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Abstract. We axiomatically characterise a class of algorithms for mak-
ing sequential decisions in situations of complete ignorance. These al-
gorithms assume that a decision maker (DM) (human or or a software
agent) has exogenously defined utilities for prizes and she uses the em-
pirical distribution of prizes to calculate the “expected utility” of each
action maximising this expected utility at each stage of the decision mak-
ing process. We show that this class of algorithms is defined by three
simple axioms that highlight the independence of the given actions, the
bounded rationality of the agent, and the principle of insufficient reason
at margin.
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1 Introduction

Consider a Decision Maker (DM) who has to repeatedly choose from a finite
set of actions. Each action results in a random reward, also drawn from a fi-
nite set. The environment is complex in the sense that the DM is either unable
to offer a complete description of the states of the world or is unable to con-
struct a meaningful prior probability distribution. Naturally, the well established
Bayesian methods of say [12] or [1] would then be inapplicable.

Our approach is to postulate that the DM has a preference relation defined
directly over the set of actions which is updated over time in response to the
sequences of observed rewards. Thus, if A denotes the set of all actions and H the
set of all histories, the DM is completely described by the familyD := (�ht)ht∈H ,
where �ht

⊆ A×A is a well defined preference relation on the actions following
a history ht at date t. A history consists of the sequences of rewards, drawn from
a finite set R, that are obtained over time to each of the actions. Later we will
impose axioms on D of procedural rationality type.

There is a considerable literature in economics and psychology on a variety of
“stimulus-response” models of individual choice behavior. In these models, the
DM does not attempt to learn the environment, instead she looks at the past
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experiences and takes her decisions on the basis of her observations. Most of this
literature prescribes some boundedly rational rule(s) for updating and the focus
is on analysis of implied adaptive dynamics. These imputed rules of updating
vary widely. They range from modifications of fictitious play and reinforcement
learning to imitation of peers etc. See for example [2], [13], [7] and the references
therein.

Our approach outlined above is different. We do not consider any particular
updating rules but impose axioms on the updating procedure. These axioms
impose some structural restrictions and postulate certain independence and we
derive an ex-post utility representation for such a DM. This approach may be
found in [4] where they axiomatically characterised replicator dynamics which
makes [4] the closest relative of this paper. We note that the Case Based Decision
Theory of Gilboa and Schmeidler [8], [9] is not applicable due to the assumption
of infinitude of cases and the Archimedean axiom that they impose.

Chapter 2 introduces the model, Chapter 3 defines the ex-post utility rep-
resentation, Chapter 4 introduces the axioms, Chapter 5 formulates the main
theorem and outlines its proof, and finally Section 6 fills all the gaps and com-
pletes the proof of the main theorem.

2 The Model

A Decision Maker must choose from a finite set of m actions A = {a1, . . . , am},
at each moment t = 0, 1, 2, . . .. Every action results in a reward, drawn from
a finite set R = {1, . . . , n}. The rewards are governed by a stochastic process
unknown to the DM. Following her choice at date t, the vector of realised rewards,
rt = (r(t)1 , . . . , r

(t)
m ), where r(t)i is the reward to action ai at moment t, is revealed

to the DM. Thus the DM observes the rewards for all actions and not only for
the one she has chosen. A history at date t is a sequence of vectors of rewards
ht = (r0, . . . , rt−1).

The sequential decisions of the DM are guided by the following principle.
Following any history ht, the DM works out a preference relation3 �ht

on the
set of actions A. At date t she chooses one of the maximal actions with respect
to �ht

, observes the set of outcomes rt and calculates a new preference relation
�ht+1 where ht+1 = (ht, rt). At the outset the DM is indifferent between all the
actions so she chooses a random one.

Let Ht denote the set of all histories at date t and H =
⋃

t≥1Ht. Thus, the
family of preference relations D := (�h)h∈H completely describes the DM. Our
objective is to discuss the behavior of this learning agent through the imposition
of certain axioms that encapsulate the DM’s procedural rationality. For a DM
satisfying these axioms we will derive an ex-post utility representation theorem
that is based on the empirical distribution of rewards in any history.

