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1 Introduction

It is not uncommon that a society facing a choice problem has also to choose the
choice rule itself. Such a setting immediately gives rise toa natural question con-
cerning consistency between these two levels of choice. If achoice rule employed
to resolve the society’s original choice problem does not choose itself, when it is
also used in choosing the choice rule, then this phenomenon can be regarded as
inconsistency of this choice rule as it rejects itself according to its own rationale.

This idea of self-selectivity for social choice functions was first analyzed by
Koray (2000). Barberà and Beviá (2002) and Barberà and Jackson (2004) also
consider it but from a different perspective. Jackson (2001) in his survey “A crash
course on implementation theory” underlined the importance of the idea.

The difficulty of defining such a concept lies in the necessityto construct a
profile on the set of available social choice functions starting from the profile on
the existing alternatives. Koray (2000) resolved this difficulty by a clever use of
duality which will be described below.

Let A stand for the set of alternatives from which the society willbe eventu-
ally choosing, and letA stand for the finite nonempty set of social choice functions
(SCFs) available to this society at the moment of choice. Koray showed that the
society’s preference profileR on A will induce a set of “dual” preference pro-
files onA. According to him, if the agents have complete information about other
agents’ intentions, it is natural to expect that the agents will rank the SCFs inA in
accordance with what these SCFs will choose fromA. This framework allows to
apply the consistency test introduced above. If an SCF inA passes this test, that is,
selects itself fromA at a dual preference profileRA, then it is called self-selective
at the preference profileR on A relative toA. Moreover, an SCFF is said to be
universally self-selective if it is self-selective at eachpreference profile on any fi-
nite nonempty setA relative to any finite setA of available SCFs containingF .
Koray (2000) confined itself to neutral SCFs only, so that it was only the size of
the alternative setA that mattered rather than the names of the alternatives inA.

The main result in Koray (2000) is the impossibility theoremstating that, when
the number of alternatives is greater than or equal to three,a unanimous and neu-
tral SCF is universally self-selective if and only if it is dictatorial. Koray and Unel
(2003) showed also that impossibility still survives in thetops-only domain. Al-
lowing social choice rules to be multi-valued also does not lead to any new inter-
esting examples and one ends up with a rediscovery of the Condorcet rule as the
maximal neutral and self-selective social choice rule (Koray, 1998).

These theorems showed that the concept of self-selectivitywas made too strong
to be useful. In particular, according to the definition of self-selectivity given
above, a self-selective rule must select itself even when grouped together with
most ridiculous rules that no society will ever contemplateusing. Moreover some
voting rules are unavailable to the society on legitimacy grounds. Also, it would
be very difficult to argue against the decision of a society torule out the usage of
inefficient social choice rules.

Since the use of inefficient rules was essential for the proofof Koray’s im-
possibility theorem it has become gradually clear that for obtaining an interesting
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concept of self-selectivity the setsA cannot be kept arbitrary. In the present paper
we make an initial attempt to pursue this idea.

The main model example that we have in mind throughout the paper restricts
rival SCFs to singleton-valued refinements of the Pareto correspondence. In par-
ticular, we prove that if a SCF is a refinement of the Pareto correspondence and
chooses itself from any subset of a sufficiently representative set of such refine-
ments, then it is either dictatorial or else Pareto anti-dictatorial. The latter chooses
the worst Pareto optimal alternative for the selected voter. Unlike the standard
anti-dictatorial SCFs, such restricted anti-dictatorship constitutes a rather complex
arrangement made by the society in such a way that the choice is always efficient,
depends on the opinion of all agents, not just one, and does not give anybody an
unfair advantage.

This special case is, of course, important in itself, however we explore self-
selectivity in a much broader framework. We introduce a rather large family of
suitable restrictions that yield an interesting class of non-dictatorial self-selective
SCFs (which are not universally self-selective, of course,as the self-selectivity test
is not universal any more). Each restriction of rival SCFs, against which the self-
selectivity is to be tested, in the present study corresponds to a particular set of
norms on the part of the society. We start with a social choicecorrespondenceπ
and confine our test functions to singleton-valued refinements of π. Thusπ is to
be thought of as a constitutional rule reflecting the norms that the society wishes
to adhere to. We assume that the correspondenceπ is neutral, tops-inclusive and
hereditary. These properties that our constitutional correspondence is required to
possess are all consistent with our conception of social desirability as will be seen
later in the paper.

Moreover, the family of restrictions of test functions via constitutional corre-
spondences is sufficiently wide to also include the unrestricted domain as well as
the tops-only domain as its special cases. Thus, we obtain the main results of Ko-
ray (2000) and Koray and Unel (2003) as corollaries to our main result, hence also
providing alternative proofs to those results.

Both Koray (2000) and Koray and Unel (2003) dealt exclusively with neutral
SCFs. Here, for the simplicity of exposition, we also assumeneutrality. However,
neutrality is not crucial for the self-selectivity resultsobtained in this paper. The
notion of self-selectivity can be extended to the non-neutral case in an easy and
natural manner. Interested readers are referred to the preprint [10].

An alternative approach to the “choosing how to choose” problem is pursued
by Houy (2003, 2006). He assumes that individuals do not pay attention to im-
mediate consequences of the choice but form their preferences on the basis of the
intrinsic values of the rules alone: for example some votersmight have ethical ob-
jections to dictatorship despite the benefit that it can bring to them personally. This
is, of course, an important point. Nevertheless, the immediate consequences also
cannot be completely ignored and in the future a combined approach might appear
which takes into account both immediate consequences and ethical objections.

A preliminary versions of this paper was published as a working paper of
CIREQ [11].
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2 Basic Notions and Examples

Let N stand for a finite nonempty society of voters of cardinalityn which will
be fixed throughout the paper. For each finite nonempty set of alternativesA, we
denote the set of all linear orders onA by L(A). Any n-tupleR = (R1, . . . , Rn)
of linear ordersRi will be called aprofile, and the set of all profiles will be denoted
by L(A)n. Denoting, as usual, the set of all positive integers byN, we setIm =
{1, 2, . . . , m} for eachm ∈ N. We call a mapping

F :
⋃

m∈N

L(Im)n → 2N

a social choice correspondence(SCC), if and only if, for eachm ∈ N andR ∈
L(Im)n, one hasF (R) ⊆ Im. If F (R) is a singleton for eachm andR, we refer
to the SCCF as asocial choice function(SCF) and writeF (R) = a instead of
F (R) = {a}. Social choice correspondences are often calledsocial choice rules
(SCR). We will use terms SCC and SCF, when we want to stress their multival-
uedness or siglevaluedness of the corresponding SCR, respectively.

