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Abstract

A Decision Maker (DM) must choose at discrete moments from a finite set of
actions that result in random rewards. The environment is complex in that she finds
it impossible to describe the states and is thus prevented from application of standard
Bayesian methods of say Savage M) or Anscombe and Aumann (‘%b This
paper presents an axiomatic foundation and a theory of choice in such environments.

Our approach is to postulate that the DM has a preference relation defined
directly over the set of actions which is updated over time in response to the observed
rewards. Three simple axioms that highlight the independence of the given actions,
the bounded rationality of the agent, and the principle of insufficient reason at
margin are sufficient to show that the DM has an ex-post utility representation and
behaves as if she maximises expected utility in a certain sense. This also enables us
to show that, if rewards are drawn by a stationary stochastic process, the observed
behavior of such a DM almost surely cannot be distinguished from one that is fully
cognizant of the environment.

1 INTRODUCTION

Consider a Decision Maker (DM) who has to repeatedly choose from a finite set of
actions. Each action results in a random reward, also drawn from a finite set. The
environment is complex in the sense that the DM is either unable to offer a complete de-
scription of the states of the world or is unable to construct a meaningful prior probability
distribution. Naturally, the well established Bayesian methods of say Savage @) or

Anscombe and Aumann (1963) would then be inapplicable Yet, decision makers often
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! Knight (1921) and [Ellsberg (1961) concern the existence of a prior. More recent and a
more direct questioning of the assumption that a DM may have a well defined state space (let
alone a known prior) have lead to Gilboa and Schmeidler 41995‘)7 ‘Easley and Rustichini 41999)7
Dekel, Lipman, and Rustichini (2001), Gilboa and Schmeidler (2003) and Karni (2006) among others.
The introduction to Gilboa and Schmeidler ( 1995), in particular, forcefully argues how in many environ-
ments there is no naturally given state space and how the language of expected utility theory precludes
its application in these cases.
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find themselves in these situations and do somehow make choices, the complexity of the
environment notwithstanding. This paper offers a theory of choice in such environments.

Our approach is to postulate that the DM has a preference relation defined directly
over the set of actions which is updated over time in response to the sequences of observed
rewards. Thus, if A denotes the set of all actions and H the set of all histories, the DM is
completely described by the family D := (=, )n,em, where =, C A x A is a well defined
preference relation on the actions following a history h; at date ¢. A history consists of
the sequences of rewards, drawn from a finite set R, that are obtained over time to each
of the actions. We impose axioms on D.

There is a considerable literature in economics and psychology on a variety of “stimulus-
response” models of individual choice behavior. In these models, the DM does not at-
tempt to learn the environment, instead she looks at the past experiences and takes her
decisions on the basis of her observations. To use a term coined by Reinhard Selten, the
DM indulges in some kind of ex-post rational behavior? when one looks at what might
have been better last time and adjusts the next decision in this direction. Most of this
literature prescribes some boundedly rational rule(s) for updating and the focus is on
analysis of implied adaptive dynamics. These imputed rules of updating vary widely.
They range from modifications of fictitious play and reinforcement learning to imita-
tion of peers etc. See for example ‘Bérgers, Morales, and Sarin 42004), ‘Schlaﬁ 41998‘),
Gigerenzer and Selten 42002‘) and the references therein.

Our approach outlined above is different. We do not consider any particular updat-
ing rules but impose axioms on the updating procedure. These axioms impose some
structural restrictions and postulate certain independence and we derive an ex-post util-
ity representation for such a DM. This approach may be found in Easley and Rustichini
(1999) (hereafter ER) which makes it the closest relative of this paper.

We defer a complete discussion of the relation of this work to ER (and other litera-
ture) to Section[5. We do note here however that there are significant differences both
in the formal modeling details and in the conceptual basis for the axioms. The axioma-
tised class of adaptive learning procedures in their paper is very different and includes,
for example, the replicator dynamics. These, for instance, in our formulation allow for
considerable path dependence of the DM’s preferences over actions across time which
are ruled out by ER. Furthermore, as we explain below, our results will show that the
DM may be initially ambiguous on how to value the rewards but becomes increasingly
precise over time. This feature too is absent in ER.

What we do share with ER and many of works cited above is that the DM operates
in a social environment in which there are other decision makers. For, we assume that at
each date the DM is able to observe rewards that occur to each of the actions, including
those that she herself did not choose. Such an assumption on observability of rewards
seems particularly natural for situations such as betting on horses or investing on a
sharemarket. For, in these cases there is a enough diversity of preferences so that all
the actions are chosen in each period by various individuals and outcomes are publicly

2See the Chapter “What is Bounded Rationality” in Gigerenzer and Selten 42002) and the informal
discussion available at http://www.strategy-business.com/press/16635507 /05209,
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observable.

We establish three results — Theorem [1, a representation result for D, Theorem 2|
a characterization of DM’s observed behavior when the DM has a utility representation
and rewards are generated by a stationary stochastic process and Theorem [3, a simple
empirical test for refuting the axioms. We shall describe them presently after describing
the axioms.

There are three axioms. The first axiom requires that a comparison of a pair of
actions at any date depends on the historical sequence of observed rewards corresponding
to only that pair. The second axiom captures the bounded rationality of the DM. It
insists that for any sequence of rewards attributed to an action in any history, the DM is
able to track only the number of times various rewards have accrued. The final axiom
concerns the updating of preferences in response to the rewards and is loosely based
on the principle of insufficient reason: if a pair of actions receive the same reward in
the current period following a history hy, then their current relative ranking is carried
forward to the next period.

Theorem [1]in Section[2]is an “ex-post utility representation” of D for whom the three
axioms described above are satisfied. Essentially, it shows that the above axioms are
equivalent to assigning utilities to each of the underlying rewards following any history
h:, calculating the implied utility of any action as the average utility of all the rewards
realised from that action, and choosing the action with the maximal utility for the next
round. These vectors of utilities are not unique and the set of possible utility assignments
at time ¢ form a convex polytope U; in R"™. We show that U;y1 C U;. Thus, in a nutshell,
at any moment, the agent chooses between the empirical distributions of the rewards to
different actions as if she is an expected utility maximiser. In other words, our three
axioms axiomatise an ex-post rational DM. Since the polytopes of utility assignments
shrink with time, at any moment, the DM learns a bit more about her imputed utilities
for the rewards.

There are two noteworthy aspects of Theorem [1l First, it is proved although there
are only finitely many rewards — there are no topological assumptions nor do we rely
on the possibility of mixed strategies. The proof involves a novel transformation of
preferences over actions to a binary relation on the space of multisets of rewards. We
then prove a representation result, Proposition[1 (see Section|3.1), for orders on multisets
to conclude Theorem (1. Proposition [1]is an important technical result that we expect
to be of independent interest with applications to other areas of Decision Theory and
Social Choice.