Before proceeding any further with the analysis, it is important to point out
two salient features of the above formulation of the DM.
3 Throughout, by a preference relation on any set, we mean a binary relation that is

a complete, transitive and reflexive ordering of the elements.
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First, as in [4], a history describes the rewards to all the actions in each
period, including those that the DM did not choose. This implicitly assumes
that decisions are taken in a social context where other people are taking other
actions and the rewards for each action are publicly announced. Examples of such
situations are numerous and include investing in a share market and betting on
horses. Relaxing this assumption of learning in a social context is a topic of
future research.

Second, note that the description requires a preference on actions to be spec-
ified after every conceivable history. This is much in the spirit of the theoretical
developments in virtually all decision theory. The presumption underlying such
an abstraction is that any subset of these acts may be presented to the DM and
that a necessary aspect of a theory is that it is applicable with sufficient gener-
ality. Given the temporal nature of the problem at hand this assumption may
be quite natural. For, all conceivable histories may appear by assuming that the
underlying random process generates every r ∈ Rm with a positive probability.

We make a non-triviality assumption on D for the rest of this paper. We
assume that the DM is not indifferent between all actions following all histories.

3 Multisets & Ex-Post Utility Maximisation

Here we will introduce the rule (a class of algorithms) that we will eventually
axiomatise. For this rule, the number of times different rewards accrue to given
action during a history is important. To progress further, we will need to in-
troduce the idea of a multiset. A multiset over an underlying set may contain
several copies of any given element of the latter. The number of copies of an
element is called its multiplicity. Our interest is in multisets over R. Therefore,
multiset µ is identified with a vector µ = (µ(1), . . . , µ(n)) ∈ Zn

+, where µ(i) is

the multiplicity of the ith prize and the cardinality of this multiset is
n∑

i=1

µ(i).

Let Pt[n] denote the subset of all such multisets of cardinality t whereupon

P[n] =
∞⋃

t=1

Pt[n] (1)

denotes the set of all non-empty multisets over R. Mostly, we will write Pt

instead of Pt[n] when the number of prizes is clear. The union of µ, ν ∈ P is
defined as the multiset µ ∪ ν for which (µ ∪ ν)(i) = µ(i) + ν(i) for any i ∈ R.
Observe that whenever µ ∈ Pt and ν ∈ Ps, then µ ∪ ν ∈ Pt+s.

Given any history h ∈ Ht, let µi(a, h) denote the number of times the reward
i has occured in the history of rewards h(a) corresponding to action a and
µ(a, h) = (µ1(a, h), . . . , µn(a, h)).

For any two vectors x = (x1, . . . , xn), y = (y1, . . . , yn) of Rn, we let x · y
denote their dot product, i.e. x · y =

∑n
i=1 xiyi.

Here comes the rule. A DM applying this rule must have exogenously defined
utilities of the prizes. Let u = (u1, . . . ,un) be the vector of her utilities, where
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ui is the utility of the ith prize. At any moment t the DM calculates the total
utility of the prices for each given action in the past and chooses the action which
performed best in the past and for which the total utility of prizes is at least as
high as for any other action. In other words she chooses any action belonging to
argmaxi(µ(ai, h) · u).

The problem of the DM is that she does not know the probabilities. In the
absence of any knowledge about the environment the most reasonable thing to
do is to assume that the process of generating rewards is stationary and to
replace the probabilities of the rewards with their empirical frequencies. Due
to the assumed stationarity of the process she expects that these frequencies
approximate probabilities well (at least in the limit), so in a way the DM acts as
an expected utility maximiser relative to the empirical distribution of rewards.
This rule is very much in the spirit of the so-called fictitious play4.

There is a good reason to allow the DM to use different vectors of utilities
at different moments. This will allow the DM, at each moment, to refine her
utilities from the previous period to reflect her preferences on larger multisets
and longer histories. An obvious consistency condition must however be imposed:
we require that the vector of utilities the DM uses at time t must be also suitable
to evaluate actions in all previous moments.

