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Abstract

Kraft, Pratt and Seidenberg (1959) provided an infinite set of axioms which, when
taken together with de Finetti’s axiom, gives a necessary and sufficient set of “can-
cellation” conditions for representability of an ordering relation on subsets of a set
by an order-preserving probability measure. Fishburn (1996) defined f(n) to be
the smallest positive integer k such that every comparative probability ordering
on an n-element set which satisfies the cancellation conditions C4, . . . , Ck is repre-
sentable. By the work of Kraft et al. (1959) and Fishburn (1996, 1997), it is known
that n − 1 ≤ f(n) ≤ n + 1 for all n ≥ 5. Also Fishburn proved that f(5) = 4,
and conjectured that f(n) = n − 1 for all n ≥ 5. In this paper we confirm that
f(6) = 5, but give counter-examples to Fishburn’s conjecture for n = 7, showing
that f(7) ≥ 7. We summarise, correct and extend many of the known results on
this topic, including the notion of “almost representability”, and offer an amended
version of Fishburn’s conjecture.
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1 Introduction

The topic of this article dates back to fundamental work by Bruno de Finetti
(1931), who asked whether a certain axiom for a comparative probability or-
dering relation � on the subsets of a set is sufficient for the existence of an
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order-preserving probability measure on that set. For infinite sets, assuming
there is a uniform partition into an arbitrary number of events, Savage (1954)
answered this question positively. For finite sets of cardinality five or more,
a negative answer to this question was given by Kraft et al. (1959). It be-
came clear from these observations that comparative probability is a broader
concept than probability.

Nevertheless, de Finetti’s axioms were very attractive, especially for use in
applications where relative frequency characterization of probabilities is not
available or meaningful, for example when we have to deal with the so-called
“subjective probability” (also called “intuitive probability” or “personal prob-
ability”), which is essentially a belief of an individual that some events are
more probable than the others (Luce & Suppes, 1965). This led to develop-
ment of comparative probability as a separate area of research (see a recent
survey of Giuliana Regoli (2000)).

Sometimes comparative probability orderings emerge in circumstances where
we cannot speak even about subjective probability. For example, they ap-
peared in an article by Vladimir Danilov (1987), who, in the case of dichoto-
mous preferences, characterised all social choice rules which satisfy the famous
Arrow’s condition of Independence of Irrelevant Alternatives. It appeared that
each such rule corresponds to a comparative probability ordering, and the rule
is a weighted majority rule if and only if the comparative probability order-
ing is representable by an order-preserving probability measure on the set of
voters.

Kraft et al. (1959) discovered an infinite set of axioms which, when taken to-
gether with de Finetti’s axiom, gives a necessary and sufficient set of conditions
for representability of an ordering relation on subsets by an order-preserving
probability measure. Implicitly, these axioms involved a concept of a multi-
set, which was not widely understood at the time, and reformulation of these
axioms by Scott (1964) was predominantly used. Krantz, Luce, Suppes and
Tversky (1971) called these axioms cancellation conditions. Fishburn (1996,
1997) opined that they “play a central role in the representational theory of
measurement”, and devoted much effort to their study.

Fishburn (1996) introduced a function f(n), which, for each positive integer
n, measures the maximal deviation of a comparative probability ordering on
an n-element set from one which arises from an order-preserving probability
measure. It follows from Kraft et al. (1959) that f(n) ≤ n+1. Fishburn (1997)
then proved that f(n) ≥ n−1 for all n ≥ 5, and so combining these two results
gives the following bounds for this function: n − 1 ≤ f(n) ≤ n + 1. Fishburn
also proved that f(5) = 4, and conjectured that f(n) = n − 1 for all n ≥ 5.

In this paper we confirm that f(6) = 5, but give counter-examples to Fish-
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burn’s conjecture for n = 7 showing that f(7) ≥ 7. We summarise all known
results, correcting and extending some of them, and offer an amended version
of Fishburn’s conjecture. In doing this, we consider the concept of an “almost
representable” comparative probability ordering, and develop a construction
method using this as a tool for finding lower bounds for f(n).

