
Some algebraic properties of
compact topological groups

I�ve directed this talk to a general audience, but I hope some of it will be
new to some of the group theory specialists. To keep these awake I�ll include a
couple of exercises to do in your head.

Compact topological groups arise in many areas of mathematics. Probably
the �rst example one thinks of is S1, the circle group. When the theory of Lie
groups was being developed a century ago it was recognized that every simple
Lie group has a compact real form, typi�ed by groups like SO(3;R), higher-
dimensional versions of S1 considered as the one-dimensional rotation group.
Of course every �nite group can be thought of as a compact group, with

the discrete topology. This seems a quixotic remark but it leads to a whole
di¤erent universe of compact groups, developed in the last century by number
theorists: the absolute Galois group of Q is an inverse limit of �nite Galois
groups, and the group Zp of p-adic integers is the inverse limit of �nite cyclic
groups. Such inverse limits inherit a topology from the discrete �nite groups;
this topology is still compact (Tychono¤�s Theorem), but it is far from discrete
� instead it is totally disconnected. A topological group that is compact and
totally disconnected is called pro�nite. Familiar examples of pro�nite groups
are in�nite Galois groups and matrix groups such as GLn(Zp). We also have
the free pro�nite groups: the d-generator free pro�nite group maps onto every
d-generator �nite group, and is useful as a compact object that encapsulates
everything there is to know about all those in�nitely many �nite groups.
Now the structure of an arbitrary compact group G (always assumed to be

Hausdor¤) breaks into pieces in a nice way:

Theorem 1 Let G be a compact group with identity component G0.
(i) G=G0 is a pro�nite group
(ii) G0 = Z � P where Z is the centre of G0 and

P �=
Q
Si
D

is a Cartesian product of compact connected simple Lie groups Si modulo a
central subgroup D.

Part (ii) is the compact version of the solution of Hilbert�s 5th problem (it
is less deep than the general case). The abelian group Z is essentially a product
of copies of S1. The compact connected simple Lie groups are well known; and
the study of the general compact group G tends to break up into two parts, one
involving these Lie groups and the other delving into �nite group theory. These
investigations don�t exactly overlap, but in some parts they run along parallel
lines: the classi�cation of �nite simple groups shows that �most�of the �nite
simple groups are groups of Lie type, analogues of the simple Lie groups.
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Given a topological group G, we may hope (or assume) that the closed
normal subgroups are more or less understood �they correspond to continuous
morphisms (if G is a Galois group, the closed subgroups correspond exactly
to the intermediate �elds). Now algebraists are interested in group-theoretic
structure, so we may wonder: what can be said about normal subgroups and
homomorphisms of the underlying abstract group?
I will discuss some recent results obtained in joint work with Nikolay Nikolov.
Throughout G will denote a compact group, and N a normal subgroup of

(the underlying abstract group) G.
I�ll say that G is of f.g. type if the maximal pro�nite quotient G=G0 is

topologically �nitely generated ; this means that G=G0 contains a �nite subset X
such that the subgroup generated by X is dense in G=G0, or equivalently that
G=G0 is an inverse limit of �nite d-generator groups for some �xed number d.
The key result is

Theorem 2 If G is of f.g. type and G=N is �nite then N is open in G.

This answers a question posed long ago by J.-P. Serre, who proved it for the
special case where G is a pro-p group. Since the topology on a pro�nite group
is de�ned by the family of all open subgroups (not true for connected groups!),
an immediate consequence is

Corollary 1 (�rigidity�) If G is a �nitely generated pro�nite group then every
group homomorphism from G to any pro�nite group is continuous.

In particular this shows that the topology on such a pro�nite group is
uniquely determined by the group-theoretic structure.

Remarks. (i) In any compact group, open subgroups all have �nite index
(immediate from the de�nition). So the point of the theorem is that the converse
holds in the f.g. case.

(ii) A compact connected group has no proper subgroups of inite index: this
is not obvious from the de�nition but follows from the structure theory, which
implies that such a group is divisible, i.e. all elements have nth roots for all n.
So the meat of Theorem 2 is in the pro�nite case.

(iii) The restriction to f.g. type is absolutely necessary: in in�nitely gen-
erated pro�nite groups the topology is only loosely connected to the abstract
group structure.

Examples: here Cq is a cyclic group of order q, and p is a prime.

(a) The pro�nite group CZp has 2
2@0 subgroups of index p; but only countably

many open subgroups.

This group therefore has many distinct topologies, but the resulting topological
groups are all isomorphic.

