in which c is the Condorcet win-
ner; as argued above, sr(c) ≤ bn/2c+1 for all c ∈ C. It



is immediate that the replacement score of any c ∈ C
is exactly the Hamming distance from E to the clos-
est election over the set of candidates C in which c is
the Condorcet winner. Thus, the corresponding vot-
ing rule is (C, dH)-rationalizable. In the rest of this
section, we will refer to this rule as the voter replace-
ment rule. We postpone the discussion of whether this
rule is equivalent to any voting rule considered in the
literature till the end of the section.

The insertion score si(c) of a candidate c ∈ C in an
election E = (C, V ) is defined as the smallest number
k ≥ 0 such that there exists a list of voters V ′, |V ′| = k,
such that c is the Condorcet winner in E′ = (C, V ∪
V ′). Similarly, the deletion score sd(c) of a candidate
c ∈ C in an election E = (C, V ) is defined as the
smallest number k ≥ 0 such that there exists a list of
voters V ′ ⊆ V , |V ′| = k, such that c is the Condorcet
winner in E′ = (C, V \ V ′), and +∞ if c cannot be
made the Condorcet winner in this manner.

Now, it is easy to see that both the insertion score
and the deletion score naturally correspond to qua-
sidistances, i.e., mappings that satisfy non-negativity,
identity of indiscernibles and the triangle inequal-
ity, but not symmetry. Indeed, given two elections
E = (C, V ) and E = (C, V ′) over the same set of can-
didates C, we can define a function d′i(E,E

′) by setting
d′i(E,E

′) = k if V is a sublist of V ′ and |V ′ \ V | = k,
and d′i(E,E

′) = +∞ otherwise. Similarly, we can de-
fine d′d(E,E

′) by setting d′d(E,E
′) = k if V ′ is a sublist

of V and |V \ V ′| = k, and d′d(E,E
′) = +∞ other-

wise. It is not hard to verify that both d′i and d′d are
quasidistances. Moreover, for each candidate in C his
insertion score si(c) is equal to the d′i-distance from
E to the nearest (with respect to d′i) election in C in
which c is the Condorcet winner. Similarly, c’s dele-
tion score sd(c) is equal to the d′d-distance from E to
the nearest (with respect to d′d) election in C in which
c is the Condorcet winner. We will now show that
we can replace both of these quasidistances with true
distances.

For d′i the solution is simple: we can make d′i sym-
metric by allowing ourselves to delete voters as well as
to add voters, as, intuitively, deleting a voter is never
more useful than adding a voter. Formally, given two
elections E = (C, V ) and E = (C, V ′) over the same
set of candidates C, we set di(E,E′) = |V \V ′|+|V ′\V |
(recall that V and V ′ are lists rather than sets, so by
V \ V ′ we mean the list obtained from V by deleting
the voters in V ′). Clearly, di is a distance. Moreover,
we will now show that for our purposes it is indistin-
guishable from d′i.

Proposition 7. Consider an election E = (C, V ), a
candidate c ∈ C, and a k > 0. Then there exists an
election E1 = (C, V1) ∈ C such that c is the Condorcet

winner of E1 and d′i(E,E1) ≤ k if and only if there
exists an election E2 = (C, V2) ∈ C such that c is the
Condorcet winner of E2 and di(E,E2) ≤ k.

Proof. The “only if” direction is immediate: if
d′i(E,E1) ≤ k, then di(E,E1) ≤ k, so we can set
E2 = E1. For the “if” direction, suppose that E2

has been obtained from E by deleting a sublist of vot-
ers V ′ ⊆ V , |V ′| = k1, and adding a list of voters V ′′,
|V ′′| = k2. Now, consider an election E3 obtained
from E by first adding the voters in V ′′ and then
adding another k1 voters that rank c first. Clearly,
d′i(E,E3) = di(E,E2) ≤ k. We will now show that c is
the Condorcet winner in E3. Indeed, fix an arbitrary
voter c′ ∈ C. Suppose that in (C, V ∪ V ′′) there are
x voters that prefer c to c′ and y voters that prefer
c′ to c. Then in E2 there are at most x voters that
prefer c to c′ and at least y − k1 voters that prefer c′

to c. Since c is the Condorcet winner of E2, we have
x > y − k1. Now, in E3 there are x + k1 voters that
prefer c to c′ and y voters that prefer c′ to c. As we
have argued that x+k1 > y, it follows that the major-
ity of voters in E3 prefer c to c′. As this is true for any
c′ 6= c, it follows that c is the Condorcet winner in E3.
Moreover, E3 has been obtained from E by candidate
insertion only, so we can set E1 = E3.

