
Chapter 7

Some aspects of profinite group theory

Dan Segal

7.1 Introduction

7.1.1 Origins

Profinite groups were introduced in number theory early in the last

century. First of all, the group of p-adic integers Zp appeared as a means

for studying congruences: one can replace infinitely many congruences

of the form

f(X) ≡ 0 (mod pn)

by a single equation

f(X) = 0

over Zp. There are two advantages to this approach. One is that we

can do arithmetic in a nice integral domain of characteristic zero, in-

stead of the messy finite rings Z/pnZ. More importantly, though, from
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224 Some aspects of profinite group theory

a methodological point of view, what we have here is a technology for re-

placing infinitely many hypotheses (about disparate small objects) with

a single hypothesis (about one large object): the “large object” – the p-

adic integers in this case – can then be studied by methods of algebra or

arithmetic. This process of “mathematical reification” is of course quite

traditional (as in the construction of the complex numbers), but is a

particularly characteristic feature of 20th century mathematics (Hilbert

space, representable functors,...).

As a profinite group, of course, Zp is rather trivial, and its main role in

this context is as a ring. Profinite groups of (much) greater complexity

were introduced by Krull. His insight was that the Galois group of

an infinite algebraic Galois extension of fields is in a natural way a

profinite group: it is a compact topological group, whose structure is

completely determined by the finite Galois groups of all the finite Galois

subextensions. This led to the elegant modern formulations of class field

theory by Chevalley, Artin and Tate.

Later, Grothendieck introduced profinite groups into algebraic geometry,

as the fundamental groups of schemes. I shall say no more about these

topics, which are well beyond my competence: instead, I will concentrate

on profinite groups as objects of study for group theorists. This is not

going to be a comprehensive survey even of this limited subject: my

intention is merely to point the reader to some areas where interesting

developments have recently taken place, and that I happen to know

something about (and the different amounts of space devoted to the

various topics in no way reflects their relative importance).
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I would like to acknowledge a special debt to both Alex Lubotzky and

Avinoam Mann, from whom – way back in the last century – I learnt

new ways to do group theory. Thanks are also due to Alex Lubotzky

and Derek Holt for useful contributions to this article, and to Peter

Neumann who saved me from a foolish error.

7.1.2 “Profinite group theory”

This phrase, like ‘algebraic number theory’, has a useful ambiguity

(which is lost on translation into French); I intend the reader to keep in

mind both meanings – ‘the theory of profinite groups’ and ‘a profinite

approach to group theory’.

A profinite group is what you get when you look at a (suitably coherent)

collection of finite groups all at once. In this context, ‘coherent’ means

that the groups in question form an inverse system: a family of finite

groups (Gλ) indexed by a directed set Λ, and for each pair α, β ∈ Λ

with α ≤ β a homomorphism θβα : Gβ → Gα. Whenever α ≤ β ≤ γ we

require that θβα ◦θγβ = θγα, and each θαα is the identity automorphism.

(To say that Λ is a directed set means that Λ is partially ordered and

that for every pair α, β ∈ Λ there exists γ ∈ Λ with γ ≥ α and γ ≥ β.)

The inverse limit of this system, denoted

lim
←−
Λ

Gλ,

may be defined by a suitable universal property, or more concretely as

a subgroup G of the Cartesian product of all the Gλ, as follows:

G = {(gλ) | θβα(gβ) = gα whenever β > α} ≤
�

λ∈Λ

Gλ. (1)
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Thus G maps naturally into each of the finite groups Gλ (by projecting

to a factor), and G is completely determined by the system (Gλ)λ∈Λ;

the homomorphisms θβα are supposed to be included as part of the

definition of the system. So far, we have done little more than introduce

a notation. The key observation now is that G is in a natural way

a topological group: giving each of the finite groups Gλ the discrete

topology we endow
�

λ∈Λ Gλ with the product topology; instead of being

discrete, this is a compact Hausdorff space, by Tychonoff’s Theorem. It

is easy to see that the inverse limit G is a closed subgroup, so in this way

G becomes a compact Hausdorff topological group. For each λ ∈ Λ the

kernel Kλ of the projection πλ : G → Gλ is an open normal subgroup of

G, and the family {Kλ} forms a base for the neighbourhoods of 1 in G.

The bare algebraic structure of G may carry little information about the

original system of finite groups, but in combination with the topology

it closely reflects many properties of that system. Vaguely speaking,

properties of the topological group G reflect uniform properties of the

groups Gλ, or rather of their subgroups πλ(G) (the maps πλ are not

always surjective: they will be if Λ is countable and all the individual

θβα are surjective). For example, we find that G is finitely generated (as

a topological group) if and only if there exists d ∈ N such that each of the

groups πλ(G) can be generated by d elements; more subtle relationships

of this kind will be discussed below.

Certain classes of profinite groups have special names: if the finite groups

Gλ all belong to some class of groups C, then G = lim
←−

Gλ is called a pro-C

group. When C is the class of finite p-groups for some prime p one calls
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G a pro-p group.

In practice, most of the questions studied in “profinite group theory”

arise in one of the following contexts, which are not mutually exclusive.

(1) Questions about some naturally-defined family of finite groups, for

example finite p-groups; see §7.5.

(2) Questions about infinite groups that can be approached through their

profinite completions; this may be construed as a subcase of (1) where

the family of finite groups consists of finite quotients of some fixed infi-

nite group. See §§7.2, 7.4, 7.8.1.

(3) Questions about profinite groups as such; these may be analogues in

the profinite category of familiar group-theoretic questions (§7.8.3, 7.8.2),

they may arise from number theory and field theory via the Galois group

(see [FJ], [B], [dSF]), or they may be a new kind of question specific to

the profinite situation (§§7.6, 7.7). As we shall see, such investigations

sometimes lead to new results about abstract groups, finite or infinite.

For definitions and the basic properties of profinite groups, consult [DDMS]

Chapter 1, [W2] Chapter 1, or [RZ2] Chapter 2. Each of these books

goes on to study various specific topics; some of them are mentioned

below, but all are worth studying. Galois-theoretic applications of profi-

nite groups are pursued at length in [FJ]. Various aspects of pro-p groups

are discussed in detail in [NH], which includes a substantial list of open

problems.

The first substantial treatment in book form of profinite groups was

Serre’s influential book [CG]: as the title suggests, this is primarily con-

cerned with homological matters and is slanted towards number theory.
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7.2 Local and global

An important strand in number theory is the investigation of so-called

‘local-global’ principles. A typical question is like this: suppose a cer-

tain Diophantine equation f(X) = c can be solved modulo m for every

m ∈ N, does it follow that f(X) = c has a solution in integers? The

most famous example is the Hasse-Minkowski Theorem, which gives an

affirmative answer for rational solutions, at least, when f(X) is an indef-

inite quadratic form. A fruitful way of formulating such statements was

introduced by Hasse (inspired by Hensel): instead of considering con-

gruences one takes the (equivalent) hypothesis that f(X) = c is solvable

in every p-adic field (if we call R the ‘∞-adic field’ this also subsumes

the condition that the quadratic form be indefinite). In this case, the

equation is said to be solvable ‘locally’; if this implies the existence of

a rational solution one has a ‘local-global’ theorem, and the equation is

said to satisfy the ‘Hasse Principle’.

In the case of quadratic forms, the answer for integral solutions is a little

more complicated: it may be that f(X) = c is not solvable in integers,

but at least we can say that f �(X) = c is solvable where f �(X) is one of

finitely many quadratic forms, that constitute the genus of f .

What has this to do with group theory? Thinking of the above as the

search for properties of Z that are determined by properties of the col-

lection of finite rings Z/mZ, we can generalize as follows: to what extent

are properties of an infinite group G determined by the finite quotient

groups of G? This is a natural enough question in itself; it also has

a further philosophical motivation, connected with decision problems.
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The point is that a ‘local-global’ theorem in group theory, as in number

theory, often implies a corresponding decidability theorem. Rather than

stating this as a formal metatheorem let me illustrate with an example

which should make the idea clear. A group G is conjugacy separable if it

has the following property: if x, y ∈ G are such that π(x) is conjugate

to π(y) in π(G) for every homomorphism π from G to any finite group,

then x and y are conjugate in G; this is the ‘local-global’ property of

conjugacy in G. On the other hand, G has solvable conjugacy problem

if there is a uniform algorithm that decides, given any two elements of

G, whether or not they are conjugate in G.

7.2.1 Theorem. Every finitely presented conjugacy separable group has

solvable conjugacy problem.

The algorithm consists of two procedures, run simultaneously. The first

one lists all consequences of the relations in a given presentation of

G, while the second one enumerates all homomorphisms π from G to

finite groups, and for each such π lists the (finitely many) pairs of non-

conjugate elements in π(G). Now given x and y ∈ G, we run both

procedures until either the first one spits out an equality xg = y or the

second one spits out a pair (π(x),π(y)). In the first case we conclude that

x and y are conjugate, in the second that they are not; the hypothesis

that G is conjugacy separable ensures that one or other of the cases

must arise.

Of course, no sane person would try to implement such a stupid al-

gorithm; its interest is theoretical. It shows that combinatorial group

theorists shouldn’t waste their time trying to prove the unsolvability of
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the conjugacy problem in the case of conjugacy separable groups. The

same applies to the word problem in residually finite groups: a group is

residually finite if its subgroups of finite index intersect in {1}, which is

equivalent to saying that any two distinct elements have distinct images

in at least one finite quotient of the group – the local-global property

for equality of elements (while the ‘word problem’ asks for an algorithm

to determine equality of group elements, given as words on a fixed gen-

erating set).

As in number theory, there is a useful reformulation for group-theoretic

‘local-global’ questions. The family of all finite quotients of G naturally

forms an inverse system of finite groups, with respect to the quotient

maps

G/N → G/M

where N ≤ M are normal subgroups of finite index in G. The inverse

limit of this system is the profinite completion �G of G; and the question

becomes: what properties of G are determined by properties of the

profinite group �G?

