Uncountably many groups with the same profinite completion

Dan Segal

March 16, 2018

We use the construction described in Section 13.4 of the book *Subgroup Growth*.

This starts with a rooted tree \mathcal{T} in which each vertex of level $n \geq 1$ has valency $1 + l_n$ (and the root has valency l_0).

Given a sequence $(T_n)_{n\geq 0}$ with $T_n \leq \text{Sym}(l_n)$ for each n we take

$$W = \lim W_n$$

where $W_0 = T_0$ and $W_{n+1} = T_n \wr W_{n-1}$ for $n \ge 0$. We identify W as a subgroup of Aut(\mathcal{T}) in the natural way.

On pages 262-263 of Subgroup Growth we define four elements ξ , η , a and b of W, set $\Gamma = \langle \xi, \eta, a, b \rangle$, and prove that under certain conditions, Γ is both dense and satisfies the congruence subgroup property in W. Together, these imply that the natural homomorphism from $\widehat{\Gamma}$ to W is an isomorphism of profinite groups.

The conditions are as follows:

(i) T_n is a doubly transitive subgroup of $\text{Sym}(l_n)$

(ii) there exist a two-generator perfect group $P = \langle x, y \rangle$ and for each n an epimorphism $\phi_n : P \to T_n$

(iii) the automorphisms ξ , η , a and b are built in a particular way out of the

$$\alpha_n = x\phi_n, \ \beta_n = y\phi_n \in T_n \leq \operatorname{Sym}(l_n).$$

Now let's get down to specifics. Let $l_n = 5$ and $T_n = Alt(5)$ for all n. Put

$$\alpha = (123), \ \beta = (12345).$$

Let $\lambda \in \{0,1\}^{\mathbb{N}_0}$ and set

$$\alpha_n = \alpha, \beta_n = \beta \text{ if } \lambda_n = 0$$

 $\alpha_n = \beta, \beta_n = \alpha \text{ if } \lambda_n = 1.$

Let $P = \text{Alt}(5) \times \text{Alt}(5)$, $x = (\alpha, \beta)$, $y = (\beta, \alpha) \in P$. It's an easy exercise to check that $P = \langle x, y \rangle$, and we define $\phi_n : P \to T_n$ by

$$x\phi_n = \alpha^{1-\lambda_n} \cdot \beta^{\lambda_n}$$
$$y\phi_n = \alpha^{\lambda_n} \cdot \beta^{1-\lambda_n}$$

(so ϕ_n is simply the projection of $P = \text{Alt}(5) \times \text{Alt}(5)$ onto either the first or the second direct factor).

Let $\Gamma(\lambda) = \langle \xi(\lambda), \eta(\lambda), a(\lambda), b(\lambda) \rangle$ denote the group Γ constructed as above using the sequence λ . There are 2^{\aleph_0} such sequences, so we have constructed 2^{\aleph_0} 4-generator subgroups of Aut(\mathcal{T}) with profinite completion W. (These groups are of course residually finite since they Aut(\mathcal{T}) is.)

Claim: For each sequence λ , the set $S(\lambda) := \{\mu \mid \Gamma(\lambda) \cong \Gamma(\mu)\}$ is countable.

The claim implies that the number of isomorphism classes among the groups $\Gamma(\lambda)$ is still 2^{\aleph_0} .

Sketch proof of claim:

Suppose that $S(\lambda)$ is uncountable. For $\mu \in S(\lambda)$ let $\theta_{\mu} : \Gamma(\mu) \to \Gamma(\lambda)$ be an isomorphism. Then θ_{μ} extends to a continuous automorphism σ_{μ} of W (universal property of profinite completions).

Now the set

$$\{a(\mu)^{\sigma} \mid \mu \in S(\lambda), \ \sigma \in \operatorname{Aut}(W)\} \subseteq \Gamma(\lambda)$$

is countable because $\Gamma(\lambda)$ is a finitely generated group. Hence there exists $c \in \Gamma(\lambda)$ such that the set

$$X := \{\mu \in S(\lambda) \mid a(\mu)^{\sigma_m} = c\}$$

is uncountable (all we *need* is: of cardinality at least 2).

Let $\mu \neq \nu \in X$. Then

$$a(\mu)^{\sigma_{\mu}\sigma_{\nu}^{-1}} = a(\nu).$$

Now for some *n* we have $\mu_n \neq \nu_n$. Say $a(\mu)_n = \alpha$ and $a(\nu)_n = \beta$. The (continuous!) automorphism $\sigma_{\mu}\sigma_{\nu}^{-1}$ of *W* induces an automorphism τ on the quotient

$$W_n = \operatorname{Alt}(5)^{(5^n)} \rtimes W_{n-1}$$

(*exercise*!), sending the coset of $a(\mu)$ to that of $a(\nu)$:

$$(1,\ldots,1,\alpha,1,1,1,1) \cdot u \xrightarrow{\tau} (1,\ldots,1,\beta,1,1,1,1) \cdot v$$

in an obvious notation (here, u and v lie in the stabilizer of the point $5^n - 4$). Examining the structure of $Aut(W_n)$ (this is not a hard exercise) we find that this forces

$$(1, \ldots, 1, \beta, 1, 1, 1, 1) = (*, \ldots, *, \alpha^z, *, \ldots, *)$$

for some automorphism z of Alt(5). This is impossible since α and β have coprime orders.

Thus $S(\lambda)$ must be countable.

So we have established

Theorem 1 There are continuously many pairwise non-isomorphic 4-generator residually finite groups all having the iterated wreath product W as their profinite completion.

Remarks

1. There is lots of flexibility in this construction - we could use any family of finite images of a fixed finitely generated perfect group, provided they each have a primitive faithful permutation representation; these are used for example in my paper 'The finite images of finitely generated groups', *Proc. London Math. Soc.* 82 (2001), 597–613.

2. Uncountably many 3-generator groups having the same profinite completion, a group of automorphisms of the binary rooted tree, were constructed by V. Nekrashevych in *arXiv*:1303.5782v2 [math.GR] 26 Mar 2013.

3. Uncountably many 4-generator groups having the same profinite completion, the product of an infinite cyclic group and a family of finite alternating groups, were constructed by L. Pyber in 'Groups of intermediate subgroup growth and a problem of Grothendieck', *Duke Math. J.* **121** (2004), 169–188.