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Abstract

As a contribution to the project for recognising matrix groups defined over
finite fields, we describe an algorithm for deciding whether or not the natural
module for such a matrix group can be decomposed into a non-trivial tensor
product. In the affirmative case, a tensor decomposition is returned. As one
component, we develop algorithms to compute p-local subgroups of a matrix
group.
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1 Introduction

In Leedham-Green & O’Brien (1996), we give an internal description of tensor de-
compositions of finite-dimensional vector spaces. We do this by constructing a family
of projective geometries whose flats are certain subspaces of a vector space V, and
showing that there is a one-to-one correspondence between this family of projective
geometries and the set of equivalence classes of tensor decompositions of V.

The object of this paper is to exploit the geometrical approach presented there,
together with some other ideas, to provide a practical method for finding a tensor
decomposition of a finite-dimensional module over a finite group algebra, or proving
that no non-trivial tensor decomposition of this module exists.

Let G be a subgroup of GL(d, K), where K = GF(q) and ¢ = x¢ for some prime
X, and let V' be the natural KG-module. (We use “x” as the characteristic of K since
we reserve “p” for p-local subgroups.) We assume that d has a proper factorisation
as uw and seek to decide whether or not G preserves a tensor decomposition of V' as
U @ W, where U has dimension u and W has dimension w. In more detail, the central
product GL(U) o GL(W) acts naturally on U @ W, and we say that G preserves a
tensor decomposition of V as U @ W if there is an isomorphism of V onto U @ W
such that the induced image of G in GL(U ® W) lies in GL(U) o GL(W). Thus the
corresponding action of G' on the tensor factors U and W may be a projective rather
than a linear action.

Our algorithm does not require that G act irreducibly on V. Instead, we require
that G' act irreducibly on one of the factors in the decomposition. For notational
convenience, we denote this factor by W. Note however that the components of the



algorithm presented in Sections 2 and 4, which seek only to rule out the existence of
a tensor decomposition, do not require that G act irreducibly on either of the factors;
again for notational convenience, in those sections we assume that v < w.

One motivation for this work lies in its application to the on-going matrix group
“recognition” project. Aschbacher (1984) classified the subgroups of GL(d, ¢) into nine
categories. One possible first step in studying a matrix group is to determine at least
one of its categories in this classification.

Much of the recent work on this topic was stimulated by the algorithm of Neumann
& Praeger (1992) to recognise the special linear group in its natural representation over
finite fields. More recently, Niemeyer & Praeger (1996a, 1996b) and Celler & Leedham-
Green (1996a) propose recognition algorithms for the classical groups in their natural
representations over finite fields. The MEATAXE algorithm (Parker, 1984; Holt & Rees,
1994) can decide if a KG-module is irreducible, or absolutely irreducible. Irreducible
matrix groups which act imprimitively can be recognised using an algorithm of Holt,
Leedham-Green, O'Brien & Rees (1996). Here we consider the category where a matrix
group preserves a tensor decomposition of its underlying vector space.

Given a matrix group G of degree d, we begin by attempting to rule out that
G preserves a tensor decomposition of V as U ® W, where U has dimension u and
W has dimension w and d = ww, by considering the restrictions placed on tensor
decompositions of V' by the projective orders of elements of G; that is, the orders of
their images in PGL(d, q). To this end, we present in Section 2 an algorithm to find
the least k£ such that PGL(k,q) has an element of given order n. In the order test,
we randomly select elements from GG and use their projective orders to rule out certain
pairs (u, w).

We refine this test by using the characteristic polynomial f(z) of g € G to decide
if the action of g on V is compatible with a tensor decomposition of V' as the tensor
product of spaces of dimensions v and w. If fi(z) = [[;,(z —\) and fo(z) = [[;(z —py)
are monic polynomials over some field K, where the A; and p; lie in some extension
field of K, their tensor product fi ® fo is sz(x — Aipt;). The coefficients of f; ® fo
obviously lie in K. Clearly a necessary condition for the desired factorisation to take
place is that f(z) should be the tensor product of a monic polynomial of degree u and
a monic polynomial of degree w. In Section 4, we present an algorithm to test whether
a given polynomial has such a tensor factorisation. In the polynomial factorisation
test, we randomly select elements from G and use their characteristic polynomials to
rule out certain (of the remaining) pairs (u, w).

If, for enough randomly selected elements of G, the order test and the polynomial
factorisation test fail to rule out certain pairs (u,w), we are reasonably confident that
G preserves such a tensor decomposition of V' and we now use our geometrical approach
to resolve the matter.

In Leedham-Green & O’Brien (1996), we show that there is a one-to-one correspon-
dence between the set of G-invariant projective geometries and the set of equivalence
classes of tensor decompositions of V' as G-module. In particular, a tensor decompo-
sition of V as U @ W corresponds to a u-projective geometry on V, whose flats are



defined to be the subspaces of V' corresponding to spaces of the form U ® X for X
a subspace of W. (Naturally there is a dual w-projective geometry.) Thus a flat in
this projective geometry has dimension, as K-space, a multiple of u, and if the decom-
position is a decomposition into a tensor product of G-spaces, then the set of flats is
invariant under the action of G. We also present an algorithm which, given a subspace
F of V, determines whether or not F'is a flat in a G-invariant u-projective geometry
on V., and in the affirmative case, returns the corresponding tensor decomposition of
V.

How do we obtain a flat in our putative u-projective geometry? A u-projectivity of
V' onto itself is a non-scalar linear map ¢ : V — V that acts as a scalar on U, where
V is equated with U ® W. In Leedham-Green & O’Brien (1996, §4) we show how a
flat can be constructed from such a projectivity. It may be that we find an element
of G whose order dictates that if V' has a u-projective geometry, then g must act as a
u-projectivity. If so, we construct a flat in this geometry, or find a tensor decomposition
over an extension field of K, or decide that there is no such decomposition. We discuss
this projectivity test in Section 3.