Before proceeding any further, let us note the two aspects inwhich our defini-
tion of an SCR differs from some definitions found in the literature. Firstly, unlike
the framework, when the set of alternatives is assumed to be fixed but the set of
voters can vary, we have a fixed set of voters and a variable setof alternatives.
This reflects the fact that we study how a society chooses a voting rule. During
this process the society is fixed but the exact set of alternatives at this stage is
unknown and cannot be known because the voting rule must be applicable to all
voting situations that might emerge in the future. Thus we consider a sequence of
finite sets of alternativesI1, I2, . . . , Ik, . . ., rather than a single fixed one. When
the choice problem withm alternatives is defined, the component of the rule that
mapsL(Im)n into 2Im is used. Most common SCFs can be used for sets of al-
ternatives of variable sizes. Secondly, the common domain of our SCRs consists
of profiles on representative setsIm, one for each cardinalitym ∈ N, rather than
on arbitrary finite sets. In the case of a neutral SCR, this is nothing but a more
compact way of describing how the SCR acts on the profiles composed of linear
orders on an arbitrary finite setA. In the first four sections we will restrict our-
selves to considering only neutral SCRs. In the last sectionwe show how the case
of non-neutral SCRs can be handled.

Below are several examples of SCFs and SCCs that are capable of choosing an
alternative from sets of alternatives of different sizes.

Example 1Dictatorial and anti-dictatorial SCFs play an important role. They are
defined as follows. For a given profileR,

Di(R) = maxRi,

ADi(R) = minRi,

i = 1, 2, . . . , n. McCabe-Dansted and Slinko [15] describe 26 most common
SCRs. All of them can be used to choose from sets of alternatives of variable
sizes.
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Example 2An important SCC, which will later be denoted byP , is defined as
follows: for any profileR the setP (R) consists of all Pareto optimal alternatives.
Later we will generalise this example. Another important SCC T is defined as
follows. By T (R) we denote the set of all alternatives which are top ranked by at
least one agent.

These two SCCsP andT will be important later. ObviouslyT (R) ⊆ P (R)
for every profileR.

Let us recap what it means for SCR to be neutral. For eachm ∈ N, letSm stand
for the symmetric group of all permutations onIm. GivenR = (R1, . . . , Rn) ∈
L(Im)n andσ ∈ Sm, we define a new profileRσ = (Rσ

1 , . . . , Rσ
n) such that

k Rσ
i ℓ if and only if σ−1(k)Ri σ−1(ℓ), wherei ∈ N andk, ℓ ∈ Im. An SCRF is

said to beneutral at a profileR if, for anym ∈ N, R ∈ L(Im)n andσ ∈ Sm

F (Rσ) = σ(F (R)). (1)

An SCRF is said to beneutralif it is neutral at any profile.
In the definition of a social choice rule it was convenient to use a generic

set of alternativesIm. However, in practice we may have to deal with various
sets of alternatives, thus we have to show how to use a SCRF to select from an
arbitrary finite set of alternativesA given a preference profile onA. The natural
way of doing this is, of course, by indexing the elements ofA using the initial
segmentIm of N with m = |A| and then paying attention to indices only. This
indexation is given by any bijectionµ : A → Im and in practice it corresponds to
assigning to each candidate their order on a ballot. Given this bijection, any profile
Q = (Q1, . . . , Qn) ∈ L(A)n will induce a profileQµ = (Qµ

1 , . . . , Qµ
n) ∈ L(Im)n

such that, for anyi ∈ N andk, ℓ ∈ Im,

k Qµ
i ℓ ⇐⇒ µ−1(k)Qi µ−1(ℓ). (2)

We may now define
Fµ(Q) = µ−1(F (Qµ)). (3)

If F is neutral, then it is straightforward to see thatFµ = F ν for any two bijections
from A to Im. This means thatF treats all candidates equally, regardless of their
position on the ballot. Thus in the neutral case the superscript µ can be dropped
from Fµ and we may assume thatF is defined on any finite set of alternativesA.

If we abandon the neutrality assumption, then such a transfer of an SCFF is
no longer uniquely determined,Fµ will depend onµ. Hence in this case the set
of alternatives must be indexed. Our main results concerning self-selective SCRs,
with appropriate definition of self-selectivity, will still hold in the non-neutral case
but for the clarity of exposition and convenience of the reader, we delegate this
case to Section 5.

In the sequel we will use the concept of isomorphism for profiles which we
give in the following definition.
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Definition 1 Let A andB be two sets of alternatives of the same cardinality. Let
R = (R1, . . . , Rn) andQ = (Q1, . . . , Qn) be profiles onA andB, respectively.
ThenR andQ are called isomorphic if there is a bijectionσ : A → B such that
a Ri a′ if and only ifσ(a)Qi σ(a′) for all i ∈ N .

The following proposition can now be proved as an easy exercise.

Proposition 1 LetA andB be two sets of alternatives of the same cardinality. Let
R = (R1, . . . , Rn) andQ = (Q1, . . . , Qn) be two isomorphic profiles onA and
B, respectively withσ : A → B being the corresponding bijection. Then for any
neutral SCFF we haveσ(F (R)) = F (Q).

Now suppose that the societyN , endowed with a preference profile on anm-
element set of alternativesA, from which the choice is to be made, is also to choose
an SCF that will be employed to make its choice fromA. Suppose that a nonempty
finite setA of SCFs is available toN for this purpose. We assume that the agents
in N are only interested in the outcomes that the SCFs fromA will produce and
thus rank SCFs accordingly. Therefore any agenti ∈ N will also have a preference
relationRA

i onA such that for anyF, G ∈ A

F RA
i G ⇐⇒ F (R)Ri G(R). (4)

This preference relationRA
i will be a complete preorder and may not be, in gen-

eral, antisymmetric. Indeed, two different SCFsF, G ∈ A may well choose the
same alternativea ∈ A, in which case theith agent will be indifferent betweenF
andG. By breaking ties and introducing linear orders on indifference classes we
may obtain a number of linear orders compatible withRA

i . When we do it for all
i ∈ N , we obtain a profile fromL(A)n. Any profile, so obtained, will be called a
profile dual toR on the set of SCFsA. Let us denote the set of all such profiles as
L(A, R).