Definition 1 (Ex-Post Utility Representation). A sequence (ut)t≥1 of vec-
tors of Rn

+ is said to be an ex-post utility representation of D = (�h)h∈H if, for
all t ≥ 1,

a �h b ⇔ µ(a, h) · ut ≥ µ(b, h) · ut ∀ a, b ∈ A, ∀h ∈ Hs, (2)

for all s ≤ t. The representation is said to be global if ut ≡ u for some u ∈ Rn
+.

In what follows, we shall say that the DM is ex-post rational if she admits an
ex-post utility representation.

We emphasise that the object that is of ultimate interest is the ranking of the
actions following a history. The utility representation of a DM involves assigning
non-negative weights to the rewards. However this assignment is not unique.
A sequence (u′t)t≥1 obtained by applying some positive affine transformations
u′t = αtut + βt (with αt > 0) to a given utility representation (ut)t≥1 is also a
utility representation.

Therefore, we should adopt a certain normalisation. By ∆ ⊆ Rm we denote
the m − 1 dimensional unit simplex consisting of all non-negative vectors x =
(x1, . . . , xn) such that x1 + . . . + xn = 1. Due to the non-triviality assumption,
for any ut, not all utilities are equal. Hence we may assume that at any ut =
(u1, . . . , un) in a representation, min{ui} = 0. We may further normalise the
coordinates to sum to one so that every ut may be assumed to lie in one of the
following subsets of the unit simplex:

∆i = {u = (u1, . . . , un) ∈ ∆ | ui = 0}, (3)
4 Ficitious play was introduced by [3]. See [5] for variations of fictitious play.
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which is one of the facets5 of ∆.

4 Axioms

Next, we turn to the axioms that are necessary and sufficient for D to admit an
ex-post utility representation. The first axiom says that in comparing a pair of
actions, the information regarding the other actions is irrelevant. Intuitively, this
amounts to asserting that the agent believes that she is facing an environment
in which consequences of actions are statistically uncorrelated.

Axiom 1 Consider ht, h′t and actions a, b ∈ A such that ht (a) = h′t (a) and
ht (b) = h′t (b). Then a �ht b if and only if a �h′

t
b.

Although the agent has the entire history at her disposal, we postulate that
for any action, the algorithm only tracks the number of times different rewards
were realised. This means that the agent believes that she is facing an environ-
ment generated by a stationary stochastic process.

Axiom 2 Consider a history ht at which for two actions a and b the multisets
of prizes are the same, i.e. µ(a, ht) = µ(b, ht). Then a ∼ht

b.

The next axiom describes how the DM learns to revise her preferences in
response to new information.

Axiom 3 For any history ht and any r ∈ R, if ht+1 = (ht, rt) where rt =
(r, . . . , r), then �ht+1=�ht

.

Due to Axiom 1, it implies that if at some history ht the DM (weakly)
prefers an action a to b and in the current period both these actions yield the
same reward, according to the next axiom, the DM continues to prefer a to b.
We view Axiom 3 as loosely capturing the “principle of insufficient reason at the
margin”.

5 The Main Theorem

In this section we will formulate and give an outline of the proof of the main
theorem. Recall that ri(C) denotes the relative interior of a convex set C.

Theorem 1 (Representation Theorem). Suppose m ≥ 3. The following are
equivalent:

1. D = (�h)h∈H satisfies Axioms 1– 3.
2. D has an ex-post utility representation. There exists a unique sequence of

non-empty convex polytopes (Ut)t≥0 such that Ut ⊆ ∆i for some i and
(a) Ut+1 ⊆ Ut for all t ≥ 1.

5 Facet of a polytope is a face of the maximal dimension.
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(b)
⋂∞

t=1 Ut consists of a single vector.
(c) A sequence (ut)t≥1 of vectors of R+

n is a utility representation of D if
and only if ut is a positive affine transformation of some u′t ∈ ri(Ut).
In particular, any sequence (ut)t≥1 such that ut ∈ ri(Ut) is a utility
representation of D.