The family of quotient maps G → G/N induces a natural homomor-

phism ι : G → �G. The kernel of ι is the finite residual R(G) of G,

which is the intersection of all subgroups of finite index in G. Evidently
�G = [

G/R(G), so knowledge of �G will at best give us information about

G/R(G); thus it is sensible to restrict attention to groups G for which

R(G) = 1, that is residually finite groups. If G is residually finite then

the map ι is injective, and we use it to identify G with a subgroup of
�G. This amounts to identifying an element g ∈ G with the ‘diagonal’
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element

(gN)N∈N ∈ �G ≤
�

N∈N

G/N

where N is the family of all normal subgroups of finite index in G.

To say that G is residually finite, then, amounts to saying that two el-

ements of G are equal if and only if they map to equal elements of �G.

Similarly, G is conjugacy separable if and only if for pairs of elements of

G, conjugacy in �G implies conjugacy in G; this is equivalent to saying

that each conjugacy class in G is closed in the profinite topology of G,

that is, the topology induced from �G, in which a base for the neighbour-

hoods of 1 in G is given by the family N of all normal subgroups of finite

index in G. (Analogously, G is residually finite if and only if points are

closed in G – in this context this is equivalent to the Hausdorff property

)

Well known classes of residually finite groups include the free groups and

the virtually polycyclic groups. (A group is virtually P if it has a normal

P -subgroup of finite index.) In fact, groups in these classes have many

good local-global properties: in particular, they are

• conjugacy separable and

• subgroup separable;

a group G is subgroup separable if every finitely generated subgroup is

closed in the profinite topology of G; this is equivalent to saying that for

each finitely generated subgroup H, the property ‘being in H’ is a local-

global property of elements of G. This has the important consequence

that the closure of H in �G is naturally isomorphic to �H.
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That free groups are subgroup separable was proved by Marshall Hall in

1949 (see [LS], Chapter 1, Prop. 3.10). The fact that virtually polycyclic

groups are subgroup separable is quite elementary (see [S], Chapter 1).

The fact that they are conjugacy separable, however, depends on an

interesting result in algebraic number theory (due to F. K. Schmidt and

Chevalley):

7.2.2 Theorem. Let O be the ring of integers in an algebraic number

field, with group of units O∗. Then every subgroup of finite index in O∗

contains a ‘congruence subgroup’ (1 + mO) ∩O∗ (0 �= m ∈ Z).

One says that O∗ has the congruence subgroup property: equivalently,

the profinite topology on the additive group of O induces the profinite

topology on the multiplicative group O∗. More generally, let M be any

virtually polycyclic group and G a group of automorphisms of M . We

may define a topology on G by choosing as a base for the neighbourhoods

of 1 the family of subgroups

CG(M/Mm) (m ∈ N);

this is the congruence topology on G.

7.2.3 Theorem. Let M be a virtually polycyclic group and G a virtually

polycyclic subgroup of Aut(M). Then

(i) Each orbit aG (a ∈ M) is closed in the profinite topology of M ;

(ii) G is closed in the congruence topology of Aut(M);

(iii) the congruence topology on G is the same as the profinite topology.



Dan Segal 233

Theorem 7.2.2 is the special case of (iii) where M = O and G = O∗

(acting by multiplication). Part (iii) follows directly from (ii) applied

to arbitrary subgroups of finite index in G. Part (ii) Follows from (i)

applied to the orbit of (a1, . . . , ad) in the group M (d), where {a1, . . . , ad}

is a generating set for M and G acts diagonally. Part (i), a generalized

version of conjugacy separability, may be reduced to an application of

Theorem 7.2.2 by ‘dévissage’, arguing by induction on the Hirsch length

of M . See [S], Chapter 4 (I assumed there that M is free abelian, but

the general case is no harder). A further generalization is given in [S1],

§8.

There is an essentially equivalent formulation of (i) in terms of deriva-

tions: a derivation from G to M is a map δ : G → M such that

δ(xy) = δ(x)y.δ(y) for all x, y ∈ G (such maps are also called crossed

homomorphisms or 1-cocyles). Among these are the inner derivations

δa : x �→ axa−1 (a ∈ M fixed). Since aG = δa(G) · a we see that (i) is a

special case of

7.2.4 Theorem. Let M and G be virtually polycyclic groups, with G

acting on M . If δ : G → M is a derivation then the set δ(G) is closed

in the profinite topology of M .

The action of G on M induces an action of �G on �M , and a derivation

δ : G → M induces a continuous derivation �δ : �G → �M . One may

deduce

7.2.5 Theorem. Let G and M be as above. Then the natural mapping

H1(G,M) → H1( �G, �M)
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is injective.

Here, H1(G,M) is the ‘non-abelian cohomology’ set defined in [CG],

Chapter 1. Another application of Theorem 7.2.4 gives

7.2.6 Proposition. Let a ∈ M . Then �δ−1(a) is equal to the closure of

δ−1(a) in �G.

This applies in particular when δ is a homomorphism, and shows that the

functor G �→ �G is exact on virtually polycyclic groups. This can also

be seen by a direct elementary argument; but the following excellent

properties of this functor depend on the full strength of Proposition

7.2.6:

7.2.7 Theorem. Let G be a virtually polycyclic group and H, K sub-

groups of G. Then

CK(H) = CK(H)

NK(H) = NK(H)

H ∩K = H ∩K.

where X denotes the closure of a set X in �G.

See [RSZ], §2. This is applied together with the geometric study of

profinite groups acting on ‘profinite trees’ to establish

7.2.8 Theorem. [RSZ] Let G a group that is obtained from virtually free

groups and virtually polycyclic groups by forming finitely many succes-

sive free products, amalgamating cyclic subgroups. Then G is conjugacy

separable.
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Another famous decision problem in group theory is the isomorphism

problem: to decide, given two finite group presentations, whether or not

they define isomorphic groups. Suppose C is a class of groups having the

‘local-global property for isomorphism’ – that is, for G and H in C one

has G ∼= H if and only if F(G) = F(H), where F(G) denotes the set of

isomorphism types of finite quotient groups of G. Then it is easy to see,

by a modification of the argument above, that the isomorphism problem

for finitely presented groups in C has a positive solution. Examples

of such classes C are the finitely generated free groups and the finitely

generated abelian groups. As polycyclic groups are not so very different

from finitely generated abelian groups, one might wonder whether they,

also, have the local-global property for isomorphism. The answer is ‘no’:

examples demonstrating this are given in [S], Chapter 11. Some of these

examples are constructed using integral quadratic forms that are ‘locally

equivalent’ but not equivalent over Z. Such quadratic forms, however,

do belong to the same genus, which consists of finitely many integral

equivalence classes. And this finiteness property does indeed generalize:

7.2.9 Theorem. [GPS] Given any set X of isomorphism types of finite

groups, there are at most finitely many isomorphism types of virtually

polycyclic groups G such that F(G) = X .

The proof does not tell us exactly how many isomorphism types, so

the theorem does not imply a positive solution for the isomorphism

problem in this case. That requires other methods, and may be found

in [S1]. While the statement of the theorem does not explicitly mention

profinite groups, it is clear (if G is a finitely generated group!) that
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the set F(G) both determines and is determined by (the topological

group) �G, so the result amounts to saying that for virtually polycyclic

groups, the profinite completion ‘determines the group up to finitely

many possibilities’. (In fact, in this case the topological group �G is

uniquely determined by its underlying abstract group: see §7.6 below.)

Given any subgroup G of a profinite group P, the inclusion G → P in-

duces a natural continuous homomorphism π : �G → P . This is surjective

if and only if G is dense in P ; it is injective if and only if the topology

induced on G as a subspace of P is the profinite topology of G, in which

case we say that G has the congruence subgroup property, or CSP (by

analogy with the special case P = Aut(M) discussed above). Now we

can reformulate Theorem 7.2.9 as

7.2.10 Theorem. Let P be a profinite group. Let S denote the set of all

virtually polycyclic subgroups that are dense in P and have CSP. Then

S consists of finitely many orbits of Aut(P ).

In fact, using Theorem 7.4.1, below, one can show that if P is the profi-

nite completion of a virtually polycyclic group, then any finitely gener-

ated residually finite group G with �G ∼= P is itself virtually polycyclic

(by considering the dimension of the Sylow pro-p subgroups of �G: see

§7.3). So in Theorem 7.2.10 we can replace ‘virtually polycyclic’ by

‘finitely generated’ as long as we add the hypothesis that P contain at

least one dense virtually polycyclic subgroup with CSP.

The advantage (indeed, the necessity) of this ‘profinite’ approach is ap-

parent as soon as one embarks on the proof of this theorem. One of

the first steps, for example, is to show that for G ∈ S the closure in
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P of the Fitting subgroup of G is precisely the Fitting subgroup of P .

Since G is subgroup separable it follows that [Fit(G) is determined by �G;

the problem can now be broken into two cases: (1) the case of nilpotent

groups, (2) the study of groups G for which not only �G but also Fit(G)

are fixed. Both parts are difficult, and depend on deep results in the

arithmetic theory of algebraic groups, results that generalize classical

finiteness properties of quadratic forms. The key fact is the following

analogue of Theorem 7.2.3(i):

7.2.11 Theorem. (Borel and Serre) Let Γ be an arithmetic group acting

rationally on M = Zd. Then each ‘local orbit’ of Γ in M is the union of

finitely many orbits of Γ.

A local orbit here means a set of the form M ∩a
�Γ where �Γ is the integral

adele group associated to Γ, acting on �M . For all this, see [S], Chapters

9 and 10.

A much simpler question than that of isomorphism is the following: what

is the minimal size of a generating set for a group G ? This number is

denoted d(G).