Second, the representation given in Theorem [1 is local in the sense that an element
of Uy can only be used to rank histories until date ¢. As t increases to infinity, the
intersection of the respective polytopes either consists of a single point or is empty.
To ensure a global utility representation, namely a non-empty intersection, requires an
axiom of the Archimedean type that is not assumed here.

Next, we ask how a DM that is consistent with our axioms fares relative to one that
is fully aware of the environment. Assuming that the rewards are drawn by a stationary
stochastic process, we show via Theorem [2/that she behaves almost surely as a DM that



knows the enviroment and maximises expected utility.

Among other issues, we also address the empirical verifiability of the model. Note
that all the axioms concern behavior conditional on observed data. One might in prin-
ciple directly verify the consistency of DM’s behavior with regard to the axioms in the
observed period of time. This would however be cumbersome. Our second result, The-
orem [3, in Section 5.3 shows that consistency with the axioms involves simply checking
whether a certain finite system of linear inequalities admit a solution. As such this
theorem constitutes a simple test for the empirical refutability of the model.

The rest of the paper is organised as follows. Section 2] introduces the basic setup
followed by a definition of ex-post utility representation and a formal description of
the axioms in Section (2.2 followed by a discussion. The statement of Theorem [1 is
in Section [2.3. Some elements of the proof of this theorem follow the statement of the
theorem. However, completion of its proof requires us to consider properties of orderings
over multisets. Section 3 is devoted entirely to this. Some readers may find this material
to be of independent interest as the representation result proved there can be expected
to be applicable in other contexts. Others may want to skip to Section 4 which contains
a discussion of various aspects of our results including those mentioned above and future
directions of research and then return to Section 3. Theorem 2 and Theorem 3 also
appear in this section. Section 5 further reviews the literature and Section 6 concludes.

2 THE MODEL

A Decision Maker must choose from a finite set of m > 3 actionﬁ@, A={a,...,an},
at each moment t = 0,1,2,.... Every action results in a reward, drawn from a finite
set R = {1,...,n}. The rewards are governed by a stochastic process unknown to the

(t))

DM. Following her choice at date ¢, the vector of realised rewards, r; = (r%t), R i
Et) is the reward to action a; at moment ¢, is revealed to the DM. Thus the DM
observes the rewards for all actions and not only for the one she has chosen. A history
at date t is a sequence of vectors of rewards h; = (rg,...,r—1).

The sequential decisions of the DM are guided by the following principle. Following
any history h;, the DM works out a preference relatio >n, on the set of actions A. At
date t she chooses one of the maximal actions with respect to >p,, observes the set of
outcomes r; and calculates a new preference relation =, , where ht11 = (he,re).

Let H; denote the set of all histories at date t and H = J,~, H;. Thus, the family
of preference relations D := (>=1,),cy completely describes the DM. Our objective is to
discuss the behavior of this learning agent through the imposition of certain axioms that
encapsulate her procedural rationality. For a DM satisfying these axioms we will derive
an ex-post utility representation theorem that is based on the empirical distribution of
rewards in any history.

where 7

30ur proof depends on the availability of at least three actions. We do not know if this restriction
can be removed. However, it looks that, like in voting, the case m = 2 is quite special.

4Throughout, by a preference relation on any set, we mean a binary relation that is a complete,
transitive and reflexive ordering of the elements.



Before proceeding any further with the analysis, it is important to point out two
salient features of the above formulation of the DM.

First, as in ‘Easley and Rustichini 41999‘), a history describes the rewards to all the
actions in each period, including those that the DM did not choose. This implicitly
assumes that decisions are taken in a social context where other people are taking other
actions and the rewards for each action are publicly announced. Examples of such
situations are numerous and include investing in a share market and betting on horses.
Relaxing this assumption of learning in a social context is a topic of future research.

Second, note that the description requires a preference on actions to be specified after
every conceivable history. This is much in the spirit of the theoretical developments in
virtually all decision theory. For instance, in Savaée M), a ranking of all conceivable
acts is required. (See ‘Aumann and Dreze 42008) or ‘Blume, Easley, and Halpern 42006)
however.) The presumption underlying such an abstraction is that any subset of these
acts may be presented to the DM and that a necessary aspect of a theory is that it
is applicable with sufficient generality. Given the temporal nature of the problem at
hand this assumption may be quite natural. For, all conceivable histories may appear
by assuming that the underlying random process generates every r € R™ with a positive
probability.

We make a non-triviality assumption on D for the rest of this paper. We assume
that there exists some one-period history h; € H; and a pair of actions a, b such that
a >p, b. It is worth emphasizing that this does not entail any loss in generality. Indeed,
should this not be the case, the implication in conjunction with the listed axioms is
that the DM is indifferent between all actions following all histories making any analysis
redundant.

2.1 Multisets & Ex-Post Utility Maximisation

Here we will introduce the choice rule that we are going to axiomatise. For this rule, the
number of times different rewards accrue to given action during a history is important.
To progress further, we will need to introduce the idea of a multiset. A multiset over
an underlying set may contain several copies of any given element of the latter. The
number of copies of an element is called its multiplicity. Our interest is in multisets over
R. Therefore, multiset p is identified with a vector g = (u(1),...,u(n)) € Z%, where

n
(i) is the multiplicity of the ith prize and the cardinality of this multiset is ) p(7). Let
i=1

P:[n] denote the subset of all such multisets of cardinality ¢ whereupon

Pn) = | Piln] (1)
t=1

denotes the set of all non-empty multisets over R. Mostly, we will write P; instead of
P¢[n] when the number of prizes is clear. The union of u,v € P is defined as the multiset
U v for which (nUv)(i) = p(i) + v(i) for any i € R. Observe that whenever p € Py
and v € P, then pUv € Pyys.



Given any history h € Hy, let p;(a,h) denote the number of times the reward ¢ has
occured in the history corresponding to action a and u(a,h) = (u1(a,h),. .., pp(a, h)).

Example 1. Suppose that for £ =9 and n = 5 the history of rewards for action a is
h(a’) = (17173757275727272)7 then :U’(aah) = (274717072)‘

An alternative self-explanatory notation for this multiset that is often used in mathe-
matics is pu(a, h) = {12,243, 52}.

For any two vectors x = (z1,...,%,),y = (y1,...,yn) of R, we let x-y denote their
n
dot product, i.e. x-y = > ;y;.

Here comes the rule. ZAlDM applying this rule must know the utilities of the prizes.
Let u = (n1,...,ny be his vector of utilities, where u; is the utility of the ith prize. At
any moment ¢ the DM calculates the total utility of the prices for each given action in
the past and chooses the action which performed best in the past and for which the total
utility of prizes is at least as high as for any other action. In other words she chooses
any action belonging to argmax;(u(a;, h) - u).