(d) If
⋂∞

t=1 Ut is in the interior of every Ut, then the representation is global.

Remark 1. We note that despite an expected-utility-like calculation that is im-
plicitly involved in Theorem 1, it is important to note that there is no connection
with the expected utility hypothesis. Our DM is only ex-post rational.

Proof. It is easy to show that any DM with an ex-post utility representation
satisfies the axioms. Let us show the non-trivial part of the theorem, which is,
1⇒ 2. We begin by defining, for each t ≥ 1, a binary relation �∗t on Pt = Pt[n]
as follows: for any µ, ν ∈ Pt,

µ �∗t ν ⇐⇒ there exists a, b ∈ A and a history ht ∈ Ht

such that µ = µ(a, ht) and ν = µ(b, ht) and (4)
a �ht

b

Analogously we define also a strict version �∗t of �∗t . The latter needs to be
proved to be antisymmetric. For, for a certain pair of multisets µ, ν ∈ Pt, different
choices of histories and actions can result in both µ �∗t ν and ν �∗t µ at once.
However, we claim that:

Claim 1 For any a, b, c, d ∈ A and any two histories ht, h
′
t ∈ Ht such that

µ(a, ht) = µ(c, h′t) and µ(b, ht) = µ(d, h′t),

a �ht
b ⇐⇒ c �ht′ d.

The above claim ensures that �∗t is antisymmetric since �h is antisymmetric.
It is now also clear that the sequence �∗= (�∗t )t≥1 inherits the non-triviality
assumption in the sense that for some t the relation �∗t is not a complete indif-
ference. Next we claim that

Claim 2 �∗t is a preference ordering on Pt.

Both of the above claims only rely on Axiom 1 and Axiom 2. The proofs
of Claim 1 and Claim 2 are straightforward but nevertheless relegated to the
Appendix. By a repeated application of Axiom 3, we see at once that

Claim 3 The sequence �∗= (�∗t )t≥1 satisfies the following property: for any
µ, ν ∈ Pt and any ξ ∈ Ps,

µ �∗t ν ⇐⇒ µ ∪ ξ �∗t+s ν ∪ ξ (5)

for all t, s ∈ Z+.
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The remainder of the proof will follow from Theorem 2 proved in the next
section and further considerations.

The requirement in Theorem 1 that there are at least three actions for the
agent to choose from cannot be dropped. To see this we have the following
counter-example with m = 2.

Example 1. Pick any utility vector u = (u1, . . . , un) for the rewards and define
D as follows:

Following a history ht ∈ Ht,

1. If µ(ai, ht) · u > µ(aj , ht) · u, the DM strictly prefers ai to aj , where i 6= j
and i, j = 1, 2.

2. If µ(a1, ht) · u = µ(a2, ht) · u, then
(a) If the corresponding multisets of rewards are the same, i.e. µ(a1, ht) =

µ(a2, ht), then the actions are indifferent.
(b) Otherwise a1 is strictly preferred.

It may be readily verified that D described above satisfies Axioms 1-3 but does
not admit an ex-post utility representation.

6 Orders on Multisets and Their Utility Representation

This section completes the proof of the main theorem.

As we know from Section 2, multisets of cardinality t are important for a
DM as they are closely related to histories at date t. The DM has to be able to
compare them for all t. At the same time in the context of this paper it does not
make much sense to compare multisets of cardinalities of different sizes (it would
if we had missing observations). Due to this, our main object in this subsection
is a family of orders (�t)t≥1, where �t is an order on Pt. In this case we denote
by � the partial (but reflexive and transitive) binary relation on P whereby for
any µ, ν ∈ P, where µ � ν if both µ and ν are of the same cardinality, say t,
and µ �t ν and µ � ν is undefined otherwise.

To complete the proof of the main theorem we must study orders on P with
the property (5). Due to their importance we will give them a special name.