2 Preliminaries

To formulate cancellation conditions, let us first recall some other definitions
and fix some notation. Here 2X denotes the set of all subsets of a set X.

Definition 1 Let X be a finite set. Any reflexive, complete and transitive
binary relation � on 2X will be called an order on 2X . (Note: sometimes this
is called a complete pre-order or a weak order.) Such an order � gives rise to
two other relations � and ∼ on 2X , defined for all x, y ∈ X by

(a) x � y ⇐⇒ x � y and not (y � x);
(b) x ∼ y ⇐⇒ x � y and y � x.

If an order � is anti-symmetric, then all equivalence classes (under the relation
∼) are singletons, and � is called a linear order.

Definition 2 Let X be a finite set. A linear order � on 2X is called a com-
parative probability ordering on X, if A � ∅ for every non-empty subset A of
X, and � satisfies de Finetti’s axiom, namely for all A, B, C ∈ 2X ,

A � B ⇐⇒ A ∪ C � B ∪ C whenever (A ∪ B) ∩ C = ∅ . (1)

For convenience, we will further suppose that X = In = {1, 2, . . . , n}. Note
that if we have a probability measure p = (p1, . . . , pn) on X, where pi is the
probability of i, then we know the probability of every event A, by the rule
p(A) =

∑
i∈A pi. We may now define a relation � on 2X by

A � B if and only if p(A) ≥ p(B).

If pi > 0 for all i, and the probabilities of all events are different, then � is a
comparative probability ordering on X, and any such ordering is called repre-
sentable (e.g. Regoli, 2000). On the other hand, any comparative probability
ordering � which is not obtainable in this way is called non-representable.

It can also be possible that for some measure p on X the probabilities of two
or more events coincide, that is p(A) = p(B) when A � B but A 
= B. In this
case we have an ordering � which still satisfies the de Finetti axiom (1), and
we call it a weak comparative probability ordering arising from p.
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If we have a non-representable comparative probability ordering � on X, then
we cannot specify the exact probability of every event, but if A � B then we
can say that A is more probable than B. The class of comparative probability
measures is therefore broader than the class of probability measures (Kraft et
al. (1959)). A non-representable comparative probability ordering � on X is
said to almost agree with the measure p on X if

A � B =⇒ p(A) ≥ p(B). (2)

If such a measure p exists, then the ordering � is said to be almost repre-
sentable. When p defines a weak comparative probability ordering on X, the
ordering � might not be representable.

We now recall that a set is a special case of a multiset. Multisets are collections
of objects which may include several copies of the same object. If we consider
multisets on X, then we allow an element x ∈ X to enter such a multiset
M with multiplicity µM(x), which is a non-negative integer. Multiset union
∪ is an operation over multisets that adds multiplicities of elements, that
is, µA∪B(x) = µA(x) + µB(x). See Stanley (1997) for more information on
multisets.

Definition 3 A linear order � on 2X is said to satisfy the mth cancellation
condition Cm if for no m distinct comparisons Ai � Bi of subsets (for 1 ≤
i ≤ m), there exist positive integers a1, . . . , am such that the following two
multiset unions coincide:

m⋃

i=1

(Ai ∪ . . . ∪ Ai)
︸ ︷︷ ︸

ai

=
m⋃

i=1

(Bi ∪ . . . ∪ Bi)
︸ ︷︷ ︸

ai

. (3)

Alternatively, in the spirit of Scott (1964) (and also Suppes (1974)), condi-
tion (3) can be reformulated in terms of characteristic functions of subsets, as
follows:

m∑

i=1

aiχAi
=

m∑

i=1

aiχBi
,

where the characteristic function χS of the subset S ⊂ X is given by χS(x) = 1
if x ∈ S and χS(x) = 0 if x /∈ S.