The problem of the DM is that she does not know the probabilities. In the absence
of any knowledge about the environment the most reasonable thing to do is to assume
that the process of generating rewards is stationary and to replace the probabilities of
the rewards with their empirical frequencies. Due to the assumed stationarity of the
process she expects that these frequencies approximate probabilities well (at least in the
limit), so in a way the DM acts as an expected utility maximiser relative to the empirical
distribution of rewards.

There is a good reason to allow the DM to use different vectors of utilities at different
moments. This will allow the DM, at each moment, to refine her utilities from the
previous period to reflect her preferences on larger multisets and longer histories. An
obvious consistency condition must however be imposed: we require that the vector of
utilities the DM uses at time ¢ must be also suitable to evaluate actions in all previous
moments.

Definition 1 (Ex-Post Utility Representation). A sequence (u;)¢>1 of vectors of R} is
said to be an ex-post utility representation of D = (>=p)ney if, for all t > 1,

arpb < uplah) w > pbh) - w Va,be A Vh e H,, (2)
for all s <t. The representation is said to be global if u; = u for some u € R}

In what follows, we shall say that the DM is ez-post rational if she admits an ex-post
utility representation.

We emphasise that the object that is of ultimate interest is the ranking of the actions
following a history. The utility representation of a DM involves assigning non-negative
weights to the rewards. However this assignment is not unique. A sequence (u})i>1



obtained by applying some positive affine transformations u} — ayu; + ; (with oy > 0)
to a given utility representation (u:):>1 is also a utility representation.
Therefore, we should adopt a certain normalisation. By A C R we denote the m—1

dimensional unit simplex consisting of all non-negative vectors x = (z1,...,z,) such
that 1 +... 4+ x, = 1. Due to the non-triviality assumption, for any u;, not all utilities
are equal. Hence we may assume that at any u; = (u1,...,u,) in a representation,

min{u;} = 0. We may further normalise the coordinates to sum to one so that every u;
may be assumed to lie in the following subset of the unit simplex:

AP ={u= (u,...,up) €A|u; =0}, (3)

which is one of the facets@ of A.

2.2 Axioms

Next, we turn to the axioms that are necessary and sufficient for D to admit an ex-post
utility representation. Given a history h; € Hy and an action a € A, let hi(a) be the
sequence of rewards corresponding to this action. The first axiom says that in comparing
a pair of actions, the information regarding the other actions is irrelevant. Intuitively,
this amounts to asserting that the agent believes that she is facing an environment in
which consequences of actions are statistically uncorrelated.

Axiom 1. Consider hy, h; and actions a,b € A such that hy (a) = hy (a) and hy (b) =
hy (b). Then a =y, b if and only if a = b.

The next axiom aims to capture the bounded rationality of the agent. Although the
agent has the entire history at her disposal, we postulate that for any action, she can
only track the number of times different rewards were realised. Thus, if the empirical
distribution of rewards corresponding to the two actions a and b is the same in a history
hy, then the DM is indifferent between them. This also means that the agent believes
that she is facing an environment generated by a stationary stochastic process.

Axiom 2. Consider a history hy at which for two actions a and b the multisets of prizes
are the same, i.e. p(a,hs) = (b, h). Then a ~p, b.

The next axiom describes how the DM learns to revise her preferences in response
to new information.

Axiom 3. For any history hy and any r € R, if hyy1 = (hy,ry) where vy = (r,...,71),
then =p, = =p,-

Due to Axiom [1, it implies that if at some history h; the DM (weakly) prefers
an action a to b and in the current period both these actions yield the same reward,
according to the next axiom, the DM continues to prefer a to b. We view Axiom [3 as
loosely capturing the “principle of insufficient reason at the margin”.

SFacet of a polytope is a face of the maximal dimension.



We emphasise that the DM in this model does not try to predict the future outcomes
but evaluates the actions based on their past performance. Yet, even if DM were to
engage such prediction, intuitively, Axiom 1 would be consistent with a belief that the
random environment she faces is one in which the consequences of actions are statistically
uncorrelated. Likewise Axiom 2 would be consistent with a belief that the rewards are
being generated by a stationary stochastic process.

It is worth pausing to compare the above axioms with those in ER. In their work,
much of the focus is on the transition of preferences over actions from date ¢ to date
t + 1, i.e. the more serious axiomatic treatment in their work concerns assumptions in
the spirit of Axiom [3 above. It is therefore not possible to find direct counterparts of
Axiom [1 and Axiom 2 in their work. Nonetheless, their Assumption 5.4 (PC-Pairwise
Comparisons), namely that the “new measure of relative preference between action a
and b is independent of the payoffs to the other actions” is precisely in the spirit of
Axiom [1l Likewise, their Assumption 6.2 (E-Exchangeability) which “requires that the
time order in which states are observed is unimportant” corresponds to Axiom [2].

We do not assume that rewards are monetary but if one does so, Axiom 3 would then
be weaker than their Monotonicity assumption on the transition of preferences. But it
is worth reiterating that the key difference is that here Axiom 3 allows for considerable
path dependence in the revision of preferences. In other words, it is entirely possible that
there can be a pair of ¢ period histories hy, hy such that =j,=> K, and yet when followed
by the same reward vector at hyy1 = (hs, 1) and hy = (hi,1y) we have =, #>,
In their setting, iht:ih; implies iht+1:th;+1 for all ry.

/ .
t+1

2.3 The Main Theorem

In this section we will formulate and give an outline of the proof of the main theorem
which fully characterises a DM satisfying axioms 1-3 as the one which has an ex-post
utility representation. Recall that 7i(C') denotes the relative interior of a convex set C.

Theorem 1 (Representation Theorem). The following are equivalent:
1. D = (=n)nhen satisfies Axioms 1-3.

2. D has an ex-post utility representation. Moreover, there exist a unique sequence of
non-empty convex polytopes (U)o such that Uy C A? for some i and
(a) U1 C Uy for allt > 1.
(b) N2y Ut consists of a single utility vector.

(¢c) a sequence (ug)i>1 of vectors of R} is a utility representation of D if and only
if ug is a positive affine transformation of some w; € ri(Uy). In particular,
any sequence (Wg)i>1 such that ug € ri(Uy) is a utility representation of D.

Moreover, if (72, Uy is in the interior of every Uy, then the representation is global.



Remark 1. We note that despite an expected-utility-like calculation that is implicitly
involved in Theorem 1, it is important to note that there is no connection with the
expected utility hypothesis. Our DM is only ex-post rational.

Remark 2. Below, we prove that D, under Axioms 1-3 is essentially equivalent to
a partial order over P that satisfies certain properties. The rest of the proof of this
theorem heavily relies on orders on multisets which is taken up in Section 3. The proof
is completed by appealing to Lemma 1 that appears toward the end of Section 3.

