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Summary: Since voting rules are prototypes for many aggregation procedures,
they also illuminate problems faced by economics and decision sciences. In this
paper we are trying to answer the question: How large should a coalition be to have
a chance to influence an election? We answer this question for all scoring rules and
multistage elimination rules, under the Impartial Anonymous Culture assumption.
We show that, when the number of participating agents n tends to infinity, the ratio
of voting situations that can be influenced by a coalition of k voters to all voting

situations is no greater than Dm
k

n
, where Dm is a constant which depends only

on the number m of alternatives but not on k and n. Recent results on individual
manipulability in three alternative elections show that this estimate is exact for
k = 1 and m = 3.
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1 Introduction

The well-known impossibility theorem of Gibbard and Satterthwaite [7,18] states
that every non-dictatorial social choice function at certain profiles is manipulable
by a single individual. Despite the negativity of this result, some hope remained
that for sufficiently large societies this phenomenon might be rare. Pattanaik [12]
conjectured that “the possibility of strategic voting by single individuals will be
smaller the greater the total number of the individuals.” Three years later Pattanaik
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([13], p.187) commented that “if the likelihood of such strategic voting is negligi-
ble, then one need not be unduly worried about the existence of the possibility as
such.”

And although Nitzan [11] experimentally showed the severity of the manipula-
tion phenomenon for societies with small number of voters, Pattanaik’s conjecture
was confirmed on many occasions. Pazner and Wesley [14], Peleg [15], Fristrup
and Keiding [5] showed that for all weighted scoring rules the ratio of manipulable
profiles to the total number of profiles tends to zero as the number of voters tends
to infinity. Slinko [19,20] showed that, for large societies satisfying the Impartial
Culture (IC) assumption, and for all classical social choice rules, the probability of
drawing an individually manipulable profile at random is of order O

(
1/
√

n
)

and
for the plurality rule it is even Θ

(
1/
√

n
)
.1

As recent numerical results of Lepelley and Valognes [10] show, possibility of
manipulation may crucially depend on the degree of social homogeneity. For a rel-
atively new hypothesis, called the Impartial Anonymous Culture (IAC) assumption
(Berg and Lepelley [3] attribute this terminology to Gehrlein), which models soci-
eties with a certain degree of social homogeneity, much work was concentrated on
the case of three-alternative elections. This hypothesis, as will be explained below,
is formulated in terms of voting situations and not profiles and it stipulates that all
voting situations are equiprobable. It is remarkable that for the Copeland and the
Borda rules the probability of a manipulable voting situation occurring in three-
alternative elections can be calulated exactly. This was done by Favardin et al. [4],
using the technique developed in Huang and Chua [8]. In particular, they showed
that, asymptotically, for the Borda rule the probability that a single individual will
be able to manipulate is equal to 25

12n and for the Copeland rule this probability
is 5

4n . This suggests that under the IAC the probability to obtain a manipulable
profile converges to zero much faster than under the IC. This occurs because the
degree of homogenety of the society under the IAC assumption is greater than for
the IC (see [3] for details).

The concept of coalitional manipulability existed in the literature for quite
some time (e.g., [2]), and it was studied under several models. Lepelley and Mbih
[9] and Favardin et al [4] call a voting situation coalitionally manipulable, if there
exists a coalition of any size which can manipulate the election. This concept is
closely related to the concept of coalitional instability [9], which, in turn, is equiv-
alent to the Nash-Farquharson-Shubik concept of strong equilibrium in game the-
ory. Saari [17] discussed micro and macro manipulability but in a different model:
these roughly correspond to the individual manipulability and coalitional manipu-
lability, as it was defined above.

Lepelley and Mbih [9] and Favardin et al. [4] showed that if we do not restrict
the size of the coalition which is allowed to manipulate, then, for m = 3, the ratio
of coalitionally manipulable voting situations to all voting situations does not go to

1 We write g(n) = O(f(n)) in case there is a positive constant C such that |g(n)| ≤
C|f(n)| for all sufficiently large values of n and g(n) = Θ(f(n)) if there are positive
constants C1 and C2 such that C1|f(n)| ≤ |g(n)| ≤ C2|f(n)| for all sufficiently large n.
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zero but to a nonzero limit, which is 7
24 for the plurality rule, 3