We have now an apparatus to formalise the concept of self-selectivity. If A is a
finite set of SCFs, then we say thatF is self-selective at a profileR relative toA if
and only if there exists a dual profileR∗ ∈ L(A∪{F}, R) such thatF (R∗) = F .
We say thatF is self-selective at a profileR if it is self-selective atR relative to
every finite set of SCFsA. Finally F is said to beuniversally self-selectiveif and
only if F is self-selective at each profileR ∈ L(A).

It may be worthwhile to emphasise that in the definition of self-selectivity
of F we only require thatF chooses itself at just one (not all) dual profile. A
natural question arises, what will happen if we require thatF selects itself at all
dual profiles. It is not difficult to see that this leads to a vacuous concept. Indeed,
if we compareF with SCFsF1, . . . , Fn, which at some profile (unanimous, for
example), all select the same winner, then the set of dual profiles will consist of all
possible profiles andF selects itself at all of them if and only if it is constant.

Another important thing to note is that we are talking about sets and not multi-
sets here. This means, in particular, that we just cannot repeatF or any other SCF
in A several times. The importance of this will become clear in Section 3.

In other words, universal self-selectivity requires thatF passes the self-selectivity
test at each preference profile and against any finite set of test functions. From
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Koray (2000) we know that the only unanimous neutral universally self selective
SCFs are the dictatorial ones. There are two kinds of naturalrestrictions that one
can resort to in an attempt to avoid this impossibility result. The first one is to
restrict the domain of preference profiles at which self-selectivity is required. The
second is to restrict the class of SCFs against which the self-selectivity is to be
tested. In this study we will be interested in the latter approach. This interest does
not only stem from our intention to escape from impossibility results but we also
believe that this approach is actually consistent with the realities of a modern so-
ciety.

Indeed, every society has certain normative criteria according to which the
notion of social acceptability is reflected at the constitutional level. This naturally
confines the set of SCFs that may be used by that society, from the very outset, to a
certain subclass of all SCFs, ruling out all other SCFs as socially unacceptable. We
would find it very difficult on our part to argue, for example, against the decision
of a society to adopt Pareto efficiency as a constitutional principle and thus restrict
itself to using efficient SCFs only. In this case the set of acceptable SCFs would
consist of all singleton-valued refinements of the Pareto correspondence. For such
a society it will be natural to test self-selectivity of an SCF against Paretian SCFs
only.

Let F be a nonempty set of neutral SCFs which will be used to denote the set
of test functions for self-selectivity. We say thatF is F -self-selective at a profile
R ∈ L(A)n if and only if F is self-selective atR relative toA ∪ {F} for any
finite subsetA of F . We say thatF is F -self-selectiveif it is F -self-selective at
any profileR. We illustrate the concept with the following three examples.

Example 3Let Q = (Q1, . . . , Q19) be the following profile:

Q1 − Q4 Q5 − Q8 Q9 − Q13 Q14 − Q19

a b c d
c a a b
b c b a
d d d c

Let B be the Borda rule,C be any Condorcet consistent rule,E be the Plurality
rule, andR be the Plurality with Runoff rule. The latter starts as Plurality but
instead of determining the top alternative straightaway itdetermines the two top
alternatives and determines a winner by a simple majority vote between them. The
second round is not needed if the top Plurality candidate gets more than 50% of
the vote in the first round.

Applying these rules we obtainB(Q) = a, C(Q) = b, R(Q) = c, E(Q) = d.
The same voters will rank the rules in the dual profileQ⋆ as follows:

Q∗
1 − Q∗

4 Q∗
5 − Q∗

8 Q∗
9 − Q∗

13 Q∗
14 − Q∗

19

B C R E
R B B C
C R C B
E E E R
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We see thatB(Q⋆) = B, C(Q⋆) = C, R(Q⋆) = R, E(Q⋆) = E. Each rule is
self-selective atQ.

Example 4 (Koray, 2000)Any dictatorial or anti-dictatorial SCF is universally self-
selective.

Finally, we give an example when the Borda rule is not self-selective.

Example 5Let D = {D1, . . . , Dn} be the class of all dictatorial SCFs. Then it
is easy to see that the Borda rule is notD-self-selective. To illustrate this let us
denote the Borda rule asB and check thatB does not choose itself from{B, D1}
at the profile

R1 R2 R3

a a e
b b b
c c c
d d d
e e a

Here D1 choosesa and the Borda rule choosesb. The unique dual profile on
{B, D1} will be

R⋆
1 R⋆

2 R⋆
3

D1 D1 B
B B D1

where Borda rule will chooseD1.

In this study the notion of social acceptability at the constitutional level will be
represented via a neutral SCCπ. Once the society chooses such a constitutional
correspondence, the setF of its admissible SCFs will be restricted to singleton-
valued refinements ofπ. We will refer to such SCFs as toselectionsof π. We
also wish to secure thatF fully reflectsπ in the sense that there is no smaller
constitution thatF is consistent with. Formally, we require that for every profileR

⋃

F∈F

F (R) = π(R) (5)

at each profileR, in which case we say thatF is π-complete.

We illustrate this concept with the following example.

Example 6Let D = {D1, . . . , Dn} be the class of all dictatorial SCFs. ThenD is
T -complete.D will not be P -complete though since it is possible that a Pareto-
optimal alternative is not anybody’s first preference.

Now let us turn our attention to the properties that the correspondenceπ is
expected to possess. This correspondence should be both sufficiently restrictive
and sufficiently flexible. It is to be restrictive to reflect certain normative criteria.
If π is the universal correspondence, which we denote byΩ, i.e. π(R) = A for
every set of alternativesA and every profileR ∈ L(A)n, thenπ is vacuous from
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the normative viewpoint. On the other hand,π should be sufficiently flexible as it
is meant to be a rule at the constitutional level. For example, if π itself is always
singleton-valued, thenπ itself would be the only admissible SCF available to the
society to resolve any choice problem whatsoever. Moreover, if a constitution is to
respect preferences of individuals, then it does not seem too-far-fetched to require
that there should be no agent whose best outcome is constitutionally ruled out
at some preference profile. This means thatπ(R) should contain all top-ranked
outcomes at any profileR. This leads to the requirement thatπ must be satisfy
T (R) ⊆ π(R). This condition is normally referred to as tops-inclusiveness. In
Section 4 we will introduce our version of tops-inclusiveness which is slightly
stronger.

We will also require that our constitutional correspondence behave consistently
under restrictions of preference profiles to subsets of alternatives chosen by it.
More specifically, we will say that an SCCπ is hereditaryif and only if for every
profile R and every nonempty subset∅ 6= X ⊆ π(R) there holdsπ(R|X) = X ,
whereR|X is the restriction of the profileR to the set of alternativesX . This
requirement is very natural. Indeed, if an alternative was eligible for choice for the
society at an early stages of selection, it should remain eligible for choice when
not eligible alternatives are eliminated.