Proof of Theorem[1. Tt is easy to show that any DM with an ex-post utility representa-
tion satisfies the axioms. For example, let us prove Axiom 3. Suppose that the sequence
of utility vectors (u;);>1 represents the DM and suppose a >p, b and at the moment
t both actions a and b yield a reward i. Then we have u(a,hir1) = p(a, hy) + €; and
w(b,hirr = (b, hy) + e;, where e; is the ith vector of the standard basis of R™. Due
to consistency condition, the utility vector u;+; can also be used for comparisons of
histories shorter than ¢ + 1, so we have

pla, he) -apr > pla, hy) - g
From here we obtain:
pla, hir) - wppr = (pla, he) + ;) - wpr > ((b, be) +€;) - wpr = p(b, hygr) - upya.

Hence a =, , b.

Let us show the non-trivial part of the theorem, which is, 1 = 2. We begin by
defining, for each ¢ > 1, a binary relation =} on P; = P;[n] as follows: for any u,v € Py,

u=; v <= there exists a,b € A and a history h; € H,
such that pu = u(a, hy) and v = u(b, hy) and (4)
a tht b

We define also a strict version of it by

u>; v <= there exists a,b € A and a history h; € H;
such that p = p(a, hy) and v = p(b, hy) and (5)
a >p, b
This needs to be proved to be antisymmetric. For, for a certain pair of multisets u, v € Py,

different choices of histories and actions can result in both p >=; v and v >} ;1 at once.
However, we claim that:

Claim 1. For any a,b,c,d € A and any two histories hy, hy € Hy such that u(a,hy) =
M(Ca h‘;f) and M(ba h‘t) = M(dv h;&)i

a=p, b <— Ciht, d.



The above claim ensures that >} is antisymmetric since > is antisymmetric. It is
now also clear that the sequence =*= (>})¢>1 inherits the non-triviality assumption in
the sense that for some ¢ the relation >~} is not a complete indifference. Next we claim
that

Claim 2. >} is a preference ordering on Py.

Both of the above claims only rely on Axiom /1 and Axiom [2l The proofs of Claim [T
and Claim [2 are straightforward but nevertheless relegated to the Appendix.

By a repeated application of Axiom[3, we see at once that

Claim 3. The sequence =*= (=} )i>1 satisfies the following property: for any p,v € Py
and any & € Ps,
piveE= pUé = vUg (6)

forallt,s € Z,.

The remainder of the proof will follow from Lemma 1/ where orders with property
(6) will be studied and their representability proved. Ol

3 ORDERS ON MULTISETS AND THEIR GEOMETRIC REPRESENTATION

3.1 Consistent Orders on Multisets

As we know from Section [2, multisets of cardinality ¢ are important for a DM as they
are closely related to histories at date . The DM has to be able to compare them for all
t. At the same time in the context of this paper it does not make much sense to compare
multisets of cardinalities of different sizes (it would if we had missing observations). Due
to this, our main object in this subsection is a family of orders (>);>1, where = is an
order on P;. In this case we denote by > the partial (but reflexive and transitive) binary
relation on P whereby for any p,v € P, where o = v if both p and v are of the same
cardinality, say ¢, and p =; v and p > v is undefined otherwise.’ To make the orders >,
for various t, related to each other we need to impose some kind of consistency condition
on them.

To complete the proof of the main theorem we must study orders on P with the
property (6). Due to their importance we will give them a special name.

Definition 2 (Consistency). An order == (=¢)i>1 on P is said to be consistent if it
satisfies the condition (6) from Claim 3, that is, for any u,v € Py and any £ € Ps,

v <E= pU& =g vUE. (7)

5Mathematically speaking P here is considered as an object graded by positive integers. In a graded
object all operations and relations are defined on its homogeneous components only.

10



We note that, due to the twosidedness of the arrow in (7)), we have also
ptv <= pUg s vUE. (8)

One consistent linear order that immediately comes to our mind is the lexicographic
order which is an extension of a linear order on R. But, of course, this is not the only
consistent order. Now we will define a large class of consistent orders on P to which the
lexicographic order belongs.

Definition 3 (Local Representability). An order =:= (=¢)i>1 on P is locally repre-
sentable if, for everyt > 1, there exist uy € R™ such that

LrsV <= pu-u > U-wy Vu,vePs, Vs<t. (9)

A sequence (ug)e>1 is said to locally represent = if (9) holds. The order > is said to be
globally representable if there exist u € R™ such that (9) is satisfied for uy = u for all t.

The lexicographic order is locally representable but not globally. It is easy to check
that any locally representable linear order on P is consistent. More interestingly, we
have the following:

Proposition 1. An order »= (=¢)i>1 on P is consistent if and only if it is locally
representable.

Proof. See Appendix. O

The above equivalence lies at the heart of proof Theorem [1I Indeed, it already
implies, via Claims 1-3 given in the previous section, that Axioms 1-3 imply the existence
of an ex-post representation for D. What remains to be shown is to characterize all such
representations. To do this, we need to describe different consistent orders geometrically.
This is taken up in the next section.

3.2  Geometric Representation of Consistent Orders

We recall a few basic facts about hyperplane arrangements in R™ (see Orlik and Terao
@) for more information about them). A hyperplane arrangement A is any finite set
of hyperplanes. Given a hyperplane arrangment A and a hyperplane J, both in R", the
set

AT ={LnJ|LecA}

is called the induced arrangement of hyperplanes in J.
A region of an arrangement A is a connected component of the complement U of the
union of the hyperplanes of A, i.e., of the set

U=R"\ | JL

LeA

Any region of an arrangement is an open set.

11



Every point u = (uq,...,u,) € R defines an order =, on P;, which obtains when
we allocate utilities uq,...,u, to prizes : = 1,2,...,n, that is

porav = pliu; =Y v(i)u (10)
i=1 =1

Any order on P; that can be expressed as above for some u € R" is said to be repre-
sentable. We will now argue that the representable linear orders on P; are in one-to-one
correspondence with the regions of the following hyperplane arrangment.

For any pair of multisets p, v € Py[n], we define the hyperplane

L(p,v) = {x ER" | pi)a — Y wli)w; = 0}
i=1

=1

and consider the hyperplane arrangement

At,n) = {L(u,v) | pv € Pifn]}. (11)

The set of representable linear orders on P;[n] is in one-to-one correspondence with the
regions of A = A(t,n). In fact, then the linear orders >, and >, on P will coincide
if and only if u and v are in the same region of the hyperplane arrangement A. This
immediately follows from the fact that the order p = v changes to  <x v (or the other
way around) when x crosses the hyperplane L(u,v). The closure of every such region is
a convex polytope.