16 for the Copeland
rule and approximately 1

2 for the Borda rule.
Although the concept of coalitional manipulability discussed above is impor-

tant, it does not enable us to investigate how the probability to manipulate depends
on the size of the coalition. To make it possible, the author introduced new con-
cepts of k-manipulability and k-instability of a profile or a voting situation [21].
A profile or a voting situation is said to be k-manipulable, if there exists a coali-
tion of size k or less which is capable of manipulation, and k-unstable if some
coalition of size k or less can influence the election. Assuming the IC conjecture,
Slinko [21] showed that, for any faithful scoring rule, when the number of par-
ticipating agents n tends to infinity, the probability that a random profile can be
influenced by a coalition of size Cnα, with 0 ≤ α < 1/2 and C constant, is
of order O

(
1/n1/2−α

)
. Moreover, Pritchard and Slinko [16] showed that in this

case the minimum average size of manipulating coalition is asymptotically equal
to Cm

√
n, where Cm depends on the rule and on m but not on n.

In this paper we show that, for the IAC assumption, the probability that a ran-
dom voting situation can be influenced by a coalition of size k = Cnα, with C > 0
and 0 ≤ α < 1, is of order O

(
nα−1

)
. In particular, for k = 1, we obtain that the

probability that a random voting situation can be influenced by a single individual
is of order O (1/n). On the other hand, as we mentioned above, Favardin et al.,[4]
proved that for three-alternative elections the probability that a random voting sit-
uation is individually manipulable is of the same order O (1/n). This leads to a
hypothesis that the result of this paper is also exact for k > 1.

2 Definitions and Basic Concepts

Let A and N be two finite sets, of cardinality m and n respectively. The elements
of A will be called alternatives, the elements of N agents. We assume that the
agents have preferences over the set of alternatives. By L = L(A) we denote the
set of all linear orders on A; they represent the preferences of agents over A. The
cardinality of this set is M = m!, and we list these linear orders in some way
R1, . . . , RM and fix this order.

The well-known Impartial Culture (IC) assumption stipulates that all voters are
independent, and that they can choose any linear order on A with equal probability
1/M . Unlike the IC, the Impartial Anonymous Culture (IAC) assumption does not
operate in terms of individual voters but rather in terms of voting situations that
may occur.

Suppose that ni voters chose the linear order Ri as their preference over the
set of alternatives A. Then we say that a voting situation S = (n1, n2, . . . , nM )
occurred. In other words, a voting situation is a multiset on L of cardinality n. The
IAC assumes that all voting situations are equiprobable. Since the total number of
voting situations is

(
n+M−1

n

)
, the probability of each particular voting situation

under the IAC is
(
n+M−1

n

)−1
.
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Hence, unlike the IC, the IAC is a model for the society as a whole and not a
model for the behavior of individual voters. For a comprehensive survey of various
probability models used in social choice studies see [3].

Let Sn(A) be the set of all voting situations for n voters and the set A of
alternatives. Under the IAC, any family of mappings F = {Fn}, n ∈ N,

Fn : Sn(A) → A,

is called a social choice function (SCF). For historical reasons, SCFs are often
called rules.

Definition 1 Let S be a voting situation. We say that a voting situation S
′

occurred
as a result of change of mind of k voters, if some k voters who previously submit-
ted linear orders Ri1 , . . . , Rik

now submit linear orders Rj1 , . . . , Rjk
while the

remaining voters submit their original linear orders.

Definition 2 Let F be an SCF and let S be a voting situation. We say that S is
k-manipulable for F if there is a voting situation S

′
, which occurred as a result of

change of mind of k voters, with the linear orders Ri1 , . . . , Rik
being replaced by

the linear orders Rj1 , . . . , Rjk
, such that F (S′)Ris

F (S) for all s = 1, 2, . . . , k.
We also say that a voting situation S is k-unstable if there exists a voting situation
S

′
, which occurs as a result of change of mind of k voters, such that F (S

′
) �=

F (S).

Every k-manipulable voting situation is k-unstable, but the reverse is not always
true. For k = 1 we get individual manipulability and individual instability.

The concept of an unstable profile was introduced for the IC assumption by
Pazner and Wesley [14] and Peleg [15] and the concept of an unstable voting sit-
uation (individual and coalitional) was discussed in Lepelley and Mbih [9]. How-
ever, the concept of coalitional manipulability and coalitional instability discussed
there does not make any reference to the size of the manipulating coalition.