Example 4 The non-representable comparative probability ordering � on 2I5

constructed in Kraft et al. (1959) does not satisfy the condition C4 since it
contains the following comparisons:

{1, 3} � {2, 4, 5}, {2, 4} � {1, 5}, {2, 5} � {3, 4}, {4, 5} � {2}. (4)
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Indeed, the multiset union of the sets on the right and the multiset union
of the sets on the left are both equal to the multiset {1, 22, 3, 42, 52}, where
powers denote multiplicities. Hence the cancellation condition C4 is violated
with a1 = a2 = a3 = a4 = 1.

The next proposition follows easily from a result proved by Kraft et al. (1959)
for weak comparative probability orderings.

Proposition 5 For a comparative probability ordering to be representable, it
is necessary and sufficient that all cancellation conditions Cm are satisfied.

These cancellation conditions look rather unnatural and complicated. Since
they are derived from linear algebra, it is not surprising that they can be
made to look much more natural by being reformulated in terms of vectors,
as we do later in this paper.

It is clear that any representable comparative probability ordering satisfies Cm

for all m ≥ 1. It was also shown in Fishburn (1996, Section 2) that C2 and C3

follow from de Finetti’s axiom and properties of linear orders. Hence C4 is the
first nontrivial cancellation condition.

As was noticed in Kraft et al. (1959), for n < 5 all comparative probabil-
ity orderings are representable, but for n = 5 there are non-representable
ones. Fishburn (1996, Section 4) showed that all non-representable compara-
tive probability orderings on a 5-element set X fail to satisfy C4, and conjec-
tured Fishburn (1996, 1997) that any such ordering on an n-element set X,
which satisfies C4, . . . , Cn−1, is representable.

In Section 3 we will exhibit counter-examples to this conjecture for n = 7.
More precisely, we will construct non-representable comparative probability
orderings on a 7-element set X which satisfy C4, C5 and C6. In addition, we
will show these orderings are almost representable.

We will always assume here that a linear order � on 2X is a comparative
probability ordering. As in Fishburn (1996, 1997), we will also assume that
1 � 2 � . . . � n, which is equivalent to assuming that p1 > p2 > . . . > pn

for a comparative probability ordering arising from a probability measure p =
(p1, . . . , pn). To every such linear order �, there corresponds a discrete cone
C(�) in T n, where T = {−1, 0, 1}, as defined in Fishburn (1996).

Definition 6 A subset C ⊆ T n is said to be a discrete cone if the following
properties hold:

D1. {e1−e2, . . . , en−1−en, en} ⊆ C, where {e1, . . . , en} is the standard basis
of R

n,
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D2. {−x,x} ∩ C 
= ∅ for every x ∈ T n,
D3. x + y ∈ C whenever x,y ∈ C and x + y ∈ T n.

We note that in Fishburn (1996), Fishburn requires 0 /∈ C because his orders
are anti-reflexive. In our case, condition D2 implies 0 ∈ C.

Given a (weak) comparative probability ordering � on 2X , we may construct
a characteristic vector χ(A, B) = χA−χB ∈ T n for every possible comparison
A � B. The cone C(�) is then defined as the set of all characteristic vectors
χ(A, B), for A, B ∈ 2X such that A � B. The two axioms of comparative
probability given in Definition 2 guarantee that C(�) is indeed a discrete
cone (see Fishburn, 1996, Lemma 2.1).

Example 7 For the comparative probability ordering � from Example 4, the
four vectors

(1,−1, 1,−1,−1), (−1, 1, 0, 1,−1), (0, 1,−1,−1, 1), (0,−1, 0, 1, 1) (5)

all belong to C(�), and correspond to the four comparisons listed in (4) above.