7.2.12 Theorem. [LW] If G is a virtually polycyclic group then d(G) ≤

d( �G) + 1.

Of course, d( �G) here denotes the minimal size of a topological generating

set for �G, so what the result is saying is that if every finite quotient of G

can be generated by d elements, then G itself can be generated by d + 1

elements. This is a hard theorem due to Linnell and Warhurst. It is very

easy to find cases where d(G) = d( �G) (abelian groups for example), and
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not much harder to find cases where d(G) = d( �G) + 1 (using a ring of

algebraic integers that is not a PID). If we had an algorithm for deciding

whether a polycyclic group is of the first or of the second type, we could

then effectively determine d(G) for such groups G, by a version of the

‘stupid double-enumeration procedure’ described above. But – as far as

I know – we don’t. Indeed the following challenging problem is still open

(even for the ‘easy’ case of virtually abelian groups!):

Problem. Find an algorithm that determines d(G) for every polycyclic

group G.

For the currently known decision procedures for polycyclic groups see

[BCRS], [S1], [E1] and [E2].

A uniform bound for d(G) over all the finite images G of a group G is

just one example of what I call an ‘upper finiteness condition’: a uniform

bound for some measure of size, or growth, on all the finite quotients of

a group. Any such condition certainly means something for the global

structure of a group, and the challenge is to find out what it is. This

programme is discussed in Section 7.4 below.

7.3 p-Adic analytic groups

The theory of Lie groups is without doubt one of the central pillars of

twentieth-century mathematics (not to mention physics!). In the 1960s

Michel Lazard [L] developed an analogous theory of ‘p-adic Lie groups’:

these p-adic analytic groups have the underlying structure of an analytic

manifold over the field Qp, and the group operations are given locally
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by convergent p-adic power series. One of his key discoveries was that

each compact p-adic analytic group has an open subgroup (necessarily

of finite index) which is a finitely generated pro-p group, and any pro-p

group arising in this situation has a certain special algebraic property;

conversely, every finite extension of a finitely generated pro-p group with

this property has, in a natural way, the structure of a compact p-adic

analytic group.

The ‘special property’ discovered by Lazard is that of being powerful, a

term later introduced by Lubotzky and Mann in [LM]. The pro-p group

G is powerful if G/Gp is abelian (when p = 2 we require that G/G4

be abelian). Thus powerful groups are ‘abelian to a first approxima-

tion’, and Lubotzky and Mann went on to show that in fact such groups

resemble abelian groups in many ways: for example, in a d-generator

powerful group every closed subgroup can be generated by d elements.

Thus such a group has finite rank, where the rank of a profinite group

G is defined by

rk(G) = sup{d(H) | H ≤c G}

(here d(H) denotes the minimal size of a (topological) generating set for

H, and H ≤c G means ‘H is a closed subgroup of G’). Conversely, they

proved that every pro-p group of finite rank has an open (hence of finite

index) powerful subgroup. With Lazard’s result, this shows that a pro-p

group is p-adic analytic if and only if it has finite rank.

This opened the way to a more group-theoretic approach to the whole

topic, expounded in detail in the book [DDMS]. The resulting theory

has found numerous applications. Applications to finite p-groups are
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discussed in §7.5 below. Many applications to infinite group theory are

based on Lubotzky’s observation that a compact p-adic analytic group

is a linear group over Qp, by Ado’s Theorem: it should be mentioned

that the correspondence Lie groups ↔ Lie algebras works even better in

the p-adic case than in the classical case. This leads to the ‘Lubotzky

linearity criterion’, see §7.6. It implies that any infinite group which is

residually a finite p-group and whose pro-p completion has finite rank is

in fact a linear group; such a group can then be attacked with various

tools from linear group theory. A strikingly successful example of this

strategy is discussed in the following section.

Other group-theoretic applications are described in [DDMS]. Our rela-

tively good understanding of pro-p groups of finite rank has encouraged

the investigation of wider classes of pro-p groups, and this is currently a

lively area of research. Many recent developments are described in the

book [NH].

7.4 Upper finiteness conditions and

subgroup growth

7.4.1 ‘Upper finiteness conditions’

Let us consider the implications for a group of imposing various restric-

tions on its finite quotients.

1. The rank rk(Q) of a finite group Q is the least integer r such that

every subgroup of Q can be generated by r elements. The upper rank of
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any group G is

ur(G) = sup {rk(Q) | Q ∈ F(G)} .

This is none other than the rank of �G, defined above.

7.4.1 Theorem. [MS1] Let G be a finitely generated residually finite

group. Then G has finite upper rank if and only if G is virtually soluble

of finite rank.

An infinite group G is said to have finite rank if there exists an integer r

such that every finitely generated subgroup of G can be generated by r

elements. Soluble groups of finite rank are quite easy to describe: such

a group that is also finitely generated and residually finite is a finite

extension of a triangular matrix group over a ring of the form Z[1/m].

This theorem is making two remarkable assertions: (a) that ‘(bounded)

finite rank’ is a local-global property, and (b) that a numerical bound

(on the size of generating sets, in this case) implies a structural algebraic

property, namely solubility.

2. For a finite group Q, the number of subgroups of Q is denoted s(Q). A

group G has weak polynomial subgroup growth, or wPSG, if there exists

a constant α such that

s(Q) ≤ |Q|α (2)

for every Q ∈ F(G).

7.4.3 Theorem. [LMS], [S2] Let G be a finitely generated residually

finite group. Then G has wPSG if and only if G is virtually soluble of

finite rank.
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The alert reader will have noticed that this theorem implies the preced-

ing one, since if G has finite upper rank we can take α = ur(G) and

deduce that G has wPSG.

3. A group G has polynomial index growth, or PIG, if there exists a

constant α such that

|Q| ≤ (expQ)α

for every Q ∈ F(G), where expQ denotes the exponent of Q. This is

equivalent to saying that |Q/Qm| ≤ mα for every Q ∈ F(G) and every

m ∈ N. It is easy to see that every soluble group of finite rank has

PIG, but the converse is far from true: Balog, Mann and Pyber [BMP]

construct a finitely generated residually finite group with PIG which

has finite simple quotients of unbounded ranks. However, if we assume

solubility (and more), we have

7.4.4 Theorem. [S3] Let G be a finitely generated soluble residually

nilpotent group. Then G has PIG if and only if G has finite rank.

I expect the same to hold if the hypothesis of residual nilpotency is

weakened to residual finiteness, but this is an open problem.

PIG and other upper finiteness conditions are discussed in detail in Chap-

ter 12 of [SG].

7.4.2 Subgroup growth

A group G has ‘weak PSG’ if it doesn’t have very many subgroups of

each finite index. More generally, it is interesting to study just how

many subgroups there are of each index: that is, to study the function
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n �→ an(G) where an(G) denotes the number of subgroups of index n in

G. This function is well defined as long as G is finitely generated. When

G is a profinite group, an(G) denotes the number of open subgroups of

index n in G, and again is well defined if G is (topologically) finitely

generated. Moreover, it is easy to see that if G is any abstract group,

then an(G) = an( �G); in this sense, subgroup growth – i.e. the behaviour

of the function n �→ an(G) – is a ‘profinite’ property of groups.

A comprehensive account of this topic is given in the book [SG], where

the advantages of the ‘profinite philosophy’ are amply illustrated; let

me just mention a few of the highlights, under three headings. We will

denote by sn(G) the number of subgroups (or open subgroups) of index

at most n in the group G.

‘Analytic problems’: what does a given restriction on the subgroup

growth imply for the algebraic structure of a group?

A group G has polynomial subgroup growth, or PSG, if log sn(G) =

O(log n). This obviously implies wPSG, and it is a deep result (de-

pending on CFSG) that the two conditions are in fact equivalent. Thus

the theorem stated above is equivalent to

7.4.5 Theorem. [LMS] Let G be a finitely generated residually finite

group. Then G has PSG if and only if G is virtually soluble of finite

rank.

The difficult part is ‘only if’. The original proof of this (though not the

one presented in [SG]) starts by considering the pro-p completions of G.

Lubotzky and Mann proved that every pro-p group with PSG is p-adic
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analytic, from which it follows that if G has PSG then �Gp is a p-adic

analytic group, and therefore linear. Thus if G happens to embed into �Gp

then G itself is a linear group. One can then use ‘Strong Approximation’

results (specifically, Theorem 7.6.3 stated in §7.6, below) to reduce to

the case of arithmetic groups, and the proof is concluded by an explicit

counting of congruence subgroups in such groups (see §7.8.1). In the

general case, further arguments are required, depending among other

things on CFSG.

While a finitely generated residually finite group with PSG must be vir-

tually soluble, this is not true for finitely generated profinite groups with

PSG. These are characterized in [SSh]: such a profinite group is (virtu-

ally) an extension of a prosoluble group of finite rank by the Cartesian

product of a family of finite quasisimple groups of Lie type satisfying

certain very precise arithmetical conditions. (In view of the preceding

theorem, such a group can only be the profinite completion of a finitely

generated abstract group in the special case where this family of qua-

sisimple groups is finite.)

Like much of ‘pure’ profinite group theory, the characterization of profi-

nite groups with PSG quickly reduces to a problem of finite group the-

ory: establishing uniform bounds for several structural parameters of a

finite group G in terms of the parameter α defined in (2), above. The

same applies to many other results that relate the algebraic structure of

a profinite group to its rate of subgroup growth, when this is faster than

polynomial.

‘Synthetic problems’: under this heading comes the problem of con-
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structing groups that demonstrate particular types of subgroup growth.

A group G is said to have growth type f if

log sn(G) = O(log f(n))

log sn(G) �= o(log f(n)).