In the sequel, we assume that our constitutional correspondenceπ is tops-
inclusive and hereditary. We note that our “role models”P , T , andΩ all satisfy
these requirements. The collectionF of all admissible SCFs underπ social choice
test-functions will be always assumedπ-complete.

We note that, whenπ = Ω andF is the set of all selections ofΩ we obtain the
framework studied by Koray (2000) and his main result as a corollary. Similarly
takingπ = T andF to be the set of all selections ofT , we obtain the framework
of the paper by Koray and Unel (2003) and their main result as acorollary too.

Let us also define some more SCCs which will play a role in the rest of the
paper. Firstly, we remind to the reader that the upper contour setU(a, L) of an
alternativea relative to a linear orderL is defined asU(a, L) = {x ∈ A | xL a}.

Let q ≥ 1 be a positive integer andR = (R1, . . . , Rn) ∈ L(A)n be a profile.
An alternativea ∈ A is said to beq-Pareto optimal if

card

(

n
⋂

i=1

U(a, Ri)

)

≤ q.

In particular, forq = 1 we note that1-Pareto optimal elements are the classical
Pareto optimal ones the set of which we denoted byP (R). Let alsoPq(R) be
the set of allq-Pareto optimal elements ofR. In particular,P1(R) = P (R). An
alternativea ∈ A is said to get at least oneqth degree approval if

n

min
i=1

card(U(a, Ri)) ≤ q.

Let Tq(R) be the set of all alternatives which get at least oneqth degree approval.
In particular,T1(R) is the set of elements who are ranked first by at least one agent,
thusT1(R) = T (R). Obviously,

T1(R) ⊆ T2(R) ⊆ . . . ⊆ Tk(R) ⊆ . . .
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We note also thatTq(R) ⊆ Pq(R).

3 Self-selectivity and resistance to cloning

Here we will show that self-selectivity is closely related with two other proper-
ties of SCFs that often appear in the literature: resistanceto cloning of alternatives
and Arrow’s choice axiom. Cloning of alternatives is one of the many forms of
manipulation that exist [14,17,19]. For example, producing a clone of a leading
candidate in the race splits her vote and may allow the secondbest candidate in the
race to win the election. We treat cloning in generalised terms. In particular, with-
drawal of a candidate from the race may also change the outcome of the election
and this move can also be manipulative (see, e.g. [16]). We treat withdrawals as a
particular type of cloning when an alternative is replaced with zero clones.

Let us describe the cloning procedure formally. LetR be a profile on a set
of alternativesA = {a1, . . . , ak}. For each1 ≤ i ≤ k we introduce the set of
alternativesA′

i which is either empty orA′
i = {ai1, ai2, . . . , aiki

} with ki ≥ 1 and
ai = ai1. We setA′ = A′

1 ∪ . . . ∪ A′
k. In the profileR we drop all alternatives

ai, for whichA′
i = ∅ and replace each alternativeai, for whichA′

i is non-empty,
with a linear order onA′

i (not necessarily the same for different occurrences of
ai) and this gives us a profileR′ on the set of alternativesA′ which we will call a
cloned profile. We emphasise the following two features of any cloned profile: in
each linear order ofR′ all clones of the same alternative are standing “together”
but the order on these clones may be different from one linearorder of R′ to
another. Another important thing to note is that a subset ofA is contained inA′;
this is the set of alternatives which have not been “withdrawn”. The possibility to
withdraw an alternative is absent in the definitions of cloning used in [14,17,19].
Our definition is more general.

Definition 2 LetR be a profile on a set of alternativesA = {a1, . . . , ak} andC be
an SCC. We say thatC is resistant to cloning of essential alternatives at a profile
R if for any cloned set of alternativesA′ = A′

1 ∪ . . . ∪ A′
k, whereai /∈ C(R)

impliesA′
i = ∅ for all 1 ≤ i ≤ k, there exists a cloned profileR′ onA′ for which

C(R) ∩ A′ = C(R′). (6)

We say that an SCCC is resistant to cloning of essential alternatives if it is resis-
tant to cloning of essential alternatives at any profileR.

As in the case of self-selectivity, it is important to note that we require the
existence of just one cloned profileR′ with the property (6). Asking for all profiles
to satisfy this condition makes the concept vacuous again.

It may be worthwhile to note that (6) represents a weak version of Arrow’s
choice axiom [2], which he proved to be equivalent to a rationalisability of the
SCC C by a social welfare function.

Example 7Already mentioned SCCsT , P andΩ are resistant to cloning of essen-
tial alternatives.
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Proof Suppose thata ∈ T (R). Thena = maxRi for some1 ≤ i ≤ n. Let
a = aj . SupposeA′

j is not empty and therefore includesa. We order all elements
of A′

j so thata = aj = aj1 is on the top ofA′
j . LetR′ be any cloned profile where

this order onA′
j is chosen. Thena will be on the top ofR′

i, hencea ∈ T (R′).
On the other hand, no other element ofA′

j will be on the top of anyR′
j sincea

majorises it in everyR′
j . Thus (6) is satisfied forT .

The proof forP is similar and the resistance to cloning of essential alternatives
for Ω is obvious.

Proposition 2 Any SCC which is resistant to cloning of essential alternatives is
hereditary.

Proof Let C be a SCC which is resistant to cloning of essential alternatives, and
let R be a profile onA = {a1, . . . , ak}, and letX ⊆ C(R). Suppose without loss
of generality thatX = {a1, . . . , aq} for q ≤ k. Then the restrictionR′ = R|X
of R onto the set of alternativesX is a cloned profile onA′, where|A′

1| = . . . =
|A′

q| = 1 and|A′
q+1| = . . . = |A′

k| = 0. Moreover,R′ is the only cloned profile on
A′. SinceC is resistant to cloning of essential alternatives The equation (6) holds
andC(R′) = C(R) ∩ A′ = X , which proves the proposition.

An important link between self-selectivity and resistant to cloning of essential
alternatives is presented in the following theorem which will give us a non-trivial
example of self-selective SCFs.

Theorem 1Let π be any neutral SCC which is resistant to cloning of essential
alternatives andF be any class of SCFs, each of which is a selection ofπ. Then
for each1 ≤ i ≤ n the two SCFs given by

F (R) = minRi |π(R), G(R) = maxRi |π(R) (7)

areF -self-selective.