Let us note that in (10) we can divide all utilities by uj + ...+ u, and the inequality
will still hold. Hence we could from the very beginning consider that all vectors of
utilities are in the hyperplane J given by x1 + ...+ 2, = 1 and even in the simplex A
given by x; >0 fori=1,2,...,n.

Thus, every representable linear order on P; is associated with one of the regions of
the induced hyperplane arrangement A”.

Let us note that due to our non-triviality assumption the vector (%, ey %) does not
correspond to any order. Consider a utility vector u € A different from (%, ey %) lying
in one of the regions of A7 whose closure is V. We then can normalise u applying a
positive affine linear transformation which makes its lowest utility zero. Indeed, suppose
that without loss of generality uq > us > ... > u, # % Then we can solve for o and 3
the system of linear equations o+ nf = 1 and au, + 3 = 0 and since the determinant of
this system is 1—nu,, # 0 its solution is unique. Then the vector of utilities u’ = au+43-1
will lie on the facet A™ of A and we will have = =>y. Hence the polytope V has one
face on the boundary of A. We denote it U. So if the order > on P, is linear the
dimension of U will be n — 2.

In general, when the order on P; is not linear, the utility vector u that represents
this order must be a solution to the finite system of equations and strict inequalities:

0 whenever p ~y v,

(p—v)-u =
—v)-u > 0 whenever >y v,

Vu,ve Py (12)
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Then u will lie in one (or several) of the hyperplanes of A(k,n). In that hyperplane an
arrangement of hyperplanes of smaller dimension will be induced by A(k,n) and u will
belong to a relative interior of a polytope U of dimension smaller than n — 2.

Let now »= (>¢);>1 be a consistent order on P. By Proposition 1 it is locally
representable. We have just seen that in such case, for any ¢, there is a convex polytope
U; such that any vector u; € ri(U;) represents =;. Due to consistency any vector
u; € ri(Us), for s > t will also represent »=; so Uy 2 Us. Thus we see that our polytopes
are nested. Note that only points in the relative interior of U; are suitable points of
utilities to rationalise »=;. We also note that the intersection ﬂ;’i 1 Ut has exactly one
element. This is immediately implied by the following

Proposition 2. Let u # v be two distinct vectors of normalised non-negative utilities.
Then there exist a positive integer t and two multisets p,v € Py such that (u—v)-u >0
but (n—v)-v <O0.

Proof. See Appendix. O

To enable easy reference later in the paper, we collect these observations in the form
of a Lemma below.

Lemma 1. Any consistent order == (it)tzl on P corresponds to a sequence of convex
polytopes (Up)¢>o such that Uy C A" for some i and

1. Upp1 C Uy for allt > 1 and (2, Us consists of a single utility vector.

2. a sequence (ug);>1 of vectors of R} is a utility representation of = if and only if
u; is an affine transformation of some u € ri(Uy).

Moreover, = is globally representable iff (2, Us is contained in the relative interior
ri(Us) for all t > 1.

4  DISCUSSION

4.1  On the set of all utility representations

Theorem [1 shows that a utility representation obtains under fairly weak assumptions.
Also note that since a utility assignment u € Uy is already normalised, no two elements
of ri(U) are affine transformations of each other (remember, o and § in the previous
section were found uniquely). In this sense, the DM may be ambiguous about the actual
value she assigns to individual rewards although the relative ranking of the rewards
remains unchanged over time. The following example illustrates how the possible utility
assignments to the rewards, i.e. the polytopes in Theorem /[T evolve.

Example 2. Assume there are three rewards, i.e. R = {1,2,3}. Recall from the proof
of Theorem |1 that a D that satisfies Axioms 1-3 is equivalent to a consistent ordering
over P as given in Definition[2 and an ex-post utility representation of D is a local utility
representation of > as given in Definition[3. Let >= (>);>1 be that ordering over P.
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Since P; = R, the order =1 is simply a ranking of the three rewards. Let us assume
that 1 >=1 2 >=1 3. Then any choice of utilities for the rewards u; > us > w3z would
represent =1 on P;. One can normalise these by setting the least utility to zero and
scaling them to add to one so that vectors from the relative interior of

U, = {(ul,l —Ul,O) | up € [1/2, 1]}

effectively give us all representations of »=1. This set can be encoded by the interval
[1/2,1] for u; and we will use this abbreviation below on Figure[2.

Next, we consider Ps. The multisets in Po are listed in the table below with multi-
plicities for each multiset appearing in the first three columns. In the rightmost column
we give the notation for each multiset.

1 2 3 Notation 1 2 3 Notation
p1 21070 12 pa [0]27]0 22
po [ 11170 12 s [0 11 23
us [1]0]1 13 ue |0]0]2 32

Table 1: Py = {ju1, pa2, i3, pia, s, 6 }-

Consistency requires that =, must necessarily rank 12 > 12 as the top two multisets
and 23 =5 32 as two bottom ones, Furthermore, 13 and 22 must be placed inbetween 12
and 23 although we have freedom to choose the relation between them. Thus, we have
three possible orderings of P» that would be consistent with the given »; depending
on how this ambiguity is resolved. If 13 ~o 22, representability gives u; = 2ug, which
immediately pins down Us = {(2/3,1/3,0)}. Moreover, for all ¢ > 2 we will also have
U, =Us ={(2/3,1/3,0)}.

Uy [l 1]

Us (23] {5} 51
0 N P N
U [38] {3} 5T ) A S ¢ N )

Figure 1: Schematic description of consistent orders on P;[3], t < 3, when 1 >1 2 > 3.

If, on the other hand, 13 =5 2%, we have Uy = {(u1,1 — u1,0)|u; € [2/3,1]} and
in the residual case of 22 =5 13, we have Us = {(u1,1 — u1,0) |uy € [1/2,2/3]}. Going
further to P3 = P3[3], the possibilities are listed in the figure below. For a wu; that
lies in the different sets listed in the terminal nodes of the graph, we obtain a distinct
preference relation on Ps that is consistent with 1 =1 2 > 3. The above process can be
continued for ¢ > 3 along similar lines.
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As illustrated in the above example, the DM becomes increasingly precise over the
values assigned to the rewards. This is also true in general as U;11 C U;. In the limit, if
a global utility representation exists, the ranking becomes cardinal. However, without
further assumptions, it is in general not possible to obtain a global representation. The
typical example involving lexicographic preferences illustrates.

Example 3. Consider the case where there are three rewards, i.e. R = {1,2,3} and
D = (=p)nen is the lexicographic ordering, where
if h) > pi(b, h
winb o | p1(a, h) > pa (b, h) (13)
if o (a¢ h) = H1 (b7 h) and M?(av h) > [Lz(b, h‘)

This ordering is represented by choosing U; whose elements are of the form (uy, u2,uz) =
(u1,1—wuy,0) where uy € (t/(t+1),1). And yet, there cannot be a global representation
of this lexicographic ordering since the intersection ()2, Uy = {1} is a boundary point.