Definition 2 (Consistency). An order �= (�t)t≥1 on P is said to be consis-
tent if it satisfies the condition (5) from Claim 3, that is, for any µ, ν ∈ Pt and
any ξ ∈ Ps,

µ �t ν ⇐⇒ µ ∪ ξ �t+s ν ∪ ξ. (6)

We note that, due to the twosidedness of the arrow in (6), we have also

µ �t ν ⇐⇒ µ ∪ ξ �t+s ν ∪ ξ. (7)

One consistent linear order that immediately comes to our mind is the lexi-
cographic order which is an extension of a linear order on R. But, of course, this
is not the only consistent order. Now we will define a large class of consistent
orders on P to which the lexicographic order belongs.
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Definition 3 (Local Representability). An order �:= (�t)t≥1 on P is lo-
cally representable if, for every t ≥ 1, there exist ut ∈ Rn such that

µ �s ν ⇐⇒ µ · ut ≥ ν · ut ∀µ, ν ∈ Ps, ∀s ≤ t. (8)

A sequence (ut)t≥1 is said to locally represent � if (8) holds. The order � is
said to be globally representable if there exist u ∈ Rn such that (8) is satisfied
for ut = u for all t.

The lexicographic order is locally representable but not globally.

Theorem 2. An order �= (�t)t≥1 on P is consistent if and only if it is locally
representable.

Proof. If the order is locally representable it is straightforward to verify that it
is consistent. Suppose the sequence of vectors (ut)t≥1 represents �= (�t)t≥1.
Let µ, ν ∈ Ps with µ �s ν and η ∈ Pt. Then µ · us+t ≥ ν · us+t since us+t can
be used to compare multisets of cardinality t as t < t+ s. But now

(µ+ η) · us+t − (ν + η) · us+t = µ · us+t − ν · us+t ≥ 0

which means µ+ η �s+t ν + η.
To see the converse, let �= (�t)t≥1 be consistent. An immediate implication

of consistency is that for any µ1, ν1 ∈ Pt and µ2, ν2 ∈ Ps,

µ1 �t ν1 and µ2 �s ν2 =⇒ µ1 ∪ µ2 �t+s ν1 ∪ ν2, (9)

where we have µ1 ∪ µ2 �t+s ν1 ∪ ν2 if and only if either µ1 �t ν1 or µ2 �s ν2.
Indeed by consistency, we have

µ1 ∪ µ2 �t+s ν1 ∪ µ2 �t+s ν1 ∪ ν2.

Now suppose, by way of contradiction, that local representability fails at
some t which means that ut is the first vector that cannot be found. Note that
there are N =

(
n+t−1

t

)
multisets of cardinality t in total. Let us enumerate all

the multisets in Pt so that

µ1 �t µ2 �t · · · �t µN−1 �t µN . (10)

Some of these relations may be equivalencies, the others will be strict in-
equalities. Let I = {i | µi ∼t µi+1} and J = {j | µj �t µj+1}. If �t is complete
indifference, i.e. all inequalities in (10) are equalities, then it is representable and
can be obtained by assigning 1 to all of the utilities. Hence at least one ranking
in (10) is strict or J 6= ∅.

The non-representability of �t is equivalent to the assertion that the system
of linear equalities (µi−µi+1)·x = 0, i ∈ I, and linear inequalities (µj−µj+1)·x >
0, j ∈ J , has no semi-positive solution.
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A standard linear-algebraic argument tells us that inconsistency of the system
above is equivalent to the existence of a nontrivial linear combination

N−1∑
i=1

ci(µi − µi+1) = 0 (11)

with non-negative coefficients cj for j ∈ J of which at least one is non-zero
(see, for example, Theorem 2.9 of [6], page 48). Coefficients ci, for i ∈ I, can
be replaced by their negatives since the equation (µi − µi+1) · x = 0 can be
replaced with (µi+1 − µi) · x = 0. Thus we may assume that all coefficients of
(11) are non-negative with at least one positive coefficient cj for j ∈ J . Since
the coefficients of vectors µi − µi+1 are integers, we may choose c1, . . . , cn to be
non-negative rational numbers and ultimately non-negative integers.