We will say that a discrete cone C ⊆ T n is generated by a set of vectors
V = {v1, . . . ,vm} ⊆ T n if C is the smallest discrete cone containing V . It
follows that the cone C(�) associated with a comparative probability ordering
� must always contains the discrete cone U in T n generated by

{e1 − e2, . . . , en−1 − en, en}. (6)

We observe that a vector x = (x1, . . . , xn) ∈ T n belongs to U if and only if

x1 ≥ 0, x1 + x2 ≥ 0, . . . , x1 + x2 + . . . + xn ≥ 0. (7)

Hence, following Fishburn (1996), we can reformulate the cancellation condi-
tions as follows:

Proposition 8 A comparative probability ordering � satisfies the mth cancel-
lation condition Cm if and only if for no set {x1, . . . ,xm} of non-zero vectors
in C(�) do there exist positive integers a1, . . . , am such that

a1x1 + a2x2 + · · · + amxm = 0. (8)

PROOF. Take a vector xi = χ(Ai, Bi) ∈ C(�) for each comparison Ai � Bi

(for 1 ≤ i ≤ m) involved in Definition 3, and observe that condition (3) is
equivalent to the equation a1x1 + a2x2 + · · · + amxm = 0.

Example 9 The four vectors from the cone C(�) given in Example 7 add up
to the zero vector, hence the corresponding ordering � is not representable.
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Geometrically, what happens is clear. A comparative probability ordering � is
representable if and only if there exists a positive integer-valued vector a ∈ R

n

such that

x ∈ C(�) ⇐⇒ (a,x) > 0 for all x ∈ T n \ {0},

where (·, ·) is the standard inner product; that is, � is representable if and
only if every non-zero vector in the cone C(�) lies in the open half-space
Sa = {x ∈ R

n | (a,x) > 0}.

Similarly, for a non-representable but almost representable comparative prob-
ability ordering �, there exists an integer-valued vector a ∈ R

n with non-
negative entries such that

x ∈ C(�) ⇐⇒ (a,x) ≥ 0 for all x ∈ T n \ {0},

and hence in this case the whole cone C(�) must lie in the closed half-space
Sa = {x ∈ R

n | (a,x) ≥ 0}.

In both cases, the normalised vector a gives us the probability measure, namely
p = (a1 + . . .+an)−1 (a1, . . . , an), from which � arises or with which it almost
agrees.

3 Almost representable orderings

Proposition 10 Let � be a non-representable but almost representable com-
parative probability ordering which almost agrees with a probability measure p.
Suppose that the mth cancellation condition Cm is violated, and that for some
non-zero vectors {x1, . . . ,xm} ⊆ C(�) and some positive integers a1, . . . , am,
the condition (8) holds. Then all of the vectors x1, . . . ,xm lie in the hyper-
plane Hp = {x ∈ R

n | (p,x) = 0}.

PROOF. First note that for every x ∈ C(�) which does not belong to Hp,
we have (p,x) > 0. Hence the condition (8) can hold only when all xi ∈ Hp.

Corollary 11 Any almost representable comparative probability ordering �
on an n-element set X, which satisfies C4, . . . , Cn, is representable.

PROOF. Suppose that (8) holds for some non-zero vectors x1, . . . ,xm ∈ C(�)
and positive integers a1, . . . , am, where m > 0. As all m vectors x1, . . . ,xm lie
in the (n−1)-dimensional subspace Hp, we may, using standard linear algebra,
reduce the number of vectors in this linear combination to at most n vectors
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while still having positive coefficients. Hence we may suppose that m ≤ n.
However, this is impossible since we assumed that Cm is satisfied. Therefore
� must be representable.

Following Fishburn (1996, Section 5), we now define f(n) to be the small-
est positive integer k such that every comparative probability ordering on an
n-element set which satisfies the cancellation conditions C4, . . . , Ck is repre-
sentable. Fishburn (1996, 1997) proved that f(5) = 4, and n−1 ≤ f(n) ≤ n+1
for all n ≥ 6, and conjectured that f(n) = n − 1 for all n ≥ 5 (see Fishburn,
1997, p.354).

In the spirit of Kraft et al. (1959), we further define g(n) to be the smallest
positive integer k such that every almost representable comparative probabil-
ity ordering on an n-element set which satisfies the cancellation conditions
C4, . . . , Ck is representable. Clearly g(n) ≤ f(n) for all n, and also by Corol-
lary 11 above, we have the following:

Corollary 12 g(n) ≤ n for all n.