(b) The pro�nite groups A =
Q
n2N Cpn and A � Zp are isomorphic as

abstract groups, but not as topological groups.
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However, every �nite (abstract) image of A occurs also as a continuous image.

(c) We can construct a pro�nite group having no abelian continuous image,
but having C2 as an abstract image. (By �continuous image�I always mean one
that is a Hausdor¤ topological group �every image can be given the indiscrete
topology, making every map continuous in a trivial way.)

What about countable images? A compact group can�t be countably in�nite:
this is kind of obvious for Lie groups, and it is a basic fact about pro�nite
groups. Could there be a countable abstract image? It may seem implausible,
but actually these are easy to �nd! Suppose A is an in�nite f.g. abelian pro�nite
group. Then either A maps onto Zp or A maps onto B =

Q
p2P Cp for some

in�nite set of primes p. We have additive group homomorphisms

Zp ,! Qp ! Q;

B �=
Y
p2P

Fp �
Y
p2P

Fp=~ = F � Q;

where F is a non-principal ultraproduct, hence a �eld of characteristic 0. In
both cases these compose to give a group epimorphism from A onto Q.
The additive group of Q has no (nontrivial) �nite images: this is no accident.

A group is residually �nite if its normal subgroups of �nite index intersect in
f1g; and an immediate consequence of Theorem 2 is

Corollary 2 If G is of f.g. type and G=N is residually �nite and countable
then G=N is �nite.

The next result needs a lot more work:

Theorem 3 If G is of f.g. type and G=N is countably in�nite then G=N has
an in�nite virtually-abelian quotient.

(Virtually-abelian means it has an abelian normal subgroup of �nite index.)
Thus for example G can�t have a countably in�nite simple image. Can there

be an uncountably in�nite simple image? YES: easy if G is connected, but also
true and less obvious if G is pro�nite �this will appear later.

Now we stick with countable images. From Theorem 3 it is not hard to
deduce

Corollary 3 Suppose G is of f.g. type. Then G has a countably in�nite abstract
image if and only if G has an in�nite virtually-abelian continuous quotient.

Corollary 4 If G=N is �nitely generated (as abstract group) then G=N is �nite
(and so N is open in G).
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A while ago, in a paper on Arxiv, Nikolay asked �how strange can an abstract
group image of a compact group be?�. As we�ve seen, such an image can be
countably in�nite, which is a bit strange; the last result perhaps restores one�s
faith in the balance of things by showing that such an image can�t be so strange
as to be a �nitely generated in�nite group. This is reminiscent of the Burnside
Problem, and in fact some parts of the proof move into that kind of territory.

Suppose now that G is a compact group and N is a normal subgroup (of
the underlying abstract group) such that G=N is countable. Let N denote the
closure of N . Then G=N is a countable compact group, so it is �nite. in this
case, we say that N is virtually-dense in G.
We have seen that these things can occur non-trivially in the abelian context.

They also arise in a di¤erent way: if

G =
Y
i2I
Hi

is a product of non-trivial compact groups over an in�nite index set I then the
restricted direct product

N =
M
i2I

Hi

is dense in G, and has in�nite index.
The �nal theorem shows that these examples account for all possibilities.

We say that G is strictly in�nite semisimple if I is in�nite and each of the Hi
is either a �nite simple group or a connected simple Lie group.

Theorem 4 Let G be a compact group of f.g. type. Then G has a virtually-
dense normal subgroup of in�nite index if and only if G has a (continuous)
quotient that is either in�nite and virtually abelian or virtually (strictly in�nite
semisimple).

Exercise. Deduce: if G is just-in�nite and not virtually abelian then every
normal subgroup of G is closed. (proved by A. Jaikin for pro-p groups.)

(Just-in�nite means: in�nite but every proper continuous quotient is �nite.)

We can also characterize precisely those G that have a proper dense nor-
mal subgroup: the answer involves certain restrictions on the simple factors
occurring in the strictly in�nite semisimple quotient.

What kind of mathematics lies behind these results? The standard working
method in group theory is dévissage: you deconstruct your group as far as
possible and then examine the pieces. Theorem 1 suggests that the basic pieces
will be abelian groups, simple Lie groups, and �nite simple groups, or at least
Cartesian products of such things. The hardest part of the work � taking as
given the classi�cations of �nite simple groups and simple Lie groups, which
were also quite hard! �is a rather technical �reduction theorem�.
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Before stating this, let�s recall what we are looking for.
The key question is: how to get topological information from algebraic input?

All we have to work with is (i) the de�nition of topological group: group multi-
plication is continuous, and (ii) the de�nition of compact, which implies that a
continuous image of a compact set is compact, hence closed. These combine to
give the fundamental

Lemma 1 Let G be a compact group and H a closed subgroup of G. Then for
each g 2 G the set

[H; g] = f[h; g] j h 2 Hg
is closed in G.