It is not difficult to construct finitely generated profinite groups with

more-or-less arbitrary growth type, by forming Cartesian products of

suitable collections of finite groups [MS2]. To do the same for finitely

generated abstract groups is much harder, but we have

7.4.6 Theorem. ([P], [S4]) Let g : N → R+ be a ‘good’ non-decreasing

function with g(n) = O(n). Then there exists a finitely generated group

G having growth type ng(n).

The condition ‘good’ here is a mild restriction of a technical nature, that

need not concern us. The bound g(n) = O(n) is necessary, because the

fastest possible growth type for any finitely generated group is easily seen

to be nn. Thus the point of the theorem is that essentially every ‘not

impossible’ growth type is actually exhibited by some finitely generated

group.

The proof is in two stages. The first is to construct a suitable profinite

group P with the specified growth type; the second, harder part, is to

show that this P is the profinite completion of some finitely generated

abstract group (this is what ‘suitable’ means here: the easy groups given

in [MS] don’t have this property). That is, we require P to contain a

dense finitely generated subgroup G that has the congruence subgroup

property, as defined in §7.2, above. In fact two different constructions



246 Some aspects of profinite group theory

are used: when g(n) = O(log log n) one takes P to be a certain group of

automorphisms of a rooted tree; this construction is discussed in §7.6,

below. When log n = O(g(n)) one takes P to be the Cartesian product

of a suitable family of finite alternating groups; in this case, the dense

subgroup G does not quite have the CSP, but close enough: it turns out

that the kernel of the natural epimorphism �G → P is a procyclic group,

which is enough to ensure that G has the same subgroup growth type

as P . For full details see Chapter 13 of [SG].

‘Zeta functions’: Having associated to a finitely generated group G

the numerical sequence (an(G)), it is natural to wonder about the arith-

metical properties of this sequence. The ‘growth type’ defined above is

one crude measure, but can we obtain more refined information? This

question has been studied in depth for certain types of groups: (a) free

groups, one-relator groups and free products of finite groups, (b) finitely

generated nilpotent groups, and (c) p-adic analytic pro-p groups.

I will say no more about the class (a). This is the subject of many papers

by Thomas Müller, using methods of combinatorics and analysis; for

references and some sample results see Chapter 14 of [SG]. Groups of

types (b) and (c) have polynomial subgroup growth: in this case, it is

convenient to encode the sequence an(G) in a generating function

ζG(s) =
∞�

n=1

an(G)n−s

where s is a complex variable. This ‘zeta function’ represents a com-

plex analytic function, regular on some half-plane Re(s) > α; here the
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abscissa of convergence α is given by

α = inf {γ | sn(G) = O(nγ)} ,

a finite number when G has PSG.

For a fixed nilpotent group G, it is easy to see that the arithmetical

function an(G) is multiplicative, i.e. if m and n are coprime then

amn(G) = am(G)an(G). This implies the ‘Euler product’ decomposi-

tion

ζG(s) =
�

p

ζG,p(s)

where the product is over all primes and the ‘local factors’ are defined

by

ζG,p(s) =
∞�

j=0

apj (G)p−js.

We showed in [GSS] that when G is a finitely generated nilpotent group,

for each prime p the series ζG,p(s) represents a rational function in p−s

(with rational coefficients); to see why this is reasonable, note that

when G is the infinite cyclic group ζG is the Riemann zeta function,

and ζG,p(s) = 1
1−p−s . The proof applies a general theorem about p-

adic integrals, proved by Denef using methods of p-adic model theory.

Now, still assuming that G is finitely generated and nilpotent, we have

ζG,p(s) = ζP (s) where P = �Gp is the pro-p completion of G; and P in

this case is a p-adic analytic pro-p group. Thus the rationality theorem

just mentioned is a very special case of

7.4.7 Theorem. [dS1] If P is a compact p-adic analytic group then

ζG,p(s) is a rational function over Q in p−s.
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In order to establish this, du Sautoy showed that the ‘analytic’ theory of

p-adic analytic groups can be reduced to ‘p-adic analytic’ model theory,

as developed by Denef and van den Dries. As well as opening up a

fascinating new field of study, this result led the way to some remarkable

applications in the theory of finite p-groups, discussed in the following

section.

The study of these group-theoretic zeta functions is a very active area of

research at the present time; many results have been obtained but many

more challenging problems remain open. For more details and references

see [dSS] and [SG], Chapters 15 and 16.

7.5 Finite p-groups

7.5.1 Coclass

It was clear from the early days of group theory that the finite simple

groups are rather special: they are, essentially, the symmetry groups

of highly symmetrical structures (a finite set, or a vector space with a

bilinear form). Of course this wasn’t actually proved until the 1980s

(and the full proof is not yet published!), but the fact is that these

objects form an elegant list of identifiable objects, and they are ‘rigid’ in

two senses: (1) they are isolated : you can’t move from one to the next

by a small deformation, and (2) the possibilities of building composite

groups out of them are very limited: they have small Schur multipliers

and small outer automorphism groups.

Neither of these (slightly vague) statements is true of nilpotent groups.
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It was equally clear, at least from the 1930s with the work of Philip

Hall and others, that the finite p-groups constitute a vast and rather

amorphous collection. Thus the received wisdom for most of the last

century considered finite p-groups to be unclassifiable.

This pessimistic conclusion was based on the experience of trying to pro-

duce coherent lists of p-groups, starting with the smallest and working

up by size; in practice this was only achieved for groups of nilpotency

class 2 and quite modest size, as the number of groups of order pn was

found to grow extremely fast with n. Higman and Sims showed in the

1960s that this number is about p
2
27

n3
, and that the number of groups

of class 2 is already about this big. (Contrast this with the number of

simple groups of order n, which is nearly always zero, sometimes 1 and

very occasionally 2 !)

However, a different picture appears if instead of small nilpotency class

one looks at p-groups of large class. Completing earlier work of Black-

burn, Leedham-Green and McKay found that the p-groups of maximal

class do form a comprehensible pattern, and can indeed be neatly clas-

sified by their order. What emerged from this classification is that, for a

fixed prime p, the best way to think of p-groups of maximal class is as the

finite quotients of one particular pro-p group; for example, the 2-groups

of maximal class are precisely the finite quotients of the ‘dihedral pro-2

group’ Z2oC2, together with certain natural ‘twistings’ of them (quater-

nion or semi-dihedral groups). This realisation led Leedham-Green and

Newman to formulate an audacious generalization, that became known

as the “coclass conjectures”. These profoundly insightful conjectures
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cast the problem of classifying p-groups into a completely new frame-

work, and totally transformed the subject between 1980 and 1994, when

the conjectures were finally established.

A finite p-group is said to have coclass r if it has order pn and nilpotency

class n − r (so maximal class means coclass 1). A pro-p group has

coclass r if it is the inverse limit of a system of finite p-groups of coclass

r (with all maps surjective). The main conjecture of Leedham-Green

and Newman, Conjecture A, is purely finitary: it states that every p-

group of coclass r has a normal subgroup of nilpotency class at most

2 and bounded index (the bound depending only on p and r). In view

of the remarks above, this might seem like no progress as regards the

classification: what lies behind it, however, is a vision of the whole

universe of p-groups of fixed coclass. For given p and r, one arranges the

set of all (isomorphism types) of coclass r p-groups into a graph G(p, r),

whose directed edges represent the quotient maps G → G/Z where Z

is a central subgroup of order p in G. Each infinite chain in this graph

then gives rise in a natural way to a pro-p group of coclass r. Now the

remarkable facts are these:

• There are only finitely many infinite pro-p groups of coclass r (for

given p and r);

• Each infinite pro-p group of finite coclass is finitely generated and

virtually abelian, in other words, it is a finite extension of Zd
p for

some finite d.

Moreover, every finite p-group of coclass r is either a quotient of one of
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these virtually abelian pro-p groups, or is obtained from such a quotient

by an explicit ‘twisting’ process, or is one of finitely many ‘sporadic’

groups.

A key step in the proof, achieved by Leedham-Green, was to show that

every pro-p group of finite coclass is a p-adic analytic group, that is, a

pro-p group of finite rank. Once this was known, it became possible

to apply powerful techniques for studying such groups, to show that

if a p-adic analytic group has finite coclass then it must be virtually

abelian. The first proof of this fact, due to Donkin, rests on the ‘analytic’

aspect of these groups and applies the classification of semisimple p-adic

Lie algebras, thus establishing a bridge between the theory of p-groups

and the theory of finite simple groups. Subsequently, a clever direct

argument (also using Lie algebras) was found by Shalev and Zelmanov.

An alternative, purely finitary, proof for Conjecture A was later obtained

by Shalev [Sh]; although this avoids the use of pro-p groups altogether,

it was clearly inspired by the p-adic methods used before.

Explanatory accounts of all or parts of this story are to be found in

[LGM1], [LGM2], [DDMS], Chapter 10. For full references to the many

original papers, see the bibliographies to [LGM1] and [LGM2].

7.5.2 Conjecture P

The main results of coclass theory show that the graph G(p, r) has

finitely many components; moreover, if we remove a finite number of

‘sporadic’ groups what remains is the disjoint union of finitely many

trees. Each of these trees contains just one maximal infinite chain, the
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‘trunk’, to which are attached infinitely many finite ‘twigs’. On the basis

of extensive computer investigations, M. Newman and E. O’Brien were

led to make some very precise conjectures about the shape of these trees.

In particular, their Conjecture P asserts that when p = 2, each tree is

eventually periodic, with period dividing 2r−1.

The conjecture obviously implies that the twigs of such a tree are of

bounded length, and this is no longer true when the prime p is odd.

However, du Sautoy was able to establish a general periodicity result

which includes (the qualitative part of) Conjecture P as a special case.

For each tree T as above and each natural number m, let T [m] denote the

‘pruned tree’ obtained from T by removing all vertices whose distance

from the trunk exceeds m.

7.5.1 Theorem. [dS2] Each of the pruned trees T [m] is eventually pe-

riodic.

