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The well-known impossibility theorem of Gibbard (1973) and Satterth-
waite (1975) states that every non-dictatorial social choice function at cer-
tain profiles is manipulable by a single individual. Further research never-
theless showed that when the number of voting agents become large, the
probability of individual manipulation tends to zero. This asymptotic be-
havior was observed for both of the two major models for the distribution
of voters’ preferences, i.e. the IC (Impartial Culture conjecture) and the
IAC (Impartial Anonymous Culture conjecture) although the speed of con-
vergence of the probability of individual manipulation to zero is different.
Peleg (1979), Baharad and Neeman (2002) and Slinko (2002a, 2002b) showed
that it is of order O

(
1/n1/2

)
for the IC conjecture. In a contrust to that,

Slinko (2002c) showed that this probability is only of order O (1/n) for the
IAC conjecture1.

We show that, for the IC conjecture, for all faithful weighted scoring
rules, including Borda, when the number of participating agents n tends
to infinity, the probability that a random profile will be manipulable by a
coalition of size nα, with 0 ≤ α < 1/2, is being of order O

(
1/n1/2−α

)
.

For the IAC conjecture, Slinko (2002c) showed that the probability that a
random voting situation will be manipulable for a coalition of size nα, with
0 ≤ α < 1, is of order O

(
1/n1−α

)
.

Let A and N be two finite sets of cardinality m and n respectively. The
elements of A will be called alternatives, the elements of N agents. We
assume that the agents have preferences over the set of alternatives. By
L = L(A) we denote the set of all linear orders on A; they represent the
preferences of agents over A. The elements of the Cartesian product

L(A)n = L(A) × . . . × L(A) (n times)

are called profiles. They represent the collection of preferences of an n-element
society of agents N . If a linear order Ri ∈ L(A) represents the preferences
of the i-th agent, then by aRib, where a, b ∈ A, we denote that this agent
prefers a to b. A family of mappings Fn:L(A)n → A, n ∈ IN, is called a
social choice function (SCF).

Definition 1 Let R = (R1, . . . , Rn) be a profile. We say that a profile
R

′
occurred as a result of strategic behaviour of k voters, if some k voters

who previously submitted linear orders Ri1 , . . . , Rik now submit linear orders
R′

i1
, . . . , R′

ik
while the remaining voters submit their original linear orders.

1We write g(n) = O(f(n)) in case there is a positive constant C such that |g(n)| ≤
Cf(n) for all sufficiently large values of n
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Definition 2 Let F be an SCF and let R be a profile. We say that R
is k-manipulable for F if there is a profile R

′
, which occurred as a result

of strategic behaviour of k voters, with the linear orders Ri1 , . . . , Rik being
replaced by the linear orders R′

i1
, . . . , R′

ik
, such that F (R′)RisF (R) for all

s = 1, 2, . . . , k. We also say that a profile R is k-unstable if there exists a
profile R

′
, which occurred as a result of strategic behaviour of k voters, such

that F (R
′
) �= F (R).

It should be noted that the existing concept of coalitional manipulability
(see e.g. Lepelley et al., 1987 and Favardin et al., 2002) does not restrict
the size of the coalition.

Let us define the following two indices. Given the rule F , the index of
k-manipulability

KF (n, m, k) =
dF (n, m, k)

(m!)n
, (1)

where dF (n, m, k) is the total number of all k-manipulable profiles, and the
index of k-instability

LF (n, m, k) =
eF (n, m, k)

(m!)n
, (2)

where eF (n, m, k) is the total number of all k-unstable profiles. We note
that under the IC conjecture L(A)n is a discrete probability space with the
uniform distribution, hence the indices KF (m, n, k) and LF (m, n, k) become
the probabilities of drawing a k-manipulable profile, or an k-unstable profile,
respectively.

Every k-manipulable profile is k-unstable, hence KF (m, n, k) ≤ LF (m, n, k).
Therefore any upper bound for LF (n, m, k) is an upper bound for KF (m, n, k).

Every scoring rule F is characterized by the sequence of weights w1 ≥
w2 ≥ . . . ≥ wm = 0, and we may consider them to be integers. It is
required that w1 > 0. The scoring rule is faithful if wi �= wi+1 for all
i = 1, 2, . . . , m−1. For each profile R ∈ L(A)n and for every alternative
a ∈ A, we can define the score of a, denoted ScF (R, a), which can be
computed as ScF (R, a) =

∑m
�=1 w�i�, where the number ik shows how many

times the alternative a was ranked kth. The most commonly used score is
the Borda score ScB(R, a), where B is the Borda rule defined by the weights
(m−1, m−2, . . . , 1, 0).

The following obvious lemma explains how the scores can be changed
during a manipulation attempt undertaken by k agents.
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Lemma 1 Let F be any scoring rule and let R be a profile. Let R
′

be
another profile which occurred as a result of strategic behaviour of k voters.
Then

|ScF (R, a) − ScF (R
′
, a)| ≤ kw1, (3)

where w1 is the largest weight.