Here
[h; g] = h�1g�1hg

is the commutator.

If we want to obtain a closed subgroup we have to combine this with

Lemma 2 Let X = X�1 be a closed subset of a compact group G. Then the
subgroup hXi generated (algebraically) by X is closed in G if and only if there
exists n such that

hXi = X�n

= fx1 : : : xn j xi 2 Xg :

In this case, we say that X has width (at most) n in G, and write

mX(G) � n.

Now if G is a pro�nite group, one has

mX(G) = supmXK=K(G=K)

where K ranges over all open normal subgroups of G. So in this case the study
of mX(G) can be reduced to the case where G is �nite.
To state our main theorem on �nite groups we need another de�nition. A

�nite group Q is almost-simple if

S � Q � Aut(S)

for some simple (non-abelian) group S. Example: the symmetric group Sn,
n � 5. For a �nite group G,

G0 =
\
fN C G j G=N is almost-simpleg :

The same de�nition applies for a pro�nite group G, with N now ranging over
all open normal subgroups of G
The derived group of G is denoted G0 (this is the smallest normal subgroup

N such that G=N is abelian).
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Theorem 5 Let G be a �nite d-generator group with a normal subgroup H �
G0. Let fy1; : : : ; yrg be a symmetric subset of G such that

H hy1; : : : ; yri = G0 hy1; : : : ; yri = G:

Then the subgroup [H;G] = h[h; g] j h 2 H; g 2 Gi satis�es

[H;G] = ([H; y1] : : : [H; yr])
�f

where f = f(d; r) = O(r6d6):

I should also mention the more elegant, but less powerful, theorem that
gives the same conclusion for an arbitrary H C G under the stronger hypothesis
hy1; : : : ; yri = G.
Now Theorem 5 translates immediately into

Theorem 6 Let G be a �nitely generated pro�nite group with a closed normal
subgroup H. Let Y be a �nite symmetric subset of G such that

HhY i = G0hY i = G:

If H � G0 then

[H;G] =

0@Y
y2Y

[H; y]

1A�f

for some �nite f .

It follows that if Y � N for some normal subgroup N of G then [H;G] � N .
It is now easy to deduce the key �reduction theorem�:

Corollary 5 Let G be a �nitely generated pro�nite group with a normal sub-
group N . If

NG0 = NG0 = G

then N = G.

This is used to reduce problems about G to problems about the abelian
group G=G0 and the group G=G0; the point is that G=G0 is also very nice: it is
an extension of a semisimple group by a soluble group.
For example, Theorem 2, the case where N has �nite index in G (�Serre�s

problem�), now quickly drops out. The abelian case is easy, and the semisimple
case follows from the 15-year old

Theorem (Martinez/Zelmanov, Saxl/Wilson, 1996-97) Let q 2 N. In any
�nite simple group S, the set

fxq j x 2 Sg

has width at most f(q), a �nite number depending only on q.
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Another easy application is the proof of Theorem 4 (virtually dense normal
subgroups) in the pro�nite case (Exercise). (The general case is a lot harder).

The study of normal subgroups of in�nite index in semisimple groups needs
some di¤erent ideas. Suppose now that

G =
Y
i2I
Si

where I is an in�nite index set and each Si is a �nite simple group; assume that
G is of f.g. type. To each non-principal ultra�lter U on I we associate a certain
normal subgroup KU of G, and prove that

jG=KU j � 2@0 :

In fact we have recently found these in the literature, where the quotient G=KU
is called a �metric ultraproduct�.
[On board? De�ne

hU : G! [0; 1]

by
hU (g) = lim

U
�Si(gi)

where

�S(x) =
log
��xS��

log jSj :

Then
KU = h

�1
U (0):

We show that hU induces a map from G=KU onto [0; 1]: ]

Proposition 1 Let N be a proper normal subgroup of G. If N is dense then
N � KU for some non-principal ultra�lter U .

The proof depends on properties of the �nite simple groups, to do with the
width of conjugacy classes in these groups.
A similar procedure is applied in the case where each Si is a compact con-

nected simple Lie group. We don�t get such an elegant construction for the
subgroups KU , but it is good enough to give

Theorem 7 Let G be a semisimple compact group of f.g. type and N a normal
subgroup of in�nite index in G. Then jG=N j � 2@0 .

This is the �nal step needed for the proof of Theorem 3.

For details see: N. Nikolov and D. Segal, arXiv: 1102.3037
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