It is known that when p = 2 the twigs have bounded lengths, so in this

case we have T [m] = T for some value of m.

The proof is a remarkable application of du Sautoy’s rationality theorem

for zeta functions (see §7.4 above). First of all, he deduces from the

results of coclass theory that there exists a certain p-adic analytic pro-

p group H = H(p, r) which maps onto every finite p-group of coclass

r. The holomorph P = H o Aut(H) is again a p-adic analytic group,

and du Sautoy associates a certain generalized zeta function to the pair

(H, P ); the coefficients of (the Dirichlet series defining) this function

encode precisely the ‘shape’ of the pruned tree T [m]. He proves that

this generalized zeta function is again rational, and the stated periodicity
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then emerges as a formal consequence. For details of this argument, see

[dSS].

Zeta functions are also used in [dS2] to obtain results about the enumer-

ation of p-groups and of finite nilpotent groups of fixed nilpotency class.

These are also discussed in [dSS].

7.6 Finitely generated groups

7.6.1 Linearity

Nearly a century ago, Hasse argued in favour of treating the p-adic com-

pletions of Q on the same footing as the reals. This idea had a huge

influence on the development of number theory; as mentioned above,

it also led to the idea of studying (non-commutative) groups via their

profinite completions. In general, a group doesn’t even have a ‘real com-

pletion’ (unless it is nilpotent, say), but every group has its pro-p com-

pletions and its profinite completion. Thus every group can be mapped,

functorially, into various interesting compact topological groups.

This simple idea led Lubotzky to the solution of a long-standing problem:

how to characterize, by purely internal criteria, those groups that have

a faithful finite-dimensional linear representation over some field, ‘linear

groups’ for short.

7.6.1 Theorem. [Lu2] ‘Lubotzky linearity criterion’ Let G be a finitely

generated group. Then G is linear over some field of characteristic zero

if and only if, for some prime p and some natural number r, G has a
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chain of normal subgroups

G = G0 ≥ G1 ≥ G2 ≥ . . .

such that (i) G/G1 is finite, (ii) G1/Gn is a finite p-group of rank at

most r for every n ≥ 1, and (iii)
�

n Gn = 1.

Suppose that G satisfies the given condition, and consider the inverse

limit

P = lim
←−

G1/Gn.

Hypothesis (ii) implies that this group P is a pro-p group of finite rank,

and so a p-adic analytic group (see §7.3 above). Then Lie theory and

Ado’s Theorem show that P is linear over the p-adic number field Qp.

Hypothesis (iii) implies that G1 embeds into P , so G1 is linear, and

it follows by hypothesis (i) that G itself is linear (form the induced

representation).

Note that the argument so far does not require G to be finitely generated;

the converse, however does. To see why it is true, suppose now that G is a

finitely generated subgroup of GLd(F ) where F is a field of characteristic

zero. Then in fact G ≤ GLd(R) where R is some finitely generated

subring of F . Commutative algebra shows that for almost all primes

p, such a ring R can be embedded in a matrix ring over Zp; for each

such prime it follows that G can be embedded in some GLd�(Zp) (where

d� = md may depend on p). Choosing a suitable prime p and identifying

G with its image in GLd�(Zp), we take

Gn = {g ∈ G | g ≡ 1 (mod pn)} .
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It is easy to see that the sequence (Gn) then satisfies conditions (i)

and (iii); and condition (ii) is satisfied because the ‘first congruence

subgroup’

GL1
d�(Zp) = ker (GLd�(Zp) → GLd�(Zp/pZp))

is a pro-p group of finite rank ([DDMS], Chapter 5).

For a more detailed account, and several variations on the same theme,

see [DDMS] Interlude B.

So far, no-one has succeeded in establishing, or even formulating, an anal-

ogous characterization of the finitely generated linear groups over fields

of positive characteristic, and this remains a challenging open problem.

Lubotzky’s criterion can paraphrased as: “some pro-p completion of

some normal subgroup of finite index in G is p-adic analytic”; a natural

starting point for the characteristic-p analogue would be to gain a better

understanding of the pro-p groups that are ‘analytic’ over a local ring

of characteristic p; the beginnings of such a theory are outlined in the

final chapter of [DDMS].

The ‘Lubotzky criterion’ arises from considering congruence subgroups

modulo powers of a fixed prime – looking ‘downwards’, we may say.

Another way of looking at a finitely generated linear group is ‘side-

ways’: for example, we can embed GLd(Z) into the Cartesian product
�

p GLd(Z/pZ), where p ranges over any infinite set of primes. A. I.

Mal’cev generalized this observation to show that every finitely gener-

ated linear group of degree d is residually ‘linear of degree d over a finite

field’. The precise converse is not true, but J. S. Wilson showed that a

slightly weaker statement does hold: if a finitely generated group G is
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residually (linear of degree d) then G is a subdirect product of finitely

many linear groups. For the proof, and some refinements, see [SG], Win-

dow 8. Here is one such refinement, which serves as a reduction step for

many of the results stated in §7.4, above:

7.6.2 Theorem. Let G be a finitely generated group and (Ni) a family of

normal subgroups of G with
�

i Ni = 1. Suppose that G/Ni ≤ GLd(Fi),

where each Fi is either a field of characteristic zero or a finite field, and

suppose further that for each prime p the number of i with charFi = p

is finite. Then G is linear over a field of characteristic zero.

7.6.2 Finite quotients

What does it mean for a family of finite groups X to be precisely the

set F(Γ) of (isomorphism types of) all finite quotients of some finitely

generated group Γ? Equivalently, what does it mean for a profinite

group G to be the profinite completion of a finitely generated (abstract)

group? As mentioned in §7.2, this holds if and only if G contains a

dense finitely generated subgroup Γ that has the congruence subgroup

property; so the question may be seen as finding necessary and/or suffi-

cient conditions on a profinite group G, expressed in terms of the family

F(G), for the existence of such a subgroup (when G is a profinite group,

F(G) denotes the set of continuous finite quotient groups of G: see the

next subsection).

Two obvious necessary conditions for such a family X are (1) that X

is quotient-closed, and (2) that all the groups in X can be generated

by some bounded number of elements; but it seems very difficult to
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find further, less obvious ones. Suppose for example that X contains

a subgroup Xi of GLd(Fi) for i = 1, 2, . . . where Fi is a finite field of

characteristic pi and p1, p2, . . . is an infinite sequence of distinct primes.

Then Γ has a quotient Γ which satisfies the hypotheses of Theorem

7.6.2, so Γ is a finitely generated characteristic-zero linear group; if we

assume also that the groups Xi are simple and of unbounded orders (or

some suitable weaker condition), we find that Γ is not virtually soluble.

Under these conditions, Γ is guaranteed to possess a host of special finite

quotients: applying a deep ‘strong approximation’ theorem due to Nori

and Weisfeiler, Lubotzky established the following important result:

7.6.3 Theorem. ‘Lubotzky alternative’ Let Γ be a finitely linear group

over a field of characteristic zero. Then one of the following holds:

(a) Γ is virtually soluble;

(b) there exist a connected, simply connected simple algebraic group G

over Q, a finite set of primes S such that G(ZS) is infinite, and a sub-

group Γ1 of finite index in Γ such that the profinite group G(�ZS) is an

image of �Γ1.

(Here ZS = Z[1p ; p ∈ S], and G(�ZS) is isomorphic to the product
�

p/∈S G(Zp).) For the proof, see [SG], Window 9. Applying this to

the group Γ, we may deduce that the set X must contain many other

groups in addition the groups Xi: for each prime p /∈ S, a group Qp

containing G(Z/pZ) as a subgroup, the indices |Qp : G(Z/pZ)| being

bounded above by a constant.

Thus if P is an infinite set of primes with infinite complement, a set of



258 Some aspects of profinite group theory

groups like




�

p∈T

PSLd(Fp) | T a finite subset of P





cannot be the whole of F(Γ) for a finitely generated group Γ, while

of course it is equal to F(G) where G =
�

p∈P PSLd(Fp). Thus the

2-generator profinite group G cannot be the profinite completion of a

finitely generated group.

This argument only serves to show that certain particular configurations

can’t arise; and it depends on some really deep mathematics. Any the-

orem purporting to characterize all sets of the form F(Γ) for finitely

generated groups Γ would have to include the above conclusions as a

very special case. Even to formulate such a result would seem a hope-

less undertaking.

Meanwhile, we could consider weakening the question a little, and asking:

what does it mean for a collection of finite simple groups to be precisely

the collection of composition factors of groups in F(Γ) for some finitely

generated group Γ? These are called the upper composition factors of

Γ. An almost complete answer is provided by

7.6.4 Theorem. [S4] Let S be any collection of (isomorphism types) of

non-abelian finite simple groups. Then there exists a 63-generator group

Γ whose set of upper composition factors is precisely S.

To construct such a group Γ we start with a suitable profinite group G,

and then find Γ as a dense subgroup in G. To begin with, we enumerate

S as {X1, X2, . . . , Xn, . . .} (if S is finite, the result is trivial, given that
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every finite simple group can be generated by 2 elements: this follows

from CFSG, and implies that Γ =
�

X∈S X is a 2-generator group).

For each n we pick a faithful primitive permutation representation for

Xn, and so identify Xn with a subgroup of Sym(ln) for some ln. Take

W1 = X1, for n > 1 let Wn be the permutational wreath product

Wn = Xn �Wn−1,

and define

G = lim
←−

Wn.

Thus G is a profinite group, whose set of upper composition factors is

precisely S.

This is all very easy. The challenge now is to find a suitable dense

subgroup in G. The key lies in realizing G as a group of automorphisms

of a suitable object.