Proof We will prove the statement only for the first function. The proof for the
second function is similar. LetR be a profile on a set of alternativesA andA =
{F1, . . . , Fk} ⊆ F be any finite subset ofF not containingF . Let us also denote
F0 = F . SupposeFj(R) = aj , wherej = 0, 1, . . . , k and someaj ’s may coincide.
Without loss of generality we may assume thata0, a1, . . . , ap are distinct and that
aq ∈ {a0, a1, . . . , ap} for all q > p. LetF j be the set of all SCFs from{F0} ∪ A
which selectaj for all j = 0, 1, . . . , p. Note thatF = F0 ∈ F0. By their definition,
all F j ’s for j = 0, 1, . . . , p are non-empty, let us denote the elements ofF j as
Fj1, Fj2, . . . , Fjkj

with Fj = Fj1.
Let B = {a0, a1, . . . , ap}. Since every SCF fromA∪ {F} is a selection ofπ,

we note thatB ⊆ π(R). To construct a dual profileR∗, firstly, we have to restrict
R to the setB, then to changeaj ∈ B intoF j , treatingFj as equivalence classes,
and then to break ties selecting linear orders on eachF j (which may be different
for different linear orders ofR∗).

Every dual profileR∗ corresponds to a cloned profileR′ isomorphic toR∗. We
setA′

j = {aj1, aj2, . . . , ajkj
} for j = 0, 1, . . . , p andA′

q = ∅ for p < q ≤ m.
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To obtain theith linear orderR′
i of the profileR′, we setars > auv if and only if

Frs > Fuv in R∗
i . By resistance to cloning of essential alternatives, thereexists a

cloned profileR′ on A′ = A′
0 ∪ . . . ∪ A′

p such thatπ(R) ∩ A′ = π(R′). By the
construction ofA′ we haveB = π(R) ∩ A′, henceB = π(R′). This implies that

F (R′) = min R′
i |π(R′) = a0

and thereforeF (R∗) = F0 = F . HenceF chooses itself atR∗.

The SCFs introduced in Theorem 1 will be calledπ-antidictatorshipandπ-
dictatorshipof theith voter, respectively. A certain degree of clone resistance ofπ
is necessary for this theorem to be true. We illustrate this in the following example.

Example 8Let us consider the following profileR = (R1, R2, R3):

R1 R2 R3

a b b
c a a
d d d
b c c

and letπ = T2. Thena = B(R) is the Borda winner,b = E(R) is the Plurality
winner, andπ(R) = {a, b, c}. Let D1 be the dictatorship of the first voter andA2

be theπ-antidictatorship of the second voter. ThenD1(R) = a andA2(R) = c.
Since voters are indifferent betweenB andD1, there are eight dual profiles on

F ′ = {A2, B, D1, E} (one of whichR∗ is shown below)

R∗
1 R∗

2 R∗
3

B E E
D1 D1 D1

A2 B B
E A2 A2

None of the eight dual profiles haveA2 ∈ T2(R
∗), henceA2(R

∗) = B andA2 is
not self-selective atR relative toF = {B, D1, E}.

We see that it is exactly the failure of resistance to cloningof essential alterna-
tives that leads to the failure ofF to be self-selective. This example can be easily
generalised to show that

Proposition 3 A π-antidictatorship is not self-selective forπ = Tq, whenq > 2,
and forπ = Pq, whenq ≥ 2.

4 The Main Theorem

In Theorem 1 we introduced theπ-antidictatorship andπ-dictatorship, respec-
tively. Theπ-dictatorship is not very interesting since for any tops-inclusive SCC
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π it will give us the ordinary dictatorship. Not so with theπ-antidictatorship. One
of the most interesting SCFs of this kind is the SCF given by

F (R) = minRi |P (R),

i.e. Pareto antidictatorship. This SCF chooses the worst Pareto optimal alternative
for theith voter. So theith voter is aPareto anti-dictator.

Unlike the standard anti-dictatorial SCFs, theπ-antidictatorship constitutes a
rather complex arrangement made by the society in such a way that the choice is
always efficient, depends on the opinion of all agents, not just one, and does not
give anybody an unfair advantage.

Now we discuss the condition of tops-inclusiveness in detail. We say thatπ is
tops-inclusiveif and only if the following two conditions hold:

(i) T (R) ⊆ π(R) for every profileR.
(ii) If π(R) ⊆ P (R) does not hold for at least one profileR ∈ L(A)n, then

π(R) ⊇ T2(R) for every profileR ∈ L(A)n.

We have already discussed condition (i) above. As for condition (ii), it looks
like a technical condition that we need for our results to hold. However, it does
have a simple meaning based on the notions of efficiency and fairness at the con-
stitutional level. Before the discussion of its meaning, let us note that in this study
we regard the Pareto correspondence as our primary “role model” for the consti-
tutional correspondenceπ. And, as long asπ is Paretian, condition (ii) is vacuous
and may be forgotten. However, ifπ includes not only all Pareto optimal alterna-
tives but also at least onea ∈ π(R), which is not Pareto optimal, then it is not
top-ranked by any of the agents atR. If some agent’skth ranked alternative, with
k ≥ 2, is included inπ(R) although it is not efficient, then one could argue on
the grounds of fairness that no alternative that is rankedkth or higher should be
excluded fromπ(R), i.e. the inclusionTk(R) ⊆ π(R) must hold. Condition (ii)
is the weakest of this kind and, as long as the correspondenceπ satisfies the two
conditions we do not want to complicate the matter any further.

The main result of this paper presented in a theorem below states thatπ-anti-
dictatorships are effectively the only non-trivial examples of self-selective SCFs if
we restrict the set of rival SCFs to selections ofπ.

Theorem 2Supposen ≥ 3. Let π be any neutral, hereditary and tops-inclusive
SCC andF be a selection ofπ which isF -self-selective for someπ-complete set
F of SCFs. Then eitherF is dictatorial orπ-antidictatorial.

We will give a proof in the next section. Now we are going to single out some
interesting cases which fall under this general result.

Corollary 1 Let F be a universally self-selective SCF. Then it is dictatorialor
antidictatorial.
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This generalises the main result of Koray (2000), where unanimity was as-
sumed which precluded antidictatorial SCFs from being a possibility. We obtain
this corollary assumingπ = Ω. Another consequence of the main result is as
follows:

Corollary 2 Let F be a selection ofT . LetD = {D1, . . . , Dn} be the set of all
dictatorial SCFs andF is any set of SCFs containingD. ThenF isF -self-selective
if and only if it is dictatorial orT -antidictatorial.