We note that while a global utility representation may not exist, if one exists, it must
be unique. Indeed, the set ();2; U; has only one element. (See Proposition 2.)

To ensure the existence of a global utility representation, one requires some form of
the Archimedean axiom on the DM’s behavior. We do not pursue this here since the
role of such axioms is well understood in Decision Theory.

4.2 Random Rewards and Observed Behavior

For the rest of this section, suppose that there is a stationary stochastic process X;
that generates the rewards. From the probability measure that governs this process, one
can compute the probability that an action a; receives the reward j at any given date.
Denote this probability by g;;. To each action a,...,a,,, we then have a corresponding
lottery q; = (gi1,- - -, ¢in) over the set of rewards.

Consider, for the moment, a DM that is fully aware of the environment and satisfies
the expected utility hypothesis. Given vNM utility vector for rewards u = (u1, ..., uy,),
naturally we shall say that an action a;+ is a best action for the DM if

u-q+ > u-q; foralll <i<m. (14)

Our interest here is in the observed behavior in the above environment of a DM who
does not know the environment but satisfies Axioms 1-3 vis-a-vis a DM that knows the
environment. We will show the following.

Theorem 2. Consider a DM that is consistent with Azioms 1-3 and admits a global
utility representation u. Suppose the stationary stochastic process Xy is such that there
1s a unique best action. Then, with probability one, the DM chooses the best action at
all but finitely many dates.
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Remark 3. Since the best action is determined by a finite set of linear inequalities,
for a generic choice of probabilities and global utility vectors, the existence of a unique
best action is assured. Thus, the existence a unique best action in Theorem [2 is a weak
assumption.

To see how why Theorem 2] obtains, pick any two actions, say a; and as. Suppose
that our stationary stochastic process produces reward r; for a; and reward r; for as
with probability p;;. We model this event by the vector f;; = e; — e;. So without loss
of generality we may assume that the stochastic process X; actually produces not prizes
but these vectors and let Y; = X + -+ + X;. To illustrate, suppose R = {1,2,3} and
the following sequences of prizes are realized

a: 11 2 3 2 2 1 3 3 3 1 2
a: 2 3 1 1 3 1 2 2 1 2 3 3

The initial five realizations of our stochastic process X1, Xs, X3, X4 and X5 are re-

spectively
1 1 -1 -1 0
fio=1| -1 |, fiz= 0|, fa= L], fa= 0], fag= 1
0 —1 0 1 -1

and correspondingly

1 2 1 0 0
Yl = -1 ) Y2 = -1 ) YY3 = 0 ) }/4 = 0 ) Y5 = 1
0 -1 -1 0 -1

We are interested in the behavior of Y; = X7 + Xs + ... + X;. For, by Theorem
1, a DM with a global utility representation u chooses the first action at moment ¢ if
Y; - u > 0, chooses the second action at moment ¢ if Y; - u < 0 and chooses any action
when Y; -u = 0.

Observe that the coordinates of Y; will necessarily sum to zero. Therefore, Y; lies
on the hyperplane H for which (1,...,1) is the normal. In fact, Y; is a random walk
on the integer grid in H generated by the vectors f;;. These vectors are not linearly
independent. For instance, in the above example, we have f15 + fo3 = f13. Thus if we
take fio and fo3 as a basis for this grid, then f;3 will represent a diagonal move. In
general, the m — 1 vectors {f2, fa3, ..., f,_1m} form a basis, so that having m prizes we
have a walk on an m — 1 dimensional grid with a drift

d= Zpijfij'
i#]
We are now ready to prove the theorem:

Proof of Theorem|[2. Let L = u be the hyperplane of which u is the normal vector.
With no loss in generality, label the unique best action as a; and pick any other action
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and label it ao. It suffices to show that with probability one, the DM chooses a; in all
but finitely many periods. Axiom 1 will then complete the proof.
First, note thaﬁ

q—q = d. (15)

By hypothesis then, u-d > 0 which is to say that d lies above the hyperplane L. By the
Strong Law of Large numbers, %Yt converges almost surely to d. Hence, with probability
one, Y; also lies above L for all but finitely many ¢. Recalling that the DM may choose
ag only when Y, -u <0, the claim follows readily upon appealing to Axiom 1. O

4.3 Empirical Test of the Axioms

In this section, our interest is in what an external observer can infer about a DM, who is
consistent with Axiom 1-3, simply by observing her sequential choices and the sequence
of rewards.

To first illustrate and simplify exposition, assume that there are only two actions
and R = {1,2,3}. Suppose following sequence of rewards are realised:

3 3 3 1 2

ai: 1
2 2 1 2 3 3

1 1 2 3
as: 2 3 1 1

2 2
3 1
By observing the choices of the DM along this sequence, the DM’s preferences over the
actions following all two period histories (i.e. >, for ho € Hy) will be revealed. Indeed,
to discover this relation, all we need to do is figure out how she ranks the six multisets in
Py listed in Table[2. The comparisons 12?722, 22?32 and 12 ? 32 will be encountered at
moments 1,5 and 9. The comparisons 12?23, 13722 and 12?32 will be encountered at
moments 4,8 and 12, respectively. When the DM resolves these comparisons by choosing
one action or another the whole preference order on Py will be revealed. On the other
hand the sequences

aj:

13 1 3 1 3
a: 2 2 2 2 2 2
never reveals agent’s preferences between rewards 1 and 3.

More generally, one can design particular sequences of rewards and by observing those
rewards, one can figure out what >, for all Ay € H;. This amounts to constructing a
sequence of rewards that reveals the implied preferences on P;[n]. The idea is, at every
step, to undo all the previous comparisons and then to present the agent with the new
one. Such sequences can of course be done via experiments in a laboratory. Also note that

for such revelation to occur the DM must switch from one action to another. However,

"To see (15), note that ¢1; = Z;.L:I pij and g2; = Z;;l pji. Next, observe that the fth coordinate
of any fi; is non-zero only if / is either i or j. Therefore, die; = 327, pi;fi; + > 7, pjifji or that

diei = (37—, (pis — pii))ei.
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if rewards are instead drawn at random, we know from Theorem 2 and Remark [3, the
DM rarely switchesE

The point is, that while it is feasible to discover a DM’s characteristics using exper-
mental data from the laboratory, typically only very limited conclusions can be drawn
of a DM using the empirical data on her choices out in the field (where the rewards are
drawn at random). We emphasise however, that the inability to deduce the preference
relation does undermine the refutability of our Axioms.