The equation (11) can be rewritten as

N−1∑
i=1

ciµi =
N−1∑
i=1

ciµi+1, (12)

which can be rewritten as the equality of two unions of multisets:

N−1⋃
i=1

µi ∪ . . . ∪ µi︸ ︷︷ ︸
ci

=
N−1⋃
i=1

µi+1 ∪ . . . ∪ µi+1︸ ︷︷ ︸
ci

(13)

which contradicts to cj > 0, µj � µj+1 and (9). This contradiction proves the
theorem.

The above equivalence lies at the heart of proof Theorem 1. Indeed, it already
implies, via Claims 1-3 given in the previous section, that Axioms 1-3 imply the
existence of an ex-post representation for D. What remains to be shown is the
characterization of all such representations.

Consistent orders on Pt can be represented geometrically [14]. Every point
u = (u1, . . . , un) ∈ Rn defines an order �u on Pt, which obtains when we allocate
utilities u1, . . . , un to prizes i = 1, 2, . . . , n, that is

µ �u ν ⇐⇒
n∑

i=1

µ(i)ui ≥
n∑

i=1

ν(i)ui. (14)

Any order on Pt that can be expressed as �u for some u ∈ Rn is said to
be representable. We will now argue that the representable linear orders on Pt

are in one-to-one correspondence with the regions of the following hyperplane
arrangment.

For any pair of multisets µ, ν ∈ Pt[n], we define the hyperplane

L(µ, ν) =

{
x ∈ Rn |

n∑
i=1

µ(i)xi −
n∑

i=1

ν(i)xi = 0

}
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and consider the hyperplane arrangement

A(t, n) =
{
L(µ, ν) | µ, ν ∈ Pt[n]

}
. (15)

The set of representable linear orders on Pt[n] is in one-to-one correspondence
with the regions of A = A(t, n). In fact, then the linear orders �u and �v on
Pt will coincide if and only if u and v are in the same region of the hyperplane
arrangement A. This immediately follows from the fact that the order µ �x ν
changes to µ ≺x ν (or the other way around) when x crosses the hyperplane
L(µ, ν). The closure of every such region is a convex polytope.

Example 2. The 12 regions on the figure below represent all 12 representable
orders on P2[3].

x2

x1

x3

with the shaded region corresponding to the lexicographic order 12 � 12 � 13 �
22 � 23 � 32.

Let us note that in (14) we can divide all utilities by u1 + . . . + un and the
inequality will still hold. Hence we could from the very beginning consider that
all vectors of utilities are in the hyperplane J given by x1 + . . . + xn = 1 and
even in the simplex ∆ given by xi ≥ 0 for i = 1, 2, . . . , n.

Thus, every representable linear order on Pt is associated with one of the
regions of the induced hyperplane arrangement AJ = {L ∩ J | L ∈ A}.

Let us note that due to our non-triviality assumption the vector
(

1
n , . . . ,

1
n

)
does not correspond to any order. Consider a utility vector u ∈ ∆ different
from

(
1
n , . . . ,

1
n

)
lying in one of the regions of AJ whose closure is V . We then

can normalise u applying a positive affine linear transformation which makes its
lowest utility zero. Indeed, suppose that without loss of generality u1 ≥ u2 ≥
. . . ≥ un 6= 1

n . Then we can solve for α and β the system of linear equations
α + nβ = 1 and αun + β = 0 and since the determinant of this system is
1 − nun 6= 0 its solution is unique. Then the vector of utilities u′ = αu + β · 1
will lie on the facet ∆n of ∆ and we will have �u′=�u. Hence the polytope V
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has one face on the boundary of ∆. We denote it U . So if the order � on Pt is
linear the dimension of U will be n− 2.

In general, when the order on Pt is not linear, the utility vector u that
represents this order must be a solution to the finite system of equations and
strict inequalities:

(µ− ν) · u = 0 whenever µ ∼u ν,
(µ− ν) · u > 0 whenever µ �u ν,

∀µ, ν ∈ Pt. (16)

Then u will lie in one (or several) of the hyperplanes of A(k, n). In that hyper-
plane an arrangement of hyperplanes of smaller dimension will be induced by
A(k, n) and u will belong to a relative interior of a polytope U of dimension
smaller than n− 2.