Now Fishburn’s conjecture, if valid, would imply that g(n) ≤ n − 1 for all n.
We can confirm that f(6) = 5, which is consistent with Fishburn’s conjecture,
but we also prove that g(7) = 7, which refutes it. To do this, we will need the
following theorem which simplifies and generalises Theorem 6.1 from Fishburn
(1996) (and its generalisation to Lemma 1 in Fishburn (1997)).

Theorem 13 (Construction method 1) Let X = {x1, . . . ,xm}, m ≥ 4,
be a system of non-zero vectors from T n, such that

∑m
i=1 aixi = 0 for some

positive integers a1, . . . , am, and such that no proper subsystem X ′ ⊂ X is
linearly dependent with positive coefficients. Suppose further that the m × n
matrix A having the vectors x1, . . . ,xm as its rows has the property that Ab =
0 for some positive integer-valued vector b = (b1, . . . , bn) with b1 > b2 > . . . >
bn > 0, and that

Span{x1, . . . ,xm} ∩ T n = {±x1, . . . ,±xm}.

Let C(�) be the discrete cone belonging to the weak comparative probability
ordering which arises from the measure p = (b1 + . . .+ bn)−1 (b1, . . . , bn), that
is, C(�) = {x ∈ T n | (x,b) ≥ 0}. Then the discrete cone

C ′ = C(�) \ {−x1, . . . ,−xm}

corresponds to an almost representable comparative probability ordering which
almost agrees with p, and satisfies Ci for all i < m, but does not satisfy Cm.
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PROOF. We first note that {±x1, . . . ,±xm} ⊆ Hb = {x ∈ R
n | (b,x) = 0}.

Next (ei − ei+1,b) = bi − bi+1 > 0 for 1 ≤ i < n, and also (en,b) = bn > 0,
so the property D1 holds for the cone C ′. Property D2 holds for C ′ because it
holds for C(�) and when we remove vectors −x1, . . . ,−xm from C ′ the vectors
x1, . . . ,xm remain in C ′. Finally let us prove D3. Suppose that y, z ∈ C ′ and
y+z ∈ T n, but y+z /∈ C ′. Since y+z ∈ C(�)\C ′, we deduce that y+z = −xi

for some i. Moreover, y, z ∈ Hb, since otherwise (y+z,b) = (y,b)+(z,b) > 0.
Hence y = xj for some j and z = xk for some k, but from this it follows that
xi + xj + xk = 0, a contradiction since |X| = m ≥ 4 and hence no three rows
of A may have sum zero.

Suppose now that some violation of Ck occurs, say

c1y1 + c2y2 + · · · + ckyk = 0,

with positive integers c1, . . . , ck and yi ∈ C ′ for 1 ≤ i ≤ k, where k < m.
If (yi,b) > 0 from some i, then (0,b) = (c1y1 + c2y2 + · · · + ckyk,b) =
c1(y1,b) + c2(y2,b) + . . . + ck(yk,b) > 0, a contradiction, hence yi ∈ Hb for
all i, and therefore {y1, . . . ,yk} ⊆ {x1, . . . ,xm}, which is impossible. On the
other hand, Cm fails because

∑m
i=1 aixi = 0.

A major difference between our theorem and Theorem 6.1 of Fishburn (1996)
is that we claim almost representability of the constructed ordering. Using
this, we can now prove the following:

Theorem 14 f(7) ≥ g(7) = 7.

PROOF. Consider the following 7 × 7 matrix

A =
























−1 1 1 −1 0 0 0

1 0 −1 −1 1 0 0

1 −1 1 0 0 −1 −1

−1 −1 0 1 1 0 1

−1 1 −1 1 0 1 −1

1 −1 1 −1 −1 1 0

0 1 −1 1 −1 −1 1
























.