Given the sequence of positive integers (ln), consider the spherically ho-

mogeneous rooted tree T of type (ln): this is a connected graph without

circuits, having a distinguished vertex v0 (the root), and for each n ≥ 1

having l1 . . . ln vertices at distance n from the root, each of valency

1+ ln+1 (so at each vertex of ‘level’ n ≥ 1 there is one edge pointing ‘up-

wards’ towards the root and ln+1 edges pointing ‘downwards’ to the next

level). It is easy to see that the automorphism group of this structure is

the inverse limit of the finite permutational wreath products

Vn = Sym(ln) � . . . � Sym(l2) � Sym(l1).

Thus Vn contains Wn as a permutation group for each n, and we may

identify our profinite group G as a closed subgroup of Aut(T ); a base for
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the neighbourhoods of the identity in G is given by the ‘level-stabilizers’

stG(n) = ker (G → Wn).

One of the main results of [S4] states that there exists a 61-generator

perfect group P that maps onto every non-abelian finite simple group.

Using this, we define 63 specific tree automorphisms of T , all lying

in the group G, and take Γ to be the group generated by these 63

automorphisms. These generators are so chosen that (a) for each n, the

group Γ acts as the whole group Wn on the nth level of T , and (b) each

nontrivial normal subgroup of Γ contains stΓ(n) = Γ ∩ stG(n) for some

n (actually, a quite general argument shows that each nontrivial normal

subgroup of Γ contains the derived group stΓ(n)� of stΓ(n) for some n;

the role of the perfect group P is to ensure that in our case we have

stΓ(n)� = stΓ(n) for each n). Property (a) means that Γ is dense in G,

while property (b) implies that Γ has the CSP in G. It follows that

F(Γ) = F(G), and hence that the set of upper composition factors of Γ

is precisely S.

The same construction, using sets S of the form {PSL2(Fp) | p ∈ P} for

suitably chosen sets of primes P, was used in [S4] to construct finitely

generated groups with arbitrarily specified types of subgroup growth

(within a certain range). For details, and more discussion of trees like

T , see Chapter 13 of [SG].

Certain groups of rooted tree automorphisms called branch groups have

been studied in depth by Grigorchuk and others. These include the

groups described above, but are more usually pro-p groups (or dense

finitely generated subgroups thereof); the celebrated construction by
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Grigorchuk of a finitely generated group having ‘intermediate word growth’

was (a dense subgroup of) a pro-2 branch group. See [G] and [BG].

7.6.3 Forgetting the topology

To be given a profinite group G is more or less equivalent to being given

the family of all finite continuous quotient groups of G, that is, the

groups G/N where N ranges over all the open normal subgroups of G.

Indeed, G is (naturally isomorphic to ) the inverse limit of this family,

relative to the natural quotient maps G/N → G/M , (M ≥ N). If we

forget the topology and think of G just as an abstract group, we would

expect to lose a lot of information: out of all the normal subgroups of

finite index in G, how could we possibly pick out those that were open?

Consider the following simple example. Fix a prime p, for each i let Ci

be cyclic of order p, put Gn = C1 × · · · × Cn and let

G = lim
←−

Gn

where Gm → Gn for m ≥ n are the obvious projection maps. The open

subgroups of G are those that contain ker(G → Gn) for some n, so there

are only countably many of them. On the other hand, as an abstract

group G is abelian, of exponent p and uncountable (of cardinality c =

2ℵ0); it is therefore a c-dimensional vector space over Fp and so contains

2c subspaces of finite codimension. Thus G has 2c (normal) subgroups

of finite index, of which only countably many are open. It is obvious,

from the very homogeneous nature of (the abstract group) G, that there

is no way of recovering the original topology. (A similar construction



262 Some aspects of profinite group theory

can be made using any nontrivial finite group in place of the group of

order p: see [RZ2], Ex. 4.2.13.)

However: if we restrict attention to (topologically) finitely generated

profinite groups, the opposite is true:

7.6.5 Theorem. [NS2] In a finitely generated profinite group, every

subgroup of finite index is open.

This is a remarkable fact: if we form the inverse limit G of any system

S of finite groups, all of which can be generated by some fixed number

of elements, then the only finite groups onto which G can be mapped

homomorphically are the quotients of groups in S; moreover, since the

subgroups of finite index form a base for the neighbourhoods of the

identity, the topology of G is completely determined by its structure as

an abstract group.

This theorem is a case where a problem on profinite groups served as

the motivation for some new developments in finite group theory, and

it illustrates very clearly the principle that a qualitative property of

profinite groups corresponds to a uniform quantitative property of finite

groups. The basic idea is as follows. Let w = w(x1, . . . , xk) be a group

word, and G a profinite group. Since the mappings

(g1, . . . , gk) �→ w(g1, . . . , gk),

(g1, . . . , gk) �→ w(g1, . . . , gk)−1

from G(k) to G are continuous, their images in G are compact. It follows

that for each n, the set S(n) of all products of n elements of the form

w(g1, . . . , gk)±1 is compact, hence closed in G. Now consider the verbal
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subgroup w(G), generated (algebraically, not topologically) by all values

of w in G:

w(G) =
∞�

n=1

S(n). (6)

If it happens that for some finite n we have w(G) = S(n), then w(G)

is closed; conversely, if w(G) is closed then a simple argument using

the Baire category theorem and (6) shows that w(G) = S(n) for some

n. This means that every product of w-values in G is equal to a prod-

uct of n w-values (where by ‘w-value’ I mean an element of the form

w(g1, . . . , gk)±1); let me abbreviate this to ‘w has the n-product prop-

erty in G’.

On the other hand, it is easy to see that w has the n-product property

in G if and only if w has the n-product property in G/N for every open

normal subgroup N of G. Indeed, if the latter holds then

w(G)N
N

= w(G/N) =
S(n)N

N

for each N , so

S(n) ⊆ w(G) ⊆
�

N

w(G)N =
�

N

S(n)N = S(n), (7)

the last equality holding because S(n) is a closed subset of G. The con-

verse is obvious. Thus we have established the link between a qualitative

property of G and a uniform property of F(G) (the set of continuous

finite images of G):

7.6.8 Proposition. Let G be a profinite group and w a group word.

Then the (algebraic) verbal subgroup w(G) is closed in G if and only if
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there exists a natural number n such that w has the n-product property

in Q for every Q ∈ F(G).

This result, due to Brian Hartley, is nice, but how does it help with

our original problem? Suppose we know in addition that the index

|Q : w(Q)| is uniformly bounded for all Q ∈ F(G). Then the big inter-

sections in the middle of (7) contain only finitely many distinct terms,

each of which is an open subgroup of G; and we may infer that in this

case, w(G) is not only closed but open.

Now let G be a d-generator profinite group and H a subgroup of finite

index. Then H contains a subgroup K which is normal and of finite index

in G. Let F = Fd be the free group on free generators x1, . . . , xd and let

D be the intersection of the kernels of all homomorphisms F → G/K.

Then D has finite index in F and is therefore finitely generated, by

w1(x1, . . . , xd), . . . , wm(x1, . . . , xd) say. Put

w(y1, . . . ,ym) = w1(y1) . . . wm(ym)

where y1, . . . ,ym are disjoint d-tuples of variables. It is easy to see that

(i) w(F ) = D and (ii) w(G) ≤ K. The latter shows that H will be open

in G if w(G) is open. Property (i) implies that

|Q : w(Q)| ≤ |F : w(F )| < ∞

for every Q ∈ F(G) (while we know nothing, a priori, about the finite

group G/K, we do know that each of the finite groups in F(G) is d-

generator, hence an image of F ). To conclude that w(G), and therefore

also H, is open in G, we are thus reduced to establishing the following
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‘uniformity theorem’ about finite groups (I call w ‘d-locally finite’ if

|Fd : w(Fd)| is finite):

7.6.9 Theorem. [NS2] Let d be a natural number and let w be a d-

locally finite group word. Then there exists f = f(w, d) such that in

every finite d-generator group, every product of w-values is equal to a

product of f w-values.

The proof of this result is long and difficult, and depends on CFSG. I

will say no more about it here; for a brief outline see the announcement

[NS1].

In the same paper we establish an analogous theorem for the commutator

words w = [x1, . . . , xk]; in view of Proposition 7.6.8 this implies that the

derived group, and the higher terms of the lower central series, are closed

in every finitely generated profinite group. We also made a not entirely

successful attempt to do the same for the words w = xq (q ∈ N), so the

following is still open:

Problem Let q be a natural number. Is it true that the subgroup

Gq = �gq | g ∈ G� (generated algebraically by all qth powers in G) is

open in G, for every (topologically) finitely generated profinite group

G?

Note that in this situation, Gq is open if and only if it is closed, because

there is a finite upper bound for the order of every finite d-generator

group of exponent dividing q: this is the positive solution of the re-

stricted Burnside Problem, due to Zelmanov.

Whatever the answer turns out to be, results of this type certainly don’t
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hold for arbitrary words: Romankov [R] has given a simple construction

for a three-generator soluble pro-p group G in which the second derived

group G�� is not closed; and G�� = w(G) where w = [[x1, x2], [x3, x4]]. It

would be very interesting to find a characterization of those group words

w which have the uniformity property of Theorem 7.6.9 (of course, the

Problem stated above is a special case).

Let us turn briefly to the non-finitely generated case. For a profinite

group G, let G0 denote the underlying abstract group. Theorem 7.6.5

implies that if G is finitely generated then F(G) = F(G0) (recall that

these denote the sets of isomorphism types of finite quotients, by open

normal subgroups or by all normal subgroups of finite index, respec-

tively). We have also seen examples of (infinitely generated) profinite

groups G that have many non-open normal subgroups of finite index;

but in these examples, too, we have F(G) = F(G0) – the same finite

groups appear, though with different multiplicities as quotients of G.