For our study we will use the following two indices of group manipulability.
Given the rule F , the index of k-manipulability of F under the IAC is

KF (n, m, k) =
dF (n, m, k)
(
n+M−1

n

) , (1)

where dF (n, m, k) is the total number of all k-manipulable voting situations, and
the index of instability

LF (n, m, k) =
eF (n, m, k)
(
n+M−1

n

) , (2)

where eF (n, m, k) is the total number of all k-unstable voting situations. We
note that under the IAC the set of all voting situations Sn(A) is assumed to
be a discrete probability space with the uniform distribution, hence the indices
KF (m, n, k) and LF (m, n, k) become the probabilities of drawing at random a k-
manipulable voting situation, or a k-unstable voting situation, respectively. Since
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KF (m, n, k) ≤ LF (m, n, k), any upper bound that we can obtain for LF (n, m, k)
will be an upper bound for KF (m, n, k).

In this paper we prove that if F is any scoring rule or multistage elimination
rule, then

LF (n, m, k) ≤ Dm
k

n
, (3)

where Dm is the constant that depends only on m but not on k and n. Therefore, if
n and k both tend to infinity so that k = o(n),2 then LF (n, m, k) → 0. This means
that any such F , asymptotically, cannot be manipulated by coalitions of size k.

It is interesting to compare this result with the existing results for the IC. The
corresponding indices are defined as follows. The index of k-manipulability of F
will be

KF (n, m, k) =
dF (n, m, k)

(m!)n
,

where dF (n, m, k) is the total number of all k-manipulable profiles, and the index
of instability of F will be

LF (n, m, k) =
eF (n, m, k)

(m!)n
,

where eF (n, m, k) is the total number of all k-unstable profiles. Peleg [15] proved
that if k = o(

√
n), then LF (n, m, k) → 0. It also follows from Theorem 2 of [20]

that for any faithful scoring rule F and any multistage elimination rule based on
the scores of F

LF (n, m, k) ≤ Cm
k√
n

,

where Cm is a constant which depends only on m but not on k and n.

3 The Main Combinatorial Result

Definition 3 Let n, � be positive integers. Any �-tuple (n1, n2, . . . , n�) of nonneg-
ative integers such that

n1 + n2 + . . . + n� = n (4)

will be called an �-composition of n.

Note that this definition slightly differs from the classical definition of a com-
position (see, for example, [1]) since the summands in our definition may be zero.

In this section n and � will be fixed.

2 The notation g(n) = o(f(n)) means that g(n)/f(n) → 0, when n → ∞.
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Definition 4 Let k1, . . . , k�, and p be integers. We say that an �-composition
(n1, n2, . . . , n�) of n satisfies the equation

�∑

i=1

kixi = p (5)

iff
∑�

i=1 kini = p. This equation will be said to be nontrivial if ki �= 0 for some i
and not all coefficients ki are equal.

The nontriviality condition is essential. If all coefficients are zero, this clearly
does not impose any restriction on �-composition. If k1 = . . . = k� the equation
does not impose any restriction either since it is then a multiple of

�∑

i=1

xi = n. (6)

Theorem 1 Let �, n be fixed positive integers and let S(�, n) be the set of all pos-
sible �-compositions of n. Suppose that the set S(�, n) is given the structure of
a discrete probability space with the uniform distribution. Then the probability
P (�, n) of choosing an �-composition satisfying a given nontrivial equation is less
than or equal to C�/n, where C� is a constant which depends only on � but not
on n.

Proof: Let us fix a nontrivial equation (5). The statement will be proved by induc-
tion on �. For � = 2 the equation (5) becomes

ax1 + bx2 = c, (7)

where either a or b (or both) are nonzero integers and a �= b. The determinant∣
∣
∣
∣
a b
1 1

∣
∣
∣
∣ = a − b is therefore nonzero. Hence we get at most one pair (n1, n2),

satisfying (7). The total number of 2-compositions is therefore no greater than
n + 1, and the probability that a random pair satisfies (7) is less than 1/n, as
required. We can take C1 = 1, and this gives a basis for the induction.

Suppose now that, for all k < �, the constants Ck exist such that P (k, n) ≤
Ck/n. We will show that for C� = max

(
l, �2C�−1

�−1

)
the inequality P (�, n) ≤

C�/n will also be satisfied. Let us consider the following three cases:

Case 1: Only one coefficient ki in the equation (5) is nonzero. In this case
ni = p/ki is fixed and the total number of �-compositions with the fixed ni can be
estimated as follows:

(
n − ni + � − 2

n − ni

)
≤

(
n + � − 2

n

)
≤ �

n

(
n + � − 1

n

)
.