Denote the rows of A by x1, . . . ,x7. As the null space of AT is spanned by
the vector (1, 1, 1, 1, 1, 1, 1), we can see that x1 + x2 + . . . + x7 = 0 and
that no six rows of A are linearly dependent. We also observe that Ab =
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0 for b = (27, 25, 24, 22, 19, 15, 11). Let us take the probability measure
p = 1

116
(27, 25, 24, 22, 19, 15, 11), and now consider the weak comparative

probability ordering on I7 = {1, 2, 3, 4, 5, 6, 7} that arises from p.

Ignoring braces when writing subsets, and listing only half of all terms (as
A � B if and only if B̄ � Ā), we may describe this ordering by the following
sequence (given in reverse order for simplicity):

∅ ≺ 7 ≺ 6 ≺ 5 ≺ 4 ≺ 3 ≺ 2 ≺ 67 ≺ 1 ≺ 57 ≺ 47 ≺ 56 ≺ 37 ≺ 27 ≺ 46 ≺ 17 ≺
36 ≺ 26 ≺ 45 ≺ 16 ≺ 35 ≺ 25 ≺ 567 ≺ 15 ∼ 34 ≺ 24 ≺ 467 ≺ 23 ∼ 14 ≺
367 ≺ 13 ∼ 267 ≺ 457 ∼ 12 ≺ 167 ≺ 357 ≺ 257 ≺ 456 ≺ 157 ∼ 347 ≺ 247 ∼
356 ≺ 256 ≺ 237 ∼ 147 ≺ 156 ∼ 346 ≺ 246 ∼ 137 ≺ 127 ≺ 236 ∼ 146 ≺
345 ≺ 136 ∼ 245 ≺ 4567 ∼ 126 ≺ 235 ∼ 145 ≺ 3567 ≺ 135 ∼ 2567 ≺ 125 ∼
234 ≺ . . . .

The only equivalences in the first half of this sequence are these:

15 ∼ 34, 157 ∼ 347, 156 ∼ 346, 125 ∼ 234,

23 ∼ 14, 237 ∼ 147, 236 ∼ 146, 235 ∼ 145,

13 ∼ 267, 135 ∼ 2567,

457 ∼ 12, 4567 ∼ 126,

246 ∼ 137,

136 ∼ 245,

247 ∼ 356.

Note that in each row of the above list, all equivalences are the consequences
of the leftmost equivalence, and all contribute the same pair of vectors ±xi to
the cone C(�), where x1, . . . ,x7 are the rows of A. All equivalences from the
second half of the sequence are also consequences of these. It follows that

Span{x1, . . . ,x7} ∩ T 7 = {±x1, . . . ,±x7}.

We may now apply Theorem 13, to deduce the existence of a non-representable
comparative probability ordering on I7, which satisfies C4, C5 and C6.

Note that the example given in the above proof fails the cancellation condition
C7 with (a1, . . . , a7) = (1, 1, 1, 1, 1, 1, 1). There are hundreds of other examples
with the same property. Another interesting example will be given in Section 4.

10



4 Alternative form of cancellation conditions

In the spirit of Fishburn’s earlier paper (Fishburn, 1996), we now introduce
an alternative form of cancellation conditions.

Definition 15 A comparative probability ordering � is said to satisfy the mth
cancellation condition C†

m if for no set {x1, . . . ,xk} of non-zero vectors in
C(�) do there exist positive integers a1, . . . , ak such that

a1x1 + a2x2 + · · · + akxk = 0 (9)

and
∑k

i=1 ai = m.

Note here that while the condition Cm emphasises the total number of dis-
tinct comparisons Ai � Bi involved, the alternative condition C†

m is more
concerned with the total number of (not necessarily distinct) comparisons
actually required for the sum.

It is clear (and was observed by Fishburn (1996, Section 2)) that a comparative
probability ordering satisfies Cm for all m ≥ 4 if and only if it satisfies C†

m

for all m ≥ 4. It follows that these alternative cancellation conditions can also
be used for measuring the degree of deviation of a comparative probability
ordering from one that arises from a probability measure.