Indeed, suppose that the DM has a utility representation (u;);>1 and we can observe
one particular history of payoffs and her corresponding choices. Observing k first choices
we discover how her vector of utilities uy is positioned relative to k& hyperplanes in the
hyperplane arrangement given in Section[3.2. The DM will have to compare the multisets
in the following pairs:

N’(ahhi)?/"&(a%hi) (2217277k)

and the 7th comparison will give us the information on which side of the hyperplane
L(u(ay, hi), i(az, hi)) her vector of utilities u; (and the same can be said about uy too)
lies. More exactly, from the choice of DM’s action we will learn that u(aq, h;) = p(az, hy)
or u(az, h;) > p(ai, hi). We note that neither of them precludes p(ag, hi) ~ p(ar, h;).
(Indeed, if the DM is indifferent between these two multisets she still has to choose one
of the actions.) This will give us k closed half-spaces which may or may not have a
non-zero intersection. This gives the key for the following theorem.

Theorem 3. Suppose that we observe the actions of DM a;,, . .., a;, during a history h =
hi. The DM is consistent with Azioms 1-3 if and only if there exists u = (uq,...,u,) €
R™ such that

plai, he) -u> pla,he)-u VYae A, £=1,...,t, (16)

where hy is the sub-history of h up to date £, which is equivalent to the respective half-
spaces having a non-zero intersection.

4.4 Ex-post Rationality with Bounded Recall

Throughout, we had assumed that the DM can track the entire history. An alternative
hypothesis is that she can only track the last k observations. This is closely related to
allowing the random process X;, which produces rewards for actions, to be not stationary
Indeed, if the random process X; becomes uncorrelated after time k, then, even if the
DM remembers old observations, they become of no use. A DM who understands this
aspect of the the enviroment (but still possibly ignorant about other aspects) will use
only the last k ones.

With bounded recall then, the DM is only required to rank in a consistent fashion
multisets of cardinality not greater than k. But then, Proposition[1 breaks down. The

® Should the non-generic possibility of a driftless {3} occur (the random process described Section/4.2
with n = 3 rewards, the walk will be recurrent and the utilities will still be revealed. Not so for n > 3.

18



following consistent is a consistent linear order on Ps[4] (taken from Sertel and Slinko
(2005)) but is not representable.
17 =122 = 123 = 124 = 122 = 123 = 124 = 13% = 134 = 2° =
223 = 147 = 224 - 237 - 234 = 247 = 3% - 324 > 347 - 4°.
Indeed we have:
223 - 142, 242 - 33, 134> 23. (17)
If this ranking were representable then the respective system of inequalities

2us +uz > wp
3U3
3’11,2

U2 >
up +uz >
would have a non-zero non-negative solution, but it has not. These inequalities imply
up = ug = ug = uyg = 0.

Whether some weaker form of representability of the DM can be achieved remains a
topic for future research.

5 RELATED LITERATURE

There is a large body of literature that begins with the assumption that the DM is a
long run expected utility maximiser. Certain simple thumb rules are posited and the
question is if these simple rules yield the optimizing behavior of a fully rational player.
See Lettau and Uhlig 41995), Schlag 41998) and Robson m) among others. Given the
Axioms and the representation, the analysis presented in Section is in this spirit.

The main focus of this paper is however on the axiomatic development of the DM’s
behavior that attempts to capture from first principles how a DM learns. From this
standpoint, ‘Bérgers, Morales, and Sarin 42004) and ER are two works that share this
concern. The former consider behavioral rules that take the action/payoff pair that
was realised in the previous period and map it to a mixed strategy on A. The desirable
properties that are imposed on a behavioral rule (monotonicity, expediency, unbiasedness
etc.) involve comparing the payoffs realised in the previous periods. Thus, no distinction
is being made between payoffs and rewards.

ER is the closest relative of this work as it explicitly considers axioms on sequences
of preferences in a dynamic context. Like us, ER study a family of preference relations
{>n, }+>1 on the set of actions A indexed by histories. There are however both formal and
conceptual differences. Unlike us, they find it necessary to extend >j, to a preference
relation over A(A), the set of all lotteries over A while in our paper we do not need
lotteries. They too, just as in ‘Bérgers, Morales, and Sarin 12001), assume that the
rewards are monetary payoffs. In our setting the outcome of an action is an arbitrary
reward. This distinction is important since, as we have seen, at each stage, there is in fact
a convex polytope of endogenously determined utilities for the rewards that determines
the DM’s behavior. Interestingly, our representation result Theorem [1 shows that our
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three axioms enough to at once jointly determine the updating method and the payoffs
to underlying rewards.

Conceptually, ER’s focus is on the transition from the preference relation >, to
~h.+, 0 Tesponse to the most recently observed rewards. A driving assumption in their
work is to treat history as being important only to the extent of determining the current
preference relation on A(A). On the other hand, only Axiom 3 here relates preferences
of one date to another but it is too weak to allow to determine =, , given =, and
the current vector of rewards. Under our set of axioms, it is entirely possible that DM’s
ordering of the actions at a given date coincide after two different histories but subjected
to the same vector of rewards in the current period this ordering can be updated to
two different rankings. In other words, one can have =, ==/, but =,  #=p,, , for
hiy1 = (hs,r) and hy ; = (hy,r). In other words, our formulation allows a level of path
dependence that is absent in their model.

It may also be mentioned that the axioms of ER are in the spirit of reinforcement
learning — upon observing the rewards to various actions, the relative probability of
choosing an action is revised with an eye on the size of the reward. Axiom 3 here on the
other hand, places a restriction on the updating behavior only upon the realization of a
reward vector that is constant across actions. This allows the analysis here to be (triv-
ially) in the spirit of the learning direction theory presented in Selten and Buchta 41999)
and Selten and Stoecker 41986‘). Not surprisingly our results on the expected-utility-like
maximization behavior of the DM is in sharp contrast to the replicator dynamic (or its
generalizations) characterised in ER.

Our framework and in particular the nature of the representation result for D is
bound to invite a comparison with Case Based Decision Theory developed by Itzhak
Gilboa and David Schmeidler. We refer the reader to their book Gilboa and Schmeidler
(@) for an overview of various contributions to the theory. We shall restrict the
comparison of this work with Gilboa and Schmeidler 42003‘) that is most characteristic of
their contributions. Their framework consists of two primitives. First, in their framework
there is a set of objects denoted by X and interpreted varyingly as eventualities or
actions, that need to be ranked. Second, there is a set of all conceivable “cases”, which
they denote by C and which is assumed to be infinite. A case should be interpreted
as a “distinct view” or an occurrence that offers credence to the choice of one act over
another or a relative increase in the likelihood of one eventuality over another. Their
decision maker is thus a family of binary relations (>=,7) on X, where M C C is the set
of actual cases that are available in the agent’s database at the time of making a choice.
(See also Gilboa and Schmeidler d1995‘).) M is assumed to be finite. Translated to our
framework, X = A and the set of all conceivable “cases” would be the set of all vectors
of rewards r = (r1,...,7,) € R™ = C. As C is then finite, formally it is not possible to
embed our model in theirs.