Clearly, we cannot use the same solution for d′d. In-
deed, the argument above demonstrates that adding
voters is more useful than deleting voters. Thus, we
need to construct a metric that makes it expensive to
add voters. As this metric has to be symmetric, a
natural approach would be to make the distance be-
tween two elections depend on the number of voters in
the larger of them, as well as on the difference in the
number of voters. For example, we could try to set
d((C, V ), (C, V ′)) = ||V | − |V ′|| + (max{|V |, |V ′|})2.
However, it turns out that this approach does not quite
work: under this metric, deleting sd(c) voters may still
be more expensive than first deleting some s′ < sd(c)
voters and then adding a few voters that rank c first.
To overcome this difficutly, we construct a metric that
makes it prohibitively difficult to do insertion and dele-
tion at the same time.

Formally, for any pair of elections E = (C, V ), E′ =
(C, V ′) over the same set of candidates C, we set k =
||V | − |V ′||, M = max{|V |, |V ′|}, and let dd(E,E′) =
0 if V = V ′, dd(E,E′) = 2 − 1

k+M2+1 if V ⊂ V ′ or
V ′ ⊂ V , and dd(E,E′) = +∞ otherwise. The function
dd(E,E′) is not a metric, as it does not satisfy the
triangle inequality. However, we can use it to construct
a metric dd by setting dd(E,E′) = min{dd(E,E1) +
dd(E1, E2) + · · · + dd(E`, E′) | ` ∈ N, E1, . . . , E` ∈
EC}, where EC denotes the set of all elections with
the set of candidates C. Intuitively, dd(E,E′) is the



shortest path distance in the graph whose vertices are
elections in EC , and the edge lengths are given by dd.
It is well known that for any graph with non-negative
edge lengths the shortest path distance satisfies the
triangle inequality; it should be clear that dd satisfies
all other axioms of a metric as well. Observe that for
any two elections E,E′ ∈ EC such that E = (C, V ),
E′ = (C, V ′) we have dd(E,E′) < 2 if V ⊆ V ′ or
V ′ ⊆ V and dd(E,E′) > 2 otherwise.

We will now show that dd can be used to rationalize
Young’s rule with respect to Condorcet consensus.
Proposition 8. Consider an election E = (C, V ),
|V | = n, and two candidates c1, c2 ∈ C such that
sd(c1) < +∞ or sd(c2) < +∞. For i = 1, 2, let di
be the dd-distance from ci to the closest (with respect
to dd) election over C in which ci is a Condorcet win-
ner, Then sd(c1) < sc(c2) if and only if d1 < d2.

Proof. Suppose first that sd(c1) = k1 < +∞, sd(c2) =
k2 < +∞. Then one can obtain an election over C
in which c1 (respectively, c2) is the Condorcet win-
ner by deleting k1 (respectively k2) voters from E; de-
note this election by E1 (respectively, E2). We have
dd(E,E1) = 2− 1

k1+n2+1 , dd(E,E2) = 2− 1
k2+n2+1 . We

claim that d1 = dd(E,E1). Indeed, suppose that this
is not the case, i.e., dd(E,E1) > d1. This means that
there exists an election E′ = (C, V ′) such that c1 is the
Condorcet winner of E′ and dd(E,E′) < dd(E,E1).
As E′ cannot be obtained from E by deleting vot-
ers, it holds that V ′ 6⊆ V . Now, if also V 6⊆ V ′,
we immediately obtain dd(E,E′) > 2, a contradic-
tion with dd(E,E1) < 2. Hence, it must be the
case that V ⊂ V ′, so |V ′| ≥ n + 1, and we have
dd(E,E′) ≥ 2− 1

2+(n+1)2 . On the other hand, we have
k1 ≤ n− 1, which implies dd(E,E1) ≤ 2− 1

n−1+n2+1 .
As 2 − 1

2+(n+1)2 > 2 − 1
n−1+n2+1 , this gives a con-

tradiction as well. Similarly, we can show that d2 =
dd(E,E2). Hence, it follows that k1 < k2 if and only
if d1 < d2.

Now suppose that sd(c1) < +∞, sd(c2) = +∞ (the
case sd(c1) = +∞, sd(c2) < +∞ is symmetric). Then
we have d1 ≤ 2 − 1

n+n2 , d2 ≥ 2 − 1
2+(n+1)2 , since we

cannot trasform E into an election over C in which
c2 is the Condorcet winner by candidate deletion only.
Thus, in this case, too, sd(c1) < sd(c2) if and only if
d1 < d2.