Hence we may define f †(n) to be the smallest positive integer k such that
every comparative probability ordering on an n-element set, which satisfies
the cancellation conditions C†

4, . . . , C†
k, is representable. The corresponding

analogue of g(n) can also be introduced. We define g†(n) to be the smallest
positive integer k such that every almost representable comparative probabil-
ity ordering on an n-element set, which satisfies the cancellation conditions
C†

4, . . . , C†
k, is representable. Obviously, f †(n) ≥ g†(n), and also f †(n) ≥ f(n)

and g†(n) ≥ g(n) for all n. Also Kraft et al. (1959) effectively commented
without proof that f †(n) ≤ n! (see Kraft et al., 1959, p. 413).

Despite such a large upper bound, it appears that to date no examples have
been found for which f †(n) 
= f(n) or g†(n) 
= g(n). We show below that
f †(7) ≥ g†(7) ≥ 8, which, together with our earlier finding that g(7) = 7,
proves that g†(7) > g(7). To do this, we will need a variation of Theorem 13.

Theorem 16 (Construction method 2) Let X = {x1, . . . ,xk}, k ≥ 4,
be a system of non-zero vectors from T n such that

∑k
i=1 aixi = 0 for some

non-negative integers a1, . . . , ak with
∑k

i=1 ai = m, and such that for every
equation

∑k
i=1 a′

ixi = 0 with positive integer coefficients a′
i it happens that

∑k
i=1 a′

i ≥ m. Suppose further that the k × n matrix A having the vectors
x1, . . . ,xk as its rows has the property that Ab = 0 for some positive integer-
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valued vector b = (b1, . . . , bn) with b1 > b2 > . . . > bn > 0, and that

Span{x1, . . . ,xk} ∩ T n = {±x1, . . . ,±xk}.

Let C(�) be the discrete cone belonging to the weak comparative probability
ordering which arises from the measure p = (b1 + . . .+ bn)−1 (b1, . . . , bn), that
is, C(�) = {x ∈ T n | (x,b) ≥ 0}. Then the discrete cone

C ′ = C(�) \ {−x1, . . . ,−xm}

corresponds to an almost representable comparative probability ordering which
almost agrees with p, and satisfies C†

i for all i < m, but does not satisfy C†
m.

PROOF. The proof is completely analogous to the proof of Theorem 13.

Theorem 17 f †(7) ≥ g†(7) ≥ 8.

PROOF. Consider the following 7 × 7 matrix:

B =
























1 −1 −1 1 0 1 −1

1 0 −1 −1 1 −1 −1

1 0 −1 −1 −1 0 1

−1 1 −1 1 1 0 1

0 −1 1 1 0 −1 1

0 −1 1 −1 1 1 1

−1 1 1 0 −1 0 −1
























,

and let x1, . . . ,x7 denote its rows. It is easy to check that

x1 + . . . + x6 + 2x7 = 0,

that is, condition C7 is violated with (a1, . . . , a7) = (1, 1, 1, 1, 1, 1, 2), and
there does not exist any “smaller” violation. Calculations also show that

Span{x1, . . . ,x7} ∩ T 7 = {±x1, . . . ,±x7},

and Ap = 0 for the probability measure p = 1
148

(48, 40, 27, 16, 12, 10, 7). For
the weak comparative probability ordering determined by this measure, the
equivalences are all consequences of one of the following seven: 146 ∼ 237,
15 ∼ 3467, 17 ∼ 345, 2457 ∼ 13, 347 ∼ 26, 3567 ∼ 24 and 23 ∼ 157. Again
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this is a non-representable but almost representable comparative probability
ordering on I7, but is one which satisfies C†

4, C†
5, C†

6, and C†
7, while failing C†

8

with (a1, . . . , a7) = (1, 1, 1, 1, 1, 1, 2).

5 Account for n = 5 and n = 6

The results of this section were obtained with the help of the computer algebra
system Magma (Bosma et al., 1997), using the same techniques of enumera-
tion as described in Fishburn (1996, Section 4), but also checking the results
for both representability and almost representability (using techniques of lin-
ear programming). Enumeration of the orderings required less than 60 seconds
of computer time for the case n = 5, and 12 hours for the case n = 6, while
determining representability (and/or almost representability) took just a little
longer.