Let now �= (�t)t≥1 be a consistent order on P. By Theorem 2 it is locally
representable. We have just seen that in such case, for any t, there is a convex
polytope Ut such that any vector ut ∈ ri(Ut) represents �t. Due to consistency
any vector us ∈ ri(Us), for s > t will also represent �t so Ut ⊇ Us. Thus we
see that our polytopes are nested. Note that only points in the relative interior
of Ut are suitable points of utilities to rationalise �t. We have almost proved
our main theorem. The only thing which is left to note is that the intersection⋂∞

t=1 Ut has exactly one element. This is immediately implied by the following

Proposition 1. Let u 6= v be two distinct vectors of normalised non-negative
utilities. Then there exist a positive integer t and two multisets µ, ν ∈ Pt such
that (µ− ν) · u > 0 but (µ− ν) · v < 0.

Proof. Since u and v are normalised we have, in particular, un = vn = 0. Since
u 6= v, there will be a point x = (x1, . . . , xn) ∈ Rn such that x · u > 0 but
x · v < 0. As rational points are everywhere dense in Rn we may assume that
x has rational coordinates. Then multiplying by their common denominator
we may assume all coefficients are integers. After that we may change the last
coordinate xn of x to x′n so that to achieve x1 + x2 + . . . + x′n = 0. Now since
un = vn = 0, we will still have x′ · u > 0 and x′ · v < 0 for x′ = (x1, x2, . . . , x

′
n).

Now x′ is uniquely represented as x′ = µ − ν for two multisets µ and ν. Since
the sum of coefficients of x′ was zero, the cardinality of µ will be equal to the
cardinality of ν. Let this common cardinality be t. Then µ, ν ∈ Pt and they are
separated by a hyperplane from A(t, n). The proposition is proved.

Appendix

Proof of Claim 1. Take the hypothesis as given. If the actions a, b, c, d ∈ A
are distinct, consider a history gt ∈ Ht such that gt(a) = ht(a), gt(b) = ht(b),
gt(c) = h′t(a) and gt(d) = h′t(b). Applying Axiom 2, a ∼gt

c and b ∼gt
d and

therefore, a �gt
b ⇔ c �gt

d. Apply Axiom 1 to complete the claim.
Suppose now that a, b, c, d are not all distinct. We will prove that if µ(a, h) =

µ(c, h′) and µ(b, h) = µ(b, h′), then

a �ht
b⇐⇒ c �h′

t
b,
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which is the main case. Let us consider five histories presented in the following
table:

h h1 h2 h3 h′

a h(a) h(a) h′(b) h′(b) h′(a)
b h(b) h(b) h(b) h′(b) h′(b)
c h(c) h′(c) h′(c) h′(c) h′(c)

In what follows we repeatedly use Axiom 1 and Axiom 2 and transitivity of �hi ,
i = 1, 2, 3. Comparing the first two histories, we deduce that c ∼h1 a �h1 b and
c �h1 b. Now comparing h1 and h2 we have c �h2 b ∼h2 a and c �h2 a. Next,
we compare h2 and h3 and it follows that c �h3 a ∼h2 b, whence c �h3 b. Now
comparing the last two histories we obtain c �h′ b, as required.

Proof of Claim 2. Given the fact that actions must be ranked for all conceiv-
able histories, �∗t is a complete ordering of Pt. From its construction, �∗t is also
is reflexive. Again, through appealing to Axiom 1 and Axiom 2 repeatedly, it
may be verified that it is also transitive. Indeed, choose µ, ν, ξ ∈ Pt such that
µ �∗t ν and ν �∗t ξ. Pick three distinct actions a, b, c ∈ A and consider a history
ht ∈ Ht such that µ(a, ht) = µ, µ(b, ht) = ν and µ(c, ht) = ξ. By definition,
a �ht b and b �ht c while transitivity of �ht shows that a �ht c. Hence µ �∗t ξ.
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