As in any election there is at least one candidate c
with sd(c) < +∞, Proposition 8 immediately implies
the following result.
Theorem 9. Young’s rule is (C, dd)-rationalizable.

We now turn to the first of the two questions posed
in the beginning of this section. We have observed

that the voter deletion-based rule is equivalent to
Young’s rule; the proof follows immediately from the
definitions of both rules. We will now show that the
voter insertion-based rule is equivalent to another well-
known rule, namely, Maximin. Under Maximin, the
score of each voter is the outcome of his worst pair-
wise election. Formally, given an election E = (C, V ),
for each cj ∈ C we set sM (cj) = min{#{i : cj �i ck} |
ck ∈ C, ck 6= cj}. The winners are then the candidates
c with the highest Maximin score sM (c).

Proposition 10. For any election E = (C, V ), |V | =
n, and any candidate c ∈ C we have si(c) = n −
2sM (c) + 1, where si(c) is the insertion score of c and
sM (c) is the Maximin score of c.

Proof. Fix an election E = (C, V ), |V | = n, and a
candidate cj ∈ C. Set t = sM (cj). Let ck be one of
cj ’s worst pairwise opponents, i.e., |{q : cj �q ck}| = t.
Now, if we add n− 2t+ 1 voters that rank cj first, for
any c` 6= cj there are at most n− t voters that rank c`
above cj and at least t+ n− 2t+ 1 = n− t+ 1 voters
that rank cj above c`, so cj is the Condorcet winner of
the resulting election. On the other hand, if we add at
most n− 2t new voters to E, in the resulting election
there will be at least n − t voters that prefer ck to cj
and at most t + n − 2t = n − t voters that prefer cj
to ck, so in this case ck prevents cj from becoming the
Condorcet winner.

Thus, the candidates with the highest Maximin score
are exactly the candidates with the lowest insertion
score. Together with Proposition 7, this implies the
following result.

Theorem 11. Maximin is (C, di)-rationalizable.

The situation with the voter replacement rule is more
complicated. Meskanen and Nurmi [2008] claim that
Young’s rule is (C, dH)-rationalizable. As we have
argued that the voter replacement rule is (C, dH)-
rationalizable, this would imply that the voter replace-
ment rule is equivalent to Young’s rule, or, in other
words, deleting voters is equivalent to replacing vot-
ers. However, it turns out that this is not true.

Theorem 12. There exists an election in which the
voter replacement rule and Young’s rule declare differ-
ent candidates as winners.

Proof. We construct an election E = (C, V ) with C =
{a, b, c, d} and |V | = 29. Among the first 5 voters in
|V |, there are 2 voters with preference order a � b �
c � d, 2 voters with preference order a � c � d � b,
and 1 voter with preference order a � b � d � c.

Further, there are 8 voters with preferences b � c �
a � d (b-voters), 8 voters with preferences c � d � a �



b (c-voters), and 8 voters with preferences d � b � a �
c (d-voters).

We summarize the numbers of voters that prefer x to
y for x, y ∈ {a, b, c, d} in the table below; we write
x > y : t to denote the fact that there are t voters that
prefer x to y.

a > b : 13, b > a : 16, b > c : 19, c > b : 10
a > c : 13, c > a : 16, b > d : 11, d > b : 18
a > d : 13, d > a : 16, c > d : 20, d > c : 9

Let us now compute sr(x) and sd(x) for x ∈ {b, c, d}.
Candidate b wins pairwise elections against a and c,
but loses to d by 7 votes. Hence, sd(b) ≥ 8. On the
other hand, deleting 8 votes is sufficient: indeed, delet-
ing all c-voters makes b the Condorcet winner. Thus,
sd(b) = 8. For the same reason, we need to replace at
least 4 voters to make b the Condorecet winner (each
replacement reduces d’s margin of victory over b by
at most 2), and, indeed, replacing 4 of the c-voters
with 4 voters that rank b first makes b the Condorcet
winner. Hence, sd(b) = 4. Similarly, c loses the pair-
wise election to b by 9 votes, so we have sd(c) ≥ 10,
sr(c) ≥ 5 (we can show that, in fact, sd(c) = 10 and
sr(c) = 5, but this is not needed for our proof), and d
loses the pairwise election to c by 11 votes, so we have
sd(d) ≥ 12, sr(d) ≥ 6.

Now, it is not hard to see that sr(a) ≤ 3: after we
replace one b-voter, one c-voter and one d-voter with
voters that rank a first, for each x = b, c, d we have 15
voters that prefer a to x and 14 voters that prefer x
to a. Thus, we have sr(a) < sr(x) for x = b, c, d. To
complete the proof, we will now argue that sd(a) >
sd(b). Specifically, we will show that sd(a) ≥ 12.