Theorem 18 There are 546 different comparative probability orderings of the
subsets of I5 = {1, 2, 3, 4, 5}, of which 516 are representable, and the remaining
30 are almost representable.

In particular, our computations show that Fishburn’s claimed total number
of 561 orderings in Fishburn (1996, Section 4) is incorrect.

Note also that it is quite easy to decide if any given one of these orderings is
almost representable. For example, one of the 30 non-representable orderings
(the last in the list at the end of Section 4 of Fishburn (1996)) is completely
determined by the four mutually-cancelling comparisons 234 � 15, 1 � 245,
25 � 34, 45 � 2, and the extra conditions 235 � 1 and 1 � 23. Now if this
ordering arises from the probability measure p = (p1, . . . , p5), then the first
four comparisons require that p1 = 2p4 + 2p5, p2 = p4 + p5 and p3 = 2p5,
and the two extra conditions require that 2p5 > p4 and p4 > p5. Choosing
p4 = 3 and p5 = 2, for instance, we see that the given ordering almost agrees
with the probability measure p = 1

24
(10, 5, 4, 3, 2).

Theorem 19 There are exactly 169444 different comparative probability or-
derings of the subsets of I6 = {1, 2, 3, 4, 5, 6}. Of these, 124187 are repre-
sentable, while 45257 are not. Of the 45257 that are non-representable, 44987
fail C4 with a1 = a2 = a3 = a4 = 1, while the other 270 satisfy C4 but fail C5

with a1 = a2 = a3 = a4 = a5 = 1. Moreover, of these 45257 orderings that
are non-representable, 40055 are almost representable, while the other 5202
are not. In particular, of the 44987 non-representable orderings that fail C4,
exactly 39785 are almost representable, while the other 5202 are not, and all
of the 270 non-representable orderings that satisfy C4 but fail C5 are almost
representable. Hence there are exactly 164242 almost representable orderings,
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and of these, 124187 are representable, while 40055 are not, with 39785 failing
C4 with a1 = a2 = a3 = a4 = 1, and the other 270 satisfying C4 but failing C5

with a1 = a2 = a3 = a4 = a5 = 1.

We say that the dual of a comparison A � B is the comparison B � A, and
then the dual of a set of comparisons is the set of their duals. In the case
n = 5, Fishburn categorised the 30 orderings that are non-representable into
five types (and their duals) according to the violations of C4 that they exhibit,
and noted that some orderings may exhibit more than one type of violation.
For the case n = 6, we find that up to duality there are 423 such types, of
which 385 (and their duals) involve four comparisons that together fail C4

with a1 = a2 = a3 = a4 = 1, while the remaining 38 (and their duals) involve
five comparisons that together fail C5 with a1 = a2 = a3 = a4 = a5 = 1.

We note that the first example of a comparative probability ordering on a
6-element set which fails to be almost representable was constructed by Kraft
et al. (1959). Our computations provide the following extension to the results
of Fishburn (1996, 1997):

Corollary 20 f(6) = g(6) = f †(6) = g†(6) = 5.

6 Conclusion and Open Questions

Kraft, Pratt, and Seidenberg (Kraft et al., 1959) left open the question of
whether or not all comparative probability orderings on a 5-element set are
almost representable. We have answered this question by showing that all of
them are indeed almost representable.

We know now that f(5) = g(5) = 4, and f(6) = g(6) = 5, but g(7) = 7. The
question remains open as to whether f(7) is equal to 7 or 8. Nevertheless,
it is clear that the situation for n ≥ 7 is different to that for n ∈ {5, 6}, so
Fishburn’s conjecture is no longer adequate. We propose amending it to the
following:

Conjecture 21 f(n) = g(n) = n for all n ≥ 7.

Some more research will have to be undertaken before any reasonable conjec-
ture about f †(n) and g†(n) can be formulated.
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