To construct a group G such that F(G) �= F(G0) takes a little more

effort; the following example was suggested by Lubotzky and Holt. For

a finite group S = S2, let f(S) denote the least integer n such that every

element of S is equal to a product of n squares (here S2 denotes the sub-

group generated by all squares). Now for each n let Sn be a finite group

with Sn = S2
n and f(Sn) > n, and take G =

�∞
n=1 Sn. Proposition 7.6.8

shows that the subgroup G2 is not closed in G; in particular it can’t be

equal to G, so G/G2 has the cyclic group C2 of order 2 as a quotient.

On the other hand, C2 /∈ F(G) since every continuous finite quotient of

G is a quotient of S1 × · · · × Sk for some k. Thus C2 ∈ F(G0) \ F(G).
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Suitable groups Sn may be constructed as follows (for details, see [H]).

Let H = SL2(F4) and let M be its natural 2-dimensional F4-module,

considered as a 4-dimensional F2H-module. There is an H-epimorphism

φ from M ⊗F2 M onto the trivial module F2. Now let M1, . . . , Mk be

copies of M and form a special 2-group P with P/[P, P ] = M1 × · · · ×

Mk and Z(P ) = [P, P ] =
�

i<j [Mi,Mj ], where [Mi,Mj ] ∼= F2 and the

commutator mapping Mi × Mj → [Mi,Mj ] for i < j is induced by φ.

Then H acts by automorphisms on P , fixing Z(P ) elementwise, and we

set Sn = P oH. It is easy to see that Sn = [Sn, Sn] = S2
n. Since (zx)2 =

x2 for every z ∈ Z(P ) and x ∈ Sn, the number of squares in Sn is no

more than |Sn/Z(P )| = 4k ·60; on the other hand |Sn| = 2k(k−1)/2 ·4k ·60.

This implies that f(Sn) ≥ (k + 3)/6 > n if we choose k > 6n.

Let me conclude with a little exercise for the reader: if G is any profinite

group, then every group in F(G0) is isomorphic to a section of some

group in F(G) (hint: apply Theorem 7.6.5 to a suitable finitely generated

subgroup of G).

7.7 Probability

Every compact topological group has an invariant measure, the Haar

measure, unique up to a multiplicative constant. Though quite tricky

to construct in general, it is very easy to evaluate in the special case of

a profinite group G. Let us write µ(X) for the measure of a subset X

of G, and normalize µ so that µ(G) = 1. If H is an open subgroup of G
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then each coset Hx of H has the same measure, so

µ(Hx) = |G : H|−1 µ(G) = |G : H|−1 .

Similarly, µ(xH) = |G : H|−1. As the cosets of open subgroups form a

base for the open sets in G, this determines the measure of every open

set, and hence also of every closed set. Assuming that G is countably

based (i.e. has only countably many open normal subgroups) it is easy

to deduce that for any closed subset X of G we have

µ(X) = inf
|π(X)|
|π(G)|

(1)

where π ranges over all the quotient maps G → G/N , N an open normal

subgroup.

Now a measure space of measure 1 is a probability space: we interpret

µ(X) as the probability that a random element of G belongs to the

subset X (note that when π(G) is finite, |π(X)| / |π(G)| is just the pro-

portion of elements of π(G) that lie in π(X)). So we can ask questions

about the probability of interesting group-theoretic events; for example,

what is the probability that a random k-tuple of elements generates G

(topologically)? To make this precise we need to consider the measure

on G(k) = G × · · · × G, still denoted µ, and define

P (G, k) = µ(Xk)

where

Xk =
�

(x1, . . . , xk) ∈ G(k) | �x1, . . . , xk� = G
�

.
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(Here �S� denotes the closed subgroup of G generated by the subset S.)

The formula (1) becomes

P (G, k) = inf P (G/N, k) (2)

where N ranges over all open normal subgroups of G. Obviously, P (G, k) =

0 unless G can be generated by k elements. But the converse is not al-

ways true. Consider for example the procyclic group G = �Z, the profinite

completion of the infinite cyclic group Z. Certainly G can be generated

by one element. On the other hand, it is easy to see that if n = pf1
1 . . . pfr

r

then

P (Z/nZ, k) =
r�

i=1

P (Z/pfi
i Z, k) =

r�

i=1

�
1−

1
pk

i

�

(since a subset Y generates Z/pfZ unless Y ⊆ pZ/pfZ). Thus (2) gives

P (�Z, k) =
�

p

�
1−

1
pk

�

= ζ(k)−1

=





0 (k = 1)

6
π2 (k = 2)

.

The procyclic group �Z is ‘only just’ a one-generator group: almost all

elements do not generate it. On the other hand, a positive proportion –

about 3/5 – of pairs do generate �Z.

Avinoam Mann calls a profinite group positively finitely generated, or

PFG, if P (G, k) > 0 for some natural number k. To get some feeling for

this property, note that (x1, . . . , xk) belongs to the set Xk defined above
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if and only if no maximal (open, proper) subgroup of G contains all of

x1, . . . , xk. That is,

G(k) \ Xk =
�

M∈M

M (k)

where M denotes the set of all maximal subgroups of G. It follows that

1− P (G, k) = µ

� �

M∈M

M (k)

�

≤
�

M∈M

µ(M (k))

=
�

M∈M

|G : M |−k =
�

n≥2

mn(G)n−k

where mn(G) is the number of maximal subgroups of index n in G. Thus

P (G, k) is positive if the final sum is less than 1. Suppose for example

that the numbers mn(G) grow at most like a power of n – in this case

G is said to have polynomial maximal subgroup growth, or PMSG. Then

for a certain α we have

1− P (G, k) ≤
�

n≥2

nα−k = ζ(k − α)− 1

which is less than 1 if k − α ≥ 2.

It follows that every profinite group with PMSG is PFG. Since PMSG

is a weaker condition than polynomial subgroup growth, we have the

corollary that every profinite group with PSG is finitely generated. This

fact can also be seen from the characterization of profinite PSG groups,

discussed in §7.4, above; but it is remarkable that it emerges from such

a simple probabilistic argument. This simple argument is not reversible,

of course; a much more difficult argument, using detailed information
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about the maximal subgroups of finite simple groups, enabled Mann and

Shalev to prove

7.7.3 Theorem. [MSh] A profinite group is positively finitely generated

if and only if it has polynomial maximal subgroup growth.

The class of profinite groups with PMSG is very wide. For example,

Borovik, Pyber and Shalev [BPS] have shown that if the profinite group

G is finitely generated, then G has PMSG unless G involves every finite

group as an upper section; also iterated wreath products of finite simple

groups, of the type discussed in §7.6 above, have PMSG. So one may say

that finitely generated profinite groups have a tendency to be PFG. But

the two conditions are certainly not equivalent, since for example a non-

abelian finitely generated free profinite group (the profinite completion

of a free group) is never PFG.

Probabilistic arguments of the type given above yield all sorts of infor-

mation. The arguments always take place in the context of a profinite

group, but the conclusions sometimes apply to groups in general. I will

mention three results, all due to Mann; for the (remarkably simple)

proofs, and more discussion of the topic in general, see Chapter 11 of

[SG].

1. Let an,d(G) denote the number of d-generator subgroups of index n

in a group G.

7.7.4 Theorem. Let m, d ∈ N. Suppose that G is a group that does

not involve Alt(m + 1) as an upper section. Then there exist C and k,
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depending only on d and m, such that

an,d(G) ≤ Cnk

for all n.

2. Let d(H) denote the minimal size of a (topological) generating set for

the profinite group H.

7.7.5 Theorem. Let G be a profinite group with PSG. Then there exists

a constant C such that

d(H) ≤ C
�

log |G : H|

for every open subgroup h of G.

3. Let h(n, r) denote the number of (isomorphism types of) groups of

order n having a finite presentation with r relations.

7.7.6 Theorem. Let p be a prime and r ∈ N. Then

h(pk, r) = o(pkr) as k →∞.

Let us conclude with an open problem. It is easy to see that if G is a

PFG profinite group, then every finite extension group of G is also PFG.

Problem. Let G be a PFG profinite group and H an open subgroup.

Is H necessarily PFG?

Many other results and problems are given in [M1] and [M2].



Dan Segal 273

7.8 Other topics

7.8.1 The congruence subgroup problem

I have referred to the ‘congruence subgroup property’ in several of the

preceding sections. Recall that a subgroup Γ in some profinite group G

is said to have the CSP if the topology of G induces on Γ its own profinite

topology. This is equivalent to saying that the natural map �Γ → G is

injective, or in down-to-earth terms that every subgroup of finite index

in Γ contains Γ∩N for some open subgroup N of G. This terminology

originates in a very classical problem: what are the subgroups of finite

index in Γ = SLn(Z)? There are some obvious ones: for an integer

m �= 0 the principal congruence subgroup modm is

Γ(m) = {g ∈ Γ | gij ≡ δij (modm) for 1 ≤ i, j ≤ n}

= ker (Γ → SLn(Z/mZ)) ,

and one calls any subgroup of Γ that contains Γ(m) for some m �= 0 a

congruence subgroup. Evidently, the congruence subgroups have finite

index in Γ, and the problem is: are there any others? This was solved

in the 1960s by Mennicke and Bass, Lazard and Serre: they proved that

the answer is ‘no’ when n ≥ 3; as for the case n = 2, it had been known

since the 19th century that SL2(Z) has an abundance of non-congruence

subgroups of finite index.

If every subgroup of finite index is a congruence subgroup, the group Γ

is said to have the congruence subgroup property. We see that this is a

special case of the previous definition if we consider Γ as a subgroup of
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the profinite group
�Γ = SLn(�Z),

so the congruence subgroup problem can be formulated as: is the natural

map �Γ → �Γ injective?

Now SLn(Z) is just the most familiar example of the important class of S-

arithmetic groups, and the analogous question applies to all such groups.

I will not define these here in full generality: for a comprehensive account

see the book [PR]. Typical examples are groups of the form Γ = G(ZS)

where G is an algebraic matrix group defined over Q, S is a finite set of

primes and ZS = Z[1p ; p ∈ S]. The congruence subgroup problem now

becomes: determine the kernel C(G, S) of the natural map

�Γ → G(�ZS).