Indeed, it is clear that to make a the Condorcet win-
ner, it is never optimal to delete any of the first five
voters. Now, suppose that we can make a the Con-
dorcet winner by deleting a set S of voters, |S| < 12.
Suppose first that S contains at least 4 voters of a
particular type (i.e., b-voters, c-voters, or d-voters);
without loss of generality, we can assume that S con-
tains 4 b-voters. After these voters have been deleted,
a loses to d by at least 7 votes, so we need to delete at
least 8 more voters, i.e., at least 12 voters altogether,
a contradiction. Hence, we can now assume that S
contains at most 3 voters of each type. Next, suppose
that S contains exactly 3 voters of some type; again,
without loss of generality we can assume that those are
b-voters. After these voters have been deleted, a loses
to d by 6 votes, so we have to additionally delete at
least 7 other voters, i.e., at least 4 voters of some other
type, a contradiction. Hence, S contains at most 2 vot-
ers of each type. Now, consider an arbitrary voter in
S; without loss of generality we can assume that this is

a b-voter. After this voter has been deleted, a loses to
d by 4 votes, so we need to additionally delete at least
5 other voters, i.e., at least 3 voters of some other type,
a contradiction. We conclude that sd(a) ≥ 12.

In fact, the voter replacement rule, despite having a
very natural definition in terms of distances and con-
sensuses, appears not to be equivalent to any known
voting rule and is therefore not studied in the existing
literature. As a first step towards understanding the
properties of this rule, we will now prove that, simi-
larly to Young’s rule, it is unlikely to have an efficient
winner determination procedure. We omit the proof
of the next theorem due to space limits.

Theorem 13. Given an election E = (C, V ) and a
candidate p ∈ C, it is NP-hard to decide if p is a
winner of E under the voter replacement rule.

For Young’s rule, the winner determination problem
is known to be complete for the complexity class
Θp

2
[Rothe et al., 2003]. It seems likely that this is

also the case for the voter replacement rule.

Observe that out of the three voting rules considered
in this section, one (Maximin) has an efficient winner
determination procedure, while the other two do not
(assuming P 6= NP). The intuitive reason for this differ-
ence is that when we add voters to make a candidate
c the Condorcet winner, we only need to add voters
that rank c first, and, moreover, it does not matter
how these voters rank other candidates. On the other
hand, when we delete or replace voters, we have to
choose which voters to remove, and this decision is
not straightforward.

6 Conclusions and Future Research

We presented a number of new results on distance ra-
tionalizability of several well-known voting rules. A
few questions suggest themselves for further study.
First, while some of our results are negative, they only
show that some voting rules cannot be rationalized
with respect to a particular notion of consensus, but
not that these rules cannot be distance-rationalized at
all. It would be interesting to see if one can obtain
results of this type. In particular, this would require
formalizing the general idea of consensus. Similarly, it
seems reasonable to expect that voting rules that are
defined via a particular notion of consensus (such as,
e.g., Dodgson’s rule or Young’s rule) cannot be ratio-
nalized using a different notion of consensus, such as
unanimity; can we confirm this intuition?

A natural research direction is to seek distance-
rationalizability results for further voting rules (e.g.,
it would be interesting to find to what extent gener-



alized scoring rules [Xia and Conitzer, 2008] are dis-
tance rationalizable) and to seek connections between
distance rationalizability and related notions, such as
explaining voting rules via maximum likelihood esti-
mation [Conitzer and Sandholm, 2005; Conitzer et al.,
2009].

Another research direction concerns making connec-
tions between distance rationalizability and dishonest
behavior in elections, such as control [Bartholdi et al.,
1992] and bribery [Faliszewski et al., 2006]. Indeed,
replacing voters to make a particular candidate the
election winner, as we do in Section 5, is very similar
to bribery (see [Faliszewski et al., 2006]; Dodgson dis-
tance is also very similar to a recently introduced no-
tion of swap bribery [Elkind et al., 2009]), and adding
or deleting voters or candidates is reminiscent of elec-
tion control. We hope that making this intuition more
precise will lead to interesting results for both areas.

Finally, distance rationalizability may provide a useful
tool for understanding the computational complexity
of various voting-related problems. In particular, it
is likely that hardness/easiness results for a particular
voting rule will often enable us to obtain similar hard-
ness/easiness results for other rules that are defined
via the same (or related) metric or the same notion
of consensus. Indeed, the hardness result in Section 5
can be seen as an example of this approach.
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