Since the total number of �-compositions is
(
n+�−1

n

)
, the probability of this event

is not greater than �/n ≤ C�/n.
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Case 2: All coefficient in the equation (5) but ki are equal. Suppose kj = k
for j �= i. Then, subtracting from (5) the equation (6) k times we will obtain the
equation (ki − k)xi = p − kn, which reduces this case to Case 1.

Case 3: At least two coefficients among the k1, . . . , k� in the equation (5)
are nonzero and no � − 1 coefficients are equal. In this case we may assume that
for any �-composition S = (n1, n2, . . . , n�) of n satisfying (5) and for any i =
1, 2, . . . , �, the (�−1)-composition

S′ = (n1, . . . , ni−1, ni+1, . . . , n�)

of n − ni satisfies the nontrivial equation

k1x1 + . . . + ki−1xi−1 + ki+1xi+1 + . . . + k�x� = p − kini. (8)

Hence we may assume that any �-composition S = (n1, n2, . . . , n�) of n
satisfying a nontrivial equation (5), will still satisfy a nontrivial equation if we
remove any of the ni’s from it.

Let us now estimate P (�, n). This estimation will be based on the observation
that ni ≤ n/� for at least one i ∈ {1, . . . , �}. Because of that

P (�, n) ≤
�∑

i=1

n/�∑

k=0

Prob{ni = k}P (� − 1, n − k).

Since, for k ≤ n/�, by the induction hypothesis we obtain

P (� − 1, n − k) ≤ C�−1

n − k
≤ C�−1

n − n/�
=

�

� − 1
C�−1

n
,

we get

P (�, n) ≤
�∑

i=1

n/�∑

k=0

Prob{ni = k}P (� − 1, n − k) ≤ �2C�−1

� − 1
· 1
n

=
C�

n
.

This proves the theorem.

4 Asymptotic Strategy-Proofness

One of the most important classes of SCFs was introduced by Gärdenfors [6]: they
are called representable voting functions.

Definition 5 A representation function is a function f : L(A) × A → R such that

aRib =⇒ f(Ri, a) ≥ f(Ri, b).

It is called faithful if

(aRib and a �= b) =⇒ f(Ri, a) > f(Ri, b).
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Definition 6 A representation function f : L(A) × A → R is called positionalist,
if f(R, a) depends only on the cardinality of the lower contour set L(R, a) = {b ∈
A | aRb and a �= b}.

The simplest positionalist representation function (which is used to define the
Borda rule) can be defined by setting f(R, a) = card (L(R, a)). It is easy to see
that it is faithful.

Let f be a representation function and S = (n1, n2, . . . , nM ) ∈ Sn(A) be a
voting situation. We define the score function Scf : Sn(A) × A → R by

Scf (S, a) =
M∑

i=1

nif(Ri, a), a ∈ A. (9)

Definition 7 An SCF F is called (faithfully) representable if there exists a (faithful)
representation function f such that for every S ∈ Sn(A) we have F (S) = ai if
and only if

j < i =⇒ Scf (S, ai) > Scf (S, aj), (10)

j > i =⇒ Scf (S, ai) ≥ Scf (S, aj). (11)

When f is positionalist, any SCF is also called a (faithful) scoring rule (or point-
voting scheme).

Every scoring rule F with a representation function f is characterised by
the respective vector of weights Wf = (w1, . . . , wm). The weights are cho-
sen so that for any Q ∈ L(A) the equation wi = f(Q, a) holds if and only if
card(L(Q, a)) = m − i. The weights must satisfy the condition

w1 ≥ w2 ≥ . . . ≥ wm = 0, (12)

and we can consider them to be integers. It is clear that the scoring rule F is faithful
iff wi �= wi+1 for all i = 1, 2, . . . , m−1.

For each voting situation S ∈ Sn(A) the value of the scoring function f on
a, which we will simply call the score of a, can be now computed as follows. Let
Ia = (i1, . . . , im) be the vector such that the number ik shows how many times
the alternative a was ranked kth. Then

Scf (S, a) = Wf · Ia =
m∑

�=1

w�i�.

The most commonly used scores are the plurality score ScP (S, a), when P is
the plurality rule defined by the vector of weights WP = (1, 0, . . . , 0), and the
Borda score ScB(S, a), where B is the Borda rule defined by the vector of weights
WB = (m−1, m−2, . . . , 1, 0). The Approval Voting score with a fixed number
k of approvals is given by the vector of weights WA = (1, 1, . . . , 1, 0, . . . , 0) (k
ones). When k = m − 1 it bears the name of the Antiplurality score.