This generalises the main result of Koray and Unel (2003) in several directions.
We obtain their result by settingπ = T .

Corollary 3 Let F be a selection ofP . Let F be any set of SCFs which isP -
complete. ThenF isF -self-selective if and only if it is dictatorial orP -antidictatorial.

Finally, we will mention several of SCCs for which dictatorial SCFs are still
the only self-selective SCFs even if unanimity is not postulated.

Corollary 4 Let n ≥ 3 and letπ be eitherTq or Pq, whereq ≥ 2, andF be a
selection ofπ which isF-self-selective for someπ-complete setF of SCFs. Then
F is dictatorial.

Proof Sinceπ is neutral, tops-inclusive and hereditary, by Theorem 2F is either
dictatorial orπ-antidictatorial. But we have seen in Proposition 3 that forTq or Pq,
whereq ≥ 2, all π-antidictatorial SCFs are not self-selective.

5 Proof of Theorem 2

In this section we assume that all conditions of Theorem 2 hold. LetR be a profile.
The alternatives inπ(R) will be calledπ-optimal relative toR. By π−(R) we
will denote the set of all remaining alternatives (which arenot thusπ-optimal).
The following key lemma relates the condition ofF -self-selectivity with the more
familiar conceptual framework of Independence of Irrelevant Alternatives.

Lemma 1 LetR ∈ L(Im)n be a profile, andF be an SCF which isF -self-selective
at R. LetB be a subset ofIm such thatπ−(R) ⊆ B ⊆ Im, andC = Im \B. Then

(F (R) ∈ C) =⇒ (F (R) = F (R|C)). (8)

Proof Let the cardinality ofC bek. SupposeF (R) ∈ C. Note that all elements in
C areπ-optimal, hencek ≥ 1 asπ is tops-inclusive. SinceF is π-complete, there
exists a subsetG ⊆ F of cardinalityk such thatF ∈ G and for everya ∈ C there
exists an SCFG ∈ G such thatG(R) = a. Let µ : G → C be a bijection such that
µ(G) = G(R).

Let S = R|C be the restriction ofR ontoC. Then, using the mappingµ−1,
as in (2) we can induce a profileSµ−1

on G. Note thatSµ−1

coincides with the
unique dual profileSG as defined in (4). Thus, byF -self-selectivity ofF , we have

F (Sµ−1

) = F (SG) = F.
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Having the definition ofµ in mind, and (3) we obtain

F (R) = µ(F ) = µF (Sµ−1

) = Fµ(S).

Due to neutrality ofF we haveF (R) = F (S), as required.

We will call the condition (8) the Independence of Irrelevant Alternatives with
respect toπ. We will omit π, if this invites no confusion.

Corollary 5 LetR ∈ L(Im)n be a profile andF be a selection ofπ which satisfies
the Independence of Irrelevant Alternatives. Then

F (R) = F (R|π(R)).

Proof SinceF is a selection ofπ, F (R) /∈ π−(R). By the Independence of Irrel-
evant Alternatives

F (R) = F (R|Im\π−(R)) = F (R|π(R)), (9)

as required.

Let F be an SCF and letR be a profile. Then forX ⊆ π(R) we define

cR(X)
def
= F (R|X),

and for everyx, y ∈ π(R)

x ≻R y
def
⇐⇒ cR({x, y}) = x.

By doing this, we attach to every SCFF and every profileR a binary relation≻R

onπ(R).

Lemma 2 LetF be an SCF satisfying the Independence of Irrelevant Alternatives.
Then for every profileR the restriction of the binary relation≻R to π(R) is a
linear order onπ(R).

Proof Let x, y ∈ π(R). Thenx, y ∈ π(R|{x,y}) sinceπ is hereditary. SinceF ia
an SCF, the choice set is always a singleton. Thus we have either cR({x, y}) = x
or cR({x, y}) = y, that is we have eitherx ≻R y or y ≻R x, and≻R is complete
and antisymmetric. The reflexivity is obvious. Let us prove the transitivity.

Supposex ≻R y andy ≻R z, wherex, y, z ∈ π(R) are distinct. Thenx, y, z ∈
π(R|{x,y,z}) sinceπ is hereditary. Let us prove thatcR({x, y, z}) = x. Indeed,
if cR({x, y, z}) = z, then the Independence of Irrelevant Alternatives implies
cR({y, z}) = z which contradicts toy ≻R z. If cR({x, y, z}) = y, then the
Independence of Irrelevant Alternatives impliescR({x, y}) = y which contradicts
to x ≻R y. HencecR({x, y, z}) = x is proven and then by the Independence of
Irrelevant Alternatives we getcR({x, z}) = x, i.e.x ≻R z.
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The following proposition reveals the mechanism behind anySCF which is a
selection ofπ and satisfies the Independence of Irrelevant Alternatives.It can be
viewed as an extension of Corollary 5.

Proposition 4 Let F be a selection ofπ satisfying the Independence of Irrelevant
Alternatives. LetR be a profile. Suppose that the elements ofπ(R) are enumerated
so thatπ(R) = {b1, . . . , br} with

b1 ≻R b2 ≻R . . . ≻R br.

ThenF (R) = cR({b1, . . . , br}) = b1.

Proof The equalityF (R) = cR({b1, . . . , br}) is implied by Corollary 5. Let us
provecR({b1, . . . , bk}) = b1 by induction onk. If k = 2, thencR({b1, b2}) = b1

is equivalent tob1 ≻R b2. Suppose thatcR({b1, . . . , bk}) = b1, let us consider
b1, . . . , bk+1. If cR({b1, . . . , bk+1}) = bk+1, then the Independence of Irrelevant
Alternatives impliesbk+1 ≻R bk, the contradiction. ThencR({b1, . . . , bk+1}) ∈
{b1, . . . , bk}. Then by the Independence of Irrelevant Alternatives

cR({b1, . . . , bk+1}) = cR({b1, . . . , bk}) = b1.

The proposition is proved.

We will denote theith voter asi so thatN = {1, 2, . . . , n}. It will not lead to
a confusion. We fixπ till the end of this section. In the rest of the proof we follow
the ideas of the original proof of Arrow’s Impossibility Theorem (1951,1963).
The proof itself is different since here we have transitivity only on a variable set
of alternativesπ(R) which depends on the profileR. We have to be careful about
that.

Definition 3 Let F be an SCF. We say that a coalitionD ⊆ N is π-decisive for
F and a pair(a, b) of distinct alternativesa, b ∈ Im, if for an arbitrary profileR,
such thata, b ∈ π(R), aRib for i ∈ D, andbRja for j ∈ N \ D, implya ≻R b.
We say thatD is π-decisive forF , if it is π-decisive for every pair of distinct
alternatives.