There is also a conceptual difference. They consider each case to be kind of a “distinct
view” that gives additional credence to the choice of an act. In our analysis, it is not
just the set of “distinct views” but also “how many” times any of those given views are
expressed is important. To elaborate further, Gilboa and Schmeidler 42003‘) work with
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a family of relations =;C X x X with M a finite set of C being the parameter. C is
necessarily infinite. We, on the other hand, work with a family of relations =,C X x X
where the parameter u is a multiset of C while C itself is taken to be finite. ~ Unlike
them, we do not need any kind of Archimedean axiom to prove our main theorem.

6 CONCLUSION AND FUTURE WORK

In this paper, we have presented a theory of choice in a complex environment, a theory
that does not rely on the action/state/consequence approach. Three simple axioms
secure that the DM has an ex-post utility representation and behaves as an expected
utility maximiser with regard to the empirical distribution of rewards.

In future work we expect to relax the following assumptions:

(a) that the agent is learning in a social setting. A history in this case would contain
missing observations,

(b) allow the DM to have bounded recall,

(c) allow for the possibility that the DM faces a possibly different problem in each
period (thus making the analysis comparable to case based decision theory of

Gilboa and Schmeidler (1995)).

APPENDIX

Proof of Proposition 1. The implication 1 = 2 is straightforward to verify. Suppose the sequence
of vectors (u;);>1 represents == (>=¢);>1. Let pu,v € Py with p =5 v and n € P,. Then
1L Ugyt > V- Ugqy Since ugqy can be used to compare multisets of cardinality ¢ as t < t +s. But
now

(4n) Uspe — (V+m)  Usqp = - Usqp — V- Uy 2 0

which means p+n =5y v+ 7.
To see the converse, let == (>;);>1 be consistent. An immediate implication of consistency
is that for any pq,11 € Pp and po, o € Py,

p1 =g vy and po =g v = py U s g V1 U s, (18)

where we have p1 U ps =415 11 Uy if and only if either pug >=; 11 or us =4 vo. Indeed by
consistency, we have
prUpo =i 1 Ups =g v Urs.

Now suppose, by way of contradiction, that local representability fails at some ¢ which means
that u; is the first vector that cannot be found. Note that there are N = ("+tt_1) multisets of
cardinality ¢ in total. Let us enumerate all the multisets in P; so that

W1 g fo T Zg UN—1 Z¢ N (19)

Some of these relations may be equivalencies, the others will be strict inequalities. Let
I'={i|pir~epipr}and J={j]p; = pjs1}. If =, is complete indifference, i.e. all inequalities
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in (19) are equalities, then it is representable and can be obtained by assigning 1 to all of the
utilities. Hence at least one ranking in (19) is strict or J # (.

The non-representability of =, is equivalent to the assertion that the system of linear equali-
ties (p; —ptit1)-x = 0, ¢ € I, and linear inequalities (p; —pj41)-x > 0, j € J, has no semi-positive
solution.

A standard linear-algebraic argument tells us that inconsistency of the system above is equiv-
alent to the existence of a nontrivial linear combination

N

—1
ci(pi — pig1) =0 (20)
=1

with non-negative coefficients ¢; for j € J of which at least one is non-zero (see, for example,
Theorem 2.9 of Gale M), page 48). Coefficients ¢;, for i € I, can be replaced by their negatives
since the equation (p; — ;1) - x = 0 can be replaced with (u;11 — p;) - x = 0. Thus we may
assume that all coefficients of (20) are non-negative with at least one positive coefficient ¢; for
j € J. Since the coefficients of vectors p; — p;41 are integers, we may choose cy,...,c, to be
non-negative rational numbers and ultimately non-negative integers.

The equation (20) can be rewritten as

N-1 N-1
> e =Y cirita, (21)
i=1 i=1

which can be rewritten as the equality of two unions of multisets:

N-1 -1
i=1 g -

ci - c;

which contradicts to ¢; > 0, p; > p;41 and (I18). This contradiction proves the proposition. [

Proof of Proposition[2. Since u and v are normalised we have, in particular, u, = v, = 0.
Since u # v, there will be a point x = (21,...,2,) € R™ such that x-u > 0 but x-v < 0. As
rational points are everywhere dense in R” we may assume that x has rational coordinates. Then
multiplying by their common denominator we may assume all coefficients are integers. After that
we may change the last coordinate z,, of x to &}, so that to achieve x1 + a2 + ...+ 2, = 0. Now
since u, = v, = 0, we will still have x"-u > 0 and x'- v < 0 for X’ = (21, x2,...,2},). Now x’ is
uniquely represented as x’ = y — v for two multisets ¢ and v. Since the sum of coefficients of x’
was zero, the cardinality of p will be equal to the cardinality of v. Let this common cardinality
be t. Then p,v € P, and they are separated by a hyperplane from A(¢,n). The proposition is
proved. ]

Proof of Claim[1. Take the hypothesis as given. If the actions a,b, ¢,d € A are distinct, consider
a history ¢, € H; such that g,(a) = hi(a), g:(b) = h(b), gi(c) = hji(a) and g,(d) = h}(b).
Applying Axiom 2, a ~g4, ¢ and b ~,4, d and therefore, a =4, b < ¢ =, d. Apply Axiom 1 to
complete the claim.

Suppose now that a,b, ¢, d are not all distinct. We will prove that if u(a,h) = p(e, h’') and
(b, h) = p(b,h'), then

t

athtb@cthéb,

which is the main case. Let us consider five histories presented in the following table:
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h ht h? h3 B
a | h(a) h(a) HK(b) K () N (a)
b | h(b) RO)  h() KB K (0)
c| h(e) H(e) W(c) h(c) h(e)

In what follows we repeatedly use Axiom 1 and Axiom 2 and transitivity of =i, ¢ = 1,2,3.
Comparing the first two histories, we deduce that ¢ ~j1 a =51 b and ¢ =51 b. Now comparing
h' and h? we have ¢ =p2 b ~p2 a and ¢ =2 a. Next, we compare h? and h® and it follows that
¢ =ps a ~p2 b, whence ¢ =3 b. Now comparing the last two histories we obtain ¢ >/ b, as
required. ]

Proof of Claim[2. Given the fact that actions must be ranked for all conceivable histories, =7 is a
complete ordering of P;. From its construction, >~} is also is reflexive. Again, through appealing
to Axiom 1 and Axiom 2 repeatedly, it may be verified that it is also transitive. Indeed, choose
w, v, € € Py such that p =7 v and v =7 . Pick three distinct actions a,b, ¢ € A and consider a
history h, € Hy such that p(a, he) = p, p(b, he) = v and p(c, hy) = €. By definition, a >, b and
b >, ¢ while transitivity of >, shows that a >, c¢. Hence p =} €. O
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