Another related class of social choice rules are multistage elimination rules for
which the winner is determined in several stages. At every stage one (or more)
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of the alternatives is eliminated on the basis of a certain “global” information,
i.e. the eliminated alternative must be the worst one relative to a certain global
characteristic. This characteristic is normally related to the scores of alternatives
defined in the previous section.

Among these the best known is the run-off procedure for which at the first
stage m − 2 alternatives with the lowest plurality scores are eliminated. Hare’s
Rule (or Single Transferable Vote) stipulates that at every stage only one alterna-
tive with the minimal plurality score is eliminated. The Inverse Borda rule acts
exactly as Hare’s rule but the Borda scores are used instead of the plurality scores.
Coombs’ procedure eliminates the alternative with the lowest Antiplurality score.
Nanson’s procedure eliminates all alternatives whose Borda scores are lower than
the average Borda score. Clearly, for each of these rules, given an unstable voting
situation certain scores for some two alternatives must be close, and it is easy to
specify how close.

The following obvious lemma explains how the scores can be changed during
a manipulation attempt.

Lemma 1 Let F be any scoring rule with a representation function f charac-
terised by the vector of weights Wf = (w1, . . . , wm) satisfying (12). Let S be a
voting situation and let S

′
be another voting situation which occurred as a result

of change of mind of k voters. Then

|Scf (S, a) − Scf (S
′
, a)| ≤ kw1.

Proof Straightforward.

Theorem 2 For any scoring rule or multistage elimination rule F , under the IAC,
there exists a constant Dm, which depends only on m but not on n and k, such
that

LF (m, n, k) ≤ Dm
k

n
. (13)

Proof Let f be the representation function of the scoring rule which is used either
directly or provides the score function for elimination of alternatives. Let w1 be
the senior weight of the corresponding vector of integer-valued weights Wf .

We will prove that the inequality (13) will be satisfied for the constant Dm =
(4w1 + 1)CM , where CM is the constant from Theorem 1 and M = m!. Due
to Lemma 1 a voting situation S = (n1, n2, . . . , nM ), where M = m!, may be
k-unstable if for some two alternatives a and b

|Scf (S, a) − Scf (S, b)| ≤ 2kw1. (14)

Indeed, suppose that the score of a is greater than that of b. From Lemma 1 we
see that it may be possible that by switching to a new voting situation, S

′
which

occurred as a result of change of mind of k voters, the score of a will be decreased
by kw1 and simultaneously the score of b will be increased by the same amount.
If a had the highest score this may result in the change of the winner.
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The inequality (14), in turn, means that S satisfies one of the following non-
trivial equations:

M∑

i=1

(f(Ri, a) − f(Ri, b))xi = p,

a, b ∈ A, −2kw1 ≤ p ≤ 2kw1. We have 4kw1 + 1 such equations. Hence by
Theorem 1

LF (m, n, k) ≤ (4kw1 + 1)
CM

n
≤ Dm

k

n

and the theorem is proved.

Corollary 1 For k = o(n) any scoring rule or multistage elimination rule F ,
under the IAC, is asymptotically k-coalitionally stable, i.e.,

LF (m, n, k) → 0,

when n → ∞.

Corollary 2 Let F be any scoring rule or multistage elimination rule under the
IAC. Suppose that k ∼ nα, where 0 ≤ α < 1. Then the probability that a ran-
dom voting situation is manipulable for F by a coalition of size k is the order
of O(nα−1). In particular, a random voting situation is manipulable by a single
individual with probability which is the order of O(1/n).

5 Concluding Remarks

Comparing the results of this paper with the results obtained under the IC assump-
tion, we observe that the homogenity of the population reduces the possibility of
manipulation. Thus, for the IC assumption, when all n voters are totally indepen-
dent, it follows from [16] that a coalition of the size C

√
n has a nonzero limiting

probability to manipulate an election. In this paper we see that for the IAC assump-
tion, this coalition must be much bigger and must include a fraction of the society.
The reason is that the greater homogeneity of the IAC reduces the probability of a
close election.

Our analysis suggests that the concepts of k-manipulability and k-instability
introduced in [21] is a useful tool in analysing the impact of the coalition size on
the probability to manipulate or to influence an election.
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