Most of the time ourπ will be fixed and we will write decisive instead of
π-decisive.

Lemma 3 LetF be an SCF satisfying the Independence of Irrelevant Alternatives
and letD be a coalition. Suppose that there exists a profileR, such that for some
a, b ∈ π(R), aRib for i ∈ D, andbRja for j ∈ N \ D, anda ≻R b. ThenD is
decisive forF and the pair(a, b). If the coalitionD is proper, i.e∅ 6= D 6= N ,
then the reverse is also true.

Proof Suppose that there exists a profileR, such thata, b ∈ π(R), aRib for i ∈ D,
andbRja for j ∈ N \ D, anda ≻R b. Let R′ be any profile witha, b ∈ π(R′)
such thata, b ∈ π(R′), aR′

ib for i ∈ D, andbR′
ja for j ∈ N \D. ThenR′|{a,b} =

R|{a,b}, whenceF (R′|{a,b}) = F (R|{a,b}) = a, anda ≻R′ b.
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Suppose now that a proper coalitionD is decisive forF and a pair(a, b). Then
bothD andN \ D are nonempty. Let us consider any profileR of the following
type:

a ≻ b ≻ . . . : agents fromD,

b ≻ a ≻ . . . : agent fromN \ D.

Thena, b ∈ π(R), sinceπ is tops-inclusive, and hencea ≻R b by the decisiveness
of D. Therefore a profile with the required properties exists.

Lemma 4 LetF be an SCF satisfying the Independence of Irrelevant Alternatives.
Then a coalitionD is decisive forF if and only if it is decisive forF and a pair
(a, b) for some distinct alternativesa, b ∈ Im.

Proof SupposeD is decisive forF and a pair(a, b) of distinct alternativesa, b ∈
Im. First, we suppose that there exists a profileR, such thata, b ∈ π(R), aRib for
i ∈ D, andbRja for j ∈ N \ D, with a ≻R b. By the definition the latter means
thata = F (R|{a,b}). Let us denoteR|{a,b} = P .

Let us consider any profileR′ such thatc, d ∈ π(R′), cR′
id for i ∈ D,

and dR′
jc for j ∈ N \ D. Let us denoteR′|{c,d} = Q. Consider the bijec-

tions µ : {a, b} → I2 and ν : {c, d} → I2 such thatµ(a) = ν(c) = 1 and
µ(b) = ν(d) = 2. By (3)

a = F (P ) = Fµ(P ) = µ−1F (Pµ).

Since the profilesPµ andQν coincide, we have

F (Q) = F ν(Q) = ν−1F (Qν) = c.

The latter meansc ≻R′ d and by Lemma 3D is decisive for(c, d).
Let us consider the remaining case, when no profile exists such thata, b ∈

π(R), aRib for i ∈ D, andbRja for j ∈ N \ D. The neutrality ofπ then implies
that no profileQ can exist such thatc, d ∈ π(Q), cQid for i ∈ D, anddQjc for
j ∈ N \ D. Thus, in both cases,D is decisive forF .

Corollary 6 Let F be an SCF satisfying the Independence of Irrelevant Alterna-
tives. LetD be a proper subset ofN . Then eitherD is decisive or its complement
N \ D is decisive.

Proof Suppose that a coalitionD is decisive forF and a pair(a, b). ThenD is
decisive by Lemma 4. IfD is not decisive forF and a pair(a, b), then there exists
a profileR such thata, b ∈ π(R), andaRib for i ∈ D, andbRja for j ∈ N \ D,
butb ≻R a. But now by Lemmata 3 and 4N \ D is decisive.

The following Lemmata on the structure of the set of decisivesubsets ofN will
be proved under the assumption thatF is a SCF which satisfies the Independence
of Irrelevant Alternatives, whereπ is a neutral, hereditary, and tops-inclusive SCC.

Lemma 5 If a decisive setD = D1 ∪ D2, different fromN , is a disjoint union
(D1 ∩ D2 = ∅) of two nonempty subsetsD1 andD2, then eitherD1 or D2 is
decisive as well.
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Proof Let N = D1 ∪ D2 ∪M, whereM = N \ D 6= ∅. Consider any profileR
such that for somea, b, c ∈ Im:

a ≻ b ≻ c ≻ . . . : agents fromD1,

b ≻ c ≻ a ≻ . . . : agents fromD2,

c ≻ a ≻ b ≻ . . . : agents fromM.

Thena, b, c ∈ π(R) asπ is tops-inclusive. Thenb ≻R c asD = D1 ∪ D2 is
decisive. Ifb ≻R a thenD2 is decisive and the result is proved. If not, thena ≻R b.
Since by Lemma 2 the relation≻R is transitive onπ(R), a ≻R b andb ≻R c imply
a ≻R c, which means that in this caseD1 is decisive.

Lemma 6 There exists a singletonv ∈ N such that{v} is decisive.

Proof Let N ′ = N \ {u}, whereu ∈ N is arbitrary. Then by Corollary 6 ei-
ther{u} or N ′ is decisive. In the first case we are done. In the second, we may
repeatedly apply Lemma 5 toN ′ and then to its decisive subsets until a decisive
singleton is obtained.

Lemma 7 LetD1, D2 andD3 be three nonempty disjoint subsets ofN such that
N = D1 ∪ D2 ∪ D3. Then all three subsets cannot be simultaneously decisive.

Proof If this were possible, then consider the following profileR:

a ≻ b ≻ c ≻ . . . : agents fromD1,

b ≻ c ≻ a ≻ . . . : agents fromD2,

c ≻ a ≻ b ≻ . . . : agents fromD3.

Sinceπ is tops-inclusive, the alternativesa, b, c are allπ-optimal and, assuming
that all three subsets are decisive, we will havea ≻R c ≻R b ≻R a, which
contradicts to the transitivity of≻R onπ(R) proved in Lemma 3.

Lemma 8 LetD1 andD2 be two decisive subsets ofN such thatD1 ∪ D2 6= N .
Then the unionD1 ∪ D2 is decisive.

Proof Suppose first thatD1 andD2 are disjoint. AsD1 ∪ D2 6= N , thenM =
N \ (D1 ∪D2) 6= ∅. By Lemma 7M is not decisive. But thenD1 ∪D2 = N \M
is decisive by Corollary 6.