This group C(G, S) is called the congruence kernel It was observed

by Serre that the natural dichotomy seems to be between those groups

whose congruence kernel is finite and those for which it is infinite, and

following his insight it is usual now to say that Γ has the CSP if C(G, S)

is finite (note that according to the original definition, we would require

C(G, S) = 1). The following very general conjecture was made by Serre:

Conjecture Let G be a simple simply connected algebraic group over a

global field k and let S be a finite set of places of k. Then (under certain

natural assumptions) the S-arithmetic group G(OS) has the CSP if and

only the S-rank of G is at least 2.

Here, OS denotes the ring of ‘S-integers’ of k; the ‘S-rank’ of SLn(ZS),

for example, is equal to n − 1 + |S|. This conjecture has been proved
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in the majority of cases, but some hard problems remain open: see for

example [Ra].

An interesting recent development relates the congruence subgroup prop-

erty of Γ to purely group-theoretic properties of Γ, such as its subgroup

growth and its index growth. These results are due in the main to

Platonov, Rapinchuk and Lubotzky; for a detailed account of some of

them see Chapter 7 of [SG].

7.8.2 Profinite presentations

By a presentation of a group G is meant an epimorphism π : F → G,

where F is a free group, together with a specific choice of a set X of

free generators for F and a set R of generators for the kernel kerπ as a

normal subgroup of F . It is usual to write

G = �X ; R� ,

where R is a set of words on the alphabet X, and to interpret the

symbols in X as generators of G that satisfy the relations w(X) = 1

for all w ∈ X. For profinite groups, it is natural to consider instead

epimorphisms from a free profinite group. When X is a finite set (the

only case we consider here), the free profinite group �F (X) on X is just

the profinite completion of the free group on X, and it has the expected

universal property with respect to continuous mappings from X into

profinite groups. A profinite presentation of G is thus a continuous

epimorphism π : �F (X) → G, together with a choice R of generators for

kerπ as a closed normal subgroup of �F (X). The elements of R need
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no longer be words in the generators X: in general they are ‘profinite

words’, that is, limits of convergent sequences of ordinary words. But

we still write

G = �X ; R�

to indicate such a profinite presentation (as long as the context makes

it clear which kind of presentation is meant).

The usefulness of this concept lies in the simple observation that if

Γ = �X ; R� is an ordinary presentation of some abstract group Γ,

then G = �X ; R� is a profinite presentation of the profinite completion

G = �Γ. Given information about a presentation of Γ, we can therefore

interpret it as information about �Γ; profinite group theory may then

yield conclusions about �Γ, which in turn gives us information about Γ.

This will be illustrated below. First I want to mention a celebrated open

problem.

Write d(G) to denote the minimal number of generators required for

a group G (topological generators in the profinite context), and call

G = �X ; R� a ‘minimal presentation’ (in either case) if |X| = d(G). The

minimal number of relations required for some minimal presentation of

G (in either context) is denoted t(G). Now suppose that Γ happens to

be a finite group. In this case, of course, �Γ = Γ, and we may interpret

the expression Γ = �X ; R� either as an ordinary presentation or as

a profinite presentation. Since the topology on Γ is discrete, a set X

generates Γ if and only if it generates Γ topologically. But the topology

on �F (X) is by no means discrete: just for now, let us understand t(Γ) in

the abstract sense, and write t(�Γ) for the minimal number of relations
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in a minimal profinite presentation of Γ.

Problem Let Γ be a finite group. Is t(�Γ) necessarily equal to t(Γ)?

(If r ordinary relations suffice to define Γ, then the same relations also

define Γ as a profinite group; but it is conceivable that Γ could be defined

using a smaller number of profinite relations.) For some discussion, and

alternative formulations, of this problem see §2.3 of [SG] (Remark on

page 48).

Two striking applications of the philosophy outlined above were made

by Lubotzky. The first uses pro-p presentations rather than profinite

ones: these are defined in exactly the same way, using free pro-p groups

in place of free profinite groups.

1. The famous theorem of Golod and Shafarevich asserts that if G is

a finite p-group, then

t(G) ≥
d(G)2

4
(1)

(this is true in either interpretation of the symbols, abstract or pro-p).

This was generalized (by Koch and Lubotzky, using Lazard’s theory)

to the case of any p-adic analytic pro-p group G (with d(G) and t(G)

now defined in terms of pro-p presentations, of course). This has conse-

quences for any abstract group Γ whose pro-p completion is such a group

G; in general, d(Γ) may be strictly larger than d(G), but if, for example,

Γ is nilpotent then there exist primes p such that d(Γ) = d(�Γp), and one

may deduce

7.8.2 Theorem. Let Γ be a finitely generated non-cyclic nilpotent group.

Then t(Γ) ≥ d(Γ)2/4.
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This is a direct generalization of the original Golod-Shafarevich theorem

to infinite groups. For details of the argument see [DDMS], Interlude D.

By further generalizing the Golod-Shafarevich theorem to a larger class

of pro-p groups, J. S. Wilson established a result of still wider applica-

bility (it includes all finitely generated soluble groups, for example):

7.8.3 Theorem. [W1] Let Γ be a group which has no infinite p-torsion

residually finite quotient, for any prime p. Suppose that Γ has a presen-

tation with n generators and r relations. Then

r ≥ n +
d2 − 1

4
− d

where d = d(Γab).

Here Γab = Γ/Γ� denotes the abelianization of Γ; this appears because

d(Γab) (unlike d(Γ)) can be recognised as d(�Γp) for a suitable prime p.

Lubotzky was concerned with groups that are very far from soluble. Let

Γ be an arithmetic lattice in SL2(C) – examples include groups like

SL2(O) where O is the ring of integers in an imaginary quadratic field,

but there are more mysterious ones. It is fairly easy to see that if Γ has

the congruence subgroup property then its pro-p completion �Γp = G is

p-adic analytic, and hence satisfies (1); moreover, the same holds for the

pro-p completion of every subgroup Δ of finite index in Γ. From this it

may be deduced that

|X|− |R| ≤ dp(Δ)−
dp(Δ)2

4

for every finite presentation Δ = �X ; R�, where

dp(Δ) = d(�Δp) = d(Δ/Δp[Δ, Δ]).
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On the other hand, according to a theorem of Epstein each such Δ has

a presentation �X ; R� for which |R| ≤ |X| (assuming, as we may, that

Δ is torsion-free). Hence dp(Δ) ≤ 4. Now the theory of linear groups

shows that if the numbers d2(Δ) are bounded as Δ ranges over all the

subgroups of finite index in Γ, then Γ must have a soluble subgroup of

finite index. This is certainly not the case here, so we have

7.8.4 Theorem. [Lu1] No arithmetic lattice in SL2(C) satisfies the con-

gruence subgroup property.

This establishes many of the ‘negative’ cases of Serre’s conjecture, stated

in the preceding subsection. The method has been generalized by Lubotzky

to obtain

7.8.5 Theorem. Let Γ be any lattice in SL2(C). Then Γ has subgroup

growth of type at least n(log n)2−ε
for every ε > 0.

A lattice is a discrete subgroup of finite co-volume. Since the congruence

subgroup growth of any arithmetic group is at most of type nlog n/ log log n,

this shows that the congruence subgroup property fails here in a dra-

matic way: the subgroups of finite index vastly outnumber the congru-

ence subgroups as the index goes to infinity. For details of the proof,

and many other cases, see Chapter 7 of [SG].

Returning to profinite groups, or rather pro-p groups, the most pow-

erful generalization of the Golod-Shafarevich theorem was obtained by

Zelmanov:

7.8.6 Theorem. [Z] Let G be a non-cyclic finitely generated pro-p group

with a minimal pro-p presentation G = �X ; R�. Then either |R| ≥
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|X|2 /4 or else G contains a closed subgroup that is a non-abelian free

pro-p group.

2. Let f(n, d) denote the number of (isomorphism types of) d-generator

groups of order n. Establishing a conjecture of Mann, Lubotzky proved

7.8.7 Theorem. For every n and d we have

f(n, d) ≤ n2(d+1)λ(n).

Here λ(n) =
�

li where n =
�

pli
i is the factorization of n into prime-

powers. This is deduced from the following theorem: every finite simple

group of order n has a profinite presentation with 2 generators and at

most 2λ(n) relations. It is conjectured that this remains true if the

word ‘profinite’ is omitted, and this has been proved in most cases.

But it is in general easier to get at a profinite presentation than at

an abstract presentation: roughly speaking, if N = kerπ in our original

notation, then the number of profinite relations needed for a presentation

π : F → G can be detected in the ‘relation module’ N/[N, N ], whereas

the number of ‘ordinary’ relations depends on the structure of N itself

as an F -operator group. For details, see §2.3 of [SG].

7.8.3 Profinite trees

A large part of combinatorial group theory deals with the properties

of generalized free products and HNN extensions. A powerful unified

framework for studying such constructions is the Bass-Serre theory of

groups acting on trees. In recent years, an analogous theory has been

developed of profinite groups acting on ‘profinite trees’, largely due to
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the work of Melnikov, Ribes and P. A. Zalesskii. As well as providing a

basis for the theory of generalized free products in the profinite category,

this has found a number of applications to abstract free groups and free

products; a typical example is Theorem 7.2.8 mentioned in §7.2, above.

This is a significant chapter in ‘pure’ profinite group theory, with solid

achievements but also presenting a number of challenging open prob-

lems. However, it is beyond my competence to present anything like an

adequate account of it. Detailed expositions of the theory are given in

[RZ1] (for pro-p groups) and the forthcoming book [RZ3]; for various

specific applications, see the papers [RZ4], [RZ5], [RZ6] and [RSZ].
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