Let us consider a multiset An,q = {1q, 2q, . . . , nq}, which contains q iden-
tical copies of each of the elements 1, 2, . . . , n, with its subsets partially
ordered by inclusion. A collection of subsets of a given multiset is called an
antichain if for any two subsets from the collection none of them is a subset
of the other. It is well-known that the collection of all subsets of An,q of
middle size, �qn/2�, is a maximal antichain2 in An,q; if n and q are both odd,
then the subsets of size �qn/2	 also form a maximal antichain. Anderson
(1969) proved that the length s(n) of a maximal antichain in An,q−1 satisfies
the inequality

cq
qn−1

√
n

≤ s(n) ≤ Cq
qn−1

√
n

, (4)

for some constants cq, Cq, which depend on q but not on n. This result is
crucial for the proof of our main theorem.

Given a linear order R and an alternative a, let us recall that the lower
contour set of a relative to R is the set L(R, a) = {x ∈ A | aRx}.

Let R = (R1, . . . , Rn) be a profile on A and A′ = A \ {am}. Then we
define the restrictions Qi = Ri|A′ of the linear orders Ri on A′ and the
restricted profile Q = (Q1, . . . , Qn) on A′. We will also say that R is an
extension of Q.

Let us now consider a profile Q on A′ and let E(Q) be the set of all
possible extensions of Q.

Definition 3 Let R and S belong to E(Q). We say that R ≤ S if the
inclusion L(Ri, am) ⊆ L(Si, am) for the lower contour sets holds for all
i = 1, 2, . . . , n.

Lemma 2 The poset (E(Q),≤) is isomorphic to the poset (P(An,m−1),⊆)
of all subsets of An,m−1.

Proof: Suppose that R is an extension of Q and card(L(Ri, am)) = ti.
Then our isomorphism should assign to this particular extension the subset
{1t1 , 2t2 , . . . , ntn} of An,m−1. The proof of this isomorphism is obvious.

2i.e. maximal by the number of subsets in it
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Lemma 3 Let F be a faithful scoring rule. Let Q be a profile on A′. Let us
denote am = a and let b ∈ A′. Then any two extensions R, S ∈ E(Q) such
that

ScF (R, a) − ScF (R, b) = ScF (S, a) − ScF (S, b) (5)

are not comparable relative to ≤.

Proof: Suppose R ≤ S and R �= S. Then ScF (R, a) < ScF (S, a) because
the rule is faithful. This means that L(Ri, a) ⊆ L(Si, a) for all i = 1.2. . . . , n
and this inclusion is strict at least for one i. Hence to obtain S from R
we move a up in several linear orders of the profile. At the same time for
every i there must be L(Ri, b) ⊇ L(Si, b) because Si is obtained from Ri by
moving a up and it is possible that a is in L(Ri, b) but not in L(Si, b). This
can happen only with a. Hence ScF (R, b) ≥ ScF (S, b) and the equation (5)
cannot hold. This proves the lemma.

Lemma 4 Let F be a faithful scoring rule, a, b ∈ A, and K be an integer.
Then, for some Cm > 0 depending on m but not on n, there exist no more
than Cm(m!)n/

√
n profiles R ∈ L(A)n such that

ScF (R, a) − ScF (R, b) = K. (6)

Proof: We will show that the same constant Cm as in Anderson’s theorem
works. Let A′ = A \ {a}. There are ((m − 1)!)n profiles on A′ and we have
mn extensions for each of them to a profile on A. Let us take an arbitrary
profile Q on A′. Then by Lemma 3 any two extensions with the property
(6) will not be comparable. Thus by Lemma 2 and by the aforementioned
result of Anderson we have no more than Cmmn/

√
n such extensions. In

total we cannot have more than Cmmn√
n

· ((m − 1)!)n = Cm(m!)n
√

n
profiles for

which (6) is satisfied. The lemma is proved.

Theorem 1 For any faithful scoring rule F there exists a constant Dm

depending on m but not on n and k such that

LF (n, m, k) ≤ Dm
k√
n

. (7)

Proof: Let a, b ∈ A. Then by Lemma 4 for each K satisfying −w1k ≤ K ≤
w1k the total number of profiles satisfying

ScF (R, a) − ScF (R, b) = K (8)
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will be not greater than Cm(m!)n
√

n
. Thus the total number of profiles where

the difference between the scores of some two alternatives is smaller than or
equal to 2kw1 will be not greater than 4kw1

(m
2

)Cm(m!)n
√

n
. Since by Lemma 1

every manipulable and even every unstable profile is among those counted,
we see that (8) holds with Dm = 4w1

(m
2

)
Cm. This proves the theorem.

The main result follows immediately from this theorem.

Our results show that to be able to manipulate with a nonzero probability
the manipulating coalition should have O (

√
n) members. We conclude with

an interesting hypothesis. Chamberlin (1985) introduced a very interesting
characteristic of a rule, namely, the average minimum size of a coalition
capable of manipulation. Since then there were no theoretical results related
to it. Our results suggest that it is very likely that this characteristic of a
scoring rule F will be of the form KF (m)

√
n, where KF (m) is the constant

which depend only on the number of alternatives m (and, of course, on the
rule F ) but not on n. This will open a new way of comparing the rules by
comparing their constants KF (m) for some fixed m.
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