Now let us assume thatD1 andD2 have a nonzero intersection. We may also
assume that this intersection is different from both of the sets because otherwise
the result is trivial. Let us consider any profile such that for some alternatives
a, b, c ∈ Im

a ≻ b ≻ c ≻ . . . : agents fromD1 ∩ D2,

a ≻ c ≻ b ≻ . . . : agents fromD1 \ D2,

b ≻ a ≻ c ≻ . . . : agents fromD2 \ D1,

c ≻ b ≻ a ≻ . . . : agents fromM.

We note thata, b, c ∈ π(R) as π is tops-inclusive. Thena ≻R b sinceD1 is
decisive andb ≻R c sinceD2 is decisive. By transitivity of≻R on π(R) we get
a ≻R c and henceD1 ∪ D2 is decisive.
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Corollary 7 There exists a decisive subsetD of N of cardinalityn − 1.

Proof This is the same to say that one of the singletons is not decisive. Suppose
to the contrary that all singletons are decisive. Then by Lemma 8 all proper sub-
sets ofN are decisive. This is impossible since by Corollary 6 a subset and its
complement cannot be simultaneously decisive.

Lemma 9 Let ∅ 6= D1 ⊆ D ⊆ D2 6= N with D1 andD2 being decisive. ThenD
is decisive.

Proof Let us consider any profile such that for some alternativesa, b, c ∈ Im

a ≻ b ≻ c ≻ . . . : agents fromD1,

b ≻ a ≻ c ≻ . . . : agents fromD \ D1,

b ≻ c ≻ a ≻ . . . : agents fromD2 \ D,

c ≻ b ≻ a ≻ . . . : agents fromN \ D2.

Sincea, b, c ∈ π(R), we geta ≻R b asD1 is decisive andb ≻R c asD2 is
decisive. By the transitivity of≻R onπ(R) we geta ≻R c which means thatD is
decisive.

Definition 4 LetF be an SCF. An agentk ∈ N will be called anπ-dictator, if for
every profileR and for every pair of two distinct alternativesa, b ∈ π(R) it is true
thataRkb impliesa ≻R b; an agentk ∈ N will be called anπ-antidictator, if for
every profileR and for every pair of two distinct alternativesa, b with a, b ∈ π(R)
it is true thataRkb impliesb ≻R a.

The following two propositions are obvious.

Proposition 5 An agentk ∈ N is anπ-dictator, if all coalitions inN containing
k are π-decisive. An agentk ∈ N is anπ-antidictator, if all coalitions inN not
containingk (including the empty one) areπ-decisive.

Now we are ready to prove the main results of this paper.

Proof (Proof of Theorem 2)We will prove that there is either aπ-dictator orπ-
antidictator. SinceF is a selection fromπ andπ is tops-inclusive, anyπ-dictator
will be an ordinary dictator.

Firstly, we note that the existence of a decisive set of cardinalityn−1 is guaran-
teed by Corollary 7. Without loss of generality, we assume thatD = {1, . . . , n−1}
is decisive. Then{n} cannot be decisive. By Lemma 6 there is a decisive single-
ton, it must be inD; and we may assume that it is{1}. By Lemma 9 all subsets of
D, which contain{1}, are decisive.

Now the key question is whether or not one of the subsetsN \ {i} is decisive
for 2 ≤ i ≤ n−1. Let us assume first that there is such a subset, sayN \{i}. Then
every proper subset ofN , containing1 is contained in eitherN \ {n} or N \ {i}
and by Lemma 9 is decisive. Hence all proper subsets containing{1} are decisive.
It remains to prove that in this caseN itself is also decisive, it would mean that
agent1 is anπ-dictator.
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We note first that ifπ(R) ⊆ P (R) for all profilesR, thenN is trivially de-
cisive because there does not exist sucha, b ∈ π(R) thataRib for all i ∈ N . If
this inclusion does not hold, then by the second condition oftops-inclusiveness
π(R) contains all first and second preferences. Let us consider any profile of the
following type

a ≻ b ≻ c ≻ . . . : agents fromN \ {2, 3}

b ≻ a ≻ c ≻ . . . : agent 2,

a ≻ c ≻ b ≻ . . . : agent 3.

Thena, b, c ∈ π(R) asπ(R) contains all first and second preferences. We get
a ≻R b asN \ {2} is decisive andb ≻R c asN \ {3} is decisive. By transitivity
we geta ≻R c which by Lemma 4 means thatN is decisive. Thus agent1 is an
π-dictator.

Suppose now that none of the subsetsN \ {i} are decisive for2 ≤ i ≤ n − 1.
This immediately implies that all agents2, 3, . . . , n−1 are decisive. By Lemma 8
it follows that every nonempty subset ofD is decisive. Thenn would be anπ-
antidictator if and only if an empty set is decisive.

We note first that ifπ(R) ⊆ P (R) for all profilesR, then∅ is trivially decisive.
If not, thenπ(R) contains all second preferences. Let us consider any profileof
the following type

a ≻ b ≻ c ≻ . . . : agents fromN \ {n−1, n−2}

b ≻ a ≻ c ≻ . . . : agentn−1,

a ≻ c ≻ b ≻ . . . : agentn−2.

Thena, b, c ∈ π(R) asπ(R) contains all first and second preferences. We get
b ≻R a as{n−1} is decisive andc ≻R b as{n−2} is decisive. By transitivity
we getc ≻R a which by Lemma 4 means that∅ is decisive. Thus agentn is an
π-antidictator.

6 Conclusion and Further Research

In this paper the authors have made the first attempt to find a framework in which
non-dictatorial self-selective SCFs may exist. To this endwe relaxed the universal
self-selectivity restricting the set of rival SCFs requiring them to be ’reasonable’
in the sense that they are selections from a certain well-behaved constitutional
correspondence. We indeed discovered some self-selectivenon-dictatorial SCFs.
Further attempts to find interesting relaxations of universal self-selectivity are en-
couraged.

We showed that the property of self-selectivity is closely related to some well-
known and well-studied properties of SCFs such that independence of irrelevant
alternatives, resistance to cloning. But, unlike them, self-selectivity can be made
rather flexible since the choice of the set of rival SCFsF can be made in many
different ways.
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It seems that the property of self-selectivity (as well as resistance to cloning) is
much more compatible with the Condorcet consistent SCFs that with point-scoring
ones. It would be interesting to find out whether or not there are any self-selective
SCFs in the class of Condorcet consistent rules.

Another interesting question that we left open is to characterise all neutral
SCCs which are resistant to cloning of essential alternatives. In particular, we don’t
know if T , P andΩ (and the mirror counterparts of the first two) are the only
neutral SCCs with this propertiy.
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