An alternative approach to finding a flat is the following. Recall that we assume that
G acts irreducibly on W. Let H be a subgroup of G that acts reducibly on W. Then
at least one of the H-invariant subspaces of V' is a non-trivial flat in the corresponding
u-projective geometry. One natural class of such subgroups are p-local subgroups:
namely, groups contained in the normaliser of some non-trivial p-group, for p a prime.
In Section 6, we present two algorithms for constructing such subgroups. Both use as
a central component a method presented in Section 5 for computing the stabiliser in
G of a subspace of a vector space. Ideally we would like to construct maximal p-local
subgroups, particularly for p being the characteristic of K. In practice, for given u
and w, we only need the p-local subgroup H to have the following properties: it acts
reducibly on the w-dimensional tensor factor in every tensor decomposition of the given
module for these dimensions, and the number of H-submodules of V' is “reasonably”
small. In Section 6, we also consider whether the p-local subgroups constructed satisfy
these properties and mention some problems encountered.

We provide an overview of the algorithm in Section 7, and consider its complexity.

Finally, we report on the performance of an implementation. In summary, our im-
plementation performs reasonably well for matrix groups of “moderate” degree. A first
version of our implementation is distributed with the computational algebra systems
GAP (Schonert et al., 1994) and MAGMA (Bosma & Cannon, 1994).

2 The order test

We present an algorithm to determine the smallest value of d such that PGL(d,q)
contains an element of order n.

We first consider the semi-simple case, where n is prime to ¢. As a preliminary
step, we compute the least integer d such that GL(d, ¢) has an element g of order n.
Let V be the natural module for GL(d, ¢). Then V is a direct sum of indecomposable



(9)-modules, so V =V, & ---@® V. Let n; be the order of g restricted to V;, hence n is
the least common multiple of the n;. By the minimality of d, the dimension d; of V; is
minimal subject to GL(d;,q) having an element of order n;. Since the set of element
orders of a group is closed under taking factors, we may assume that the n; are pairwise
coprime and hence n is the product of the n;. Let @ be a coprime factorisation of n,
say m = ujUs...us , and define d; to be the least integer such that GL(d;,q) has an
element of order u; which acts irreducibly. Now d; is simply the multiplicative order of
g modulo u;. Hence for each coprime factorisation 7 of n, we obtain a sum d;+- - -+d, .
Then d is the least of these sums. We record, for reasons explained below, the largest
value of ¢, corresponding to a factorisation 7 of n that gives rise to d.

To determine the smallest value of d in the semi-simple case, it suffices to find
the least d such that GL(d, q) has an element of order n, and then to decide whether
GL(d,q) has an element of projective order n. For if we construct an element of
GL(d,q) of order n acting on the direct sum of two or more indecomposable blocks,
then clearly PGL(d, q) has an element of order n. Otherwise, the only possibility for
GL(d,q) to have an element of projective order n is for the element to act irreducibly,
and this will require n to divide (¢ — 1)/(g — 1) rather than just ¢@ — 1, and if this
condition fails, then the minimum degree required is d + 1. This is why we needed to
record whether or not it was possible to achieve the required order with more than one
irreducible block.

We now consider the case where n is a multiple of the characteristic x of GF(q).
Write n = x*m, where x /m. In this case, a composition factor of the natural module
must occur with multiplicity at least x* ! + 1. The most economical way to achieve
this is to have a composition factor of size one repeated this number of times. So if
GL(d, q) has an element of order m, then GL(d+ x* ! +1, ¢) has an element of order n.
However, if it is possible to find an element of GL(d, q) of order m with one composition
factor of dimension one, then we can repeat this composition factor x* ! + 1 times,
and save one in the dimension; that is, GL(d + x*', ¢) has an element of order n. If
d is minimal subject to GL(d, g) having an element of order m, and if an element of
GL(d,q) of order m has a composition factor of dimension 1, then d = 1.

Clearly a necessary condition for PGL(d, q) to have an element of order n is that
GL(d,q) should have such an element, g say. If g can be chosen so as to act on
the natural module as a direct sum of more than one indecomposable, then clearly
PGL(d, q) has an element of order n, since the set of orders of elements of an abelian
group is closed under the formation of least common multiples. Thus GL(d,q) has,
but PGL(d, q) does not have, an element of order n, for n a multiple of y, if and only
if n = x*m for some a > 0, where m # 1 and m divides g — 1.

In summary, we define the following algorithms.

Algorithm 1 LeastLinearSemiSimple (n,q)
/* Given n prime to ¢, it returns the least d such that GL(d,¢) has an element of

order n, and the largest ¢ such that this can be achieved with g acting on the natural
module as the direct sum of ¢ non-zero submodules. */
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for each factorisation 7 of n as H§11 u;, where the u; are relatively prime
define d; . to be the order of ¢ modulo u;;

tr
put d7r = Zdi,ﬂ';
=1

put d = mind,;
put ¢ = maxi,;

=

return (d, t);
end

Algorithm 2 LeastProjectiveSemiSimple (n, q)

/* Given n prime to g, it returns the least d such that PGL(d, ¢) has an element of
order n. */

if n =1 return 1;

put (d,t) = LeastLinearSemiSimple (n, q);
if £ > 1 return d;

if (¢ —1)/(q — 1) mod n = 0 return d;
return d + 1;

end
Algorithm 3 LeastProjective (n,q)

/* It returns the least d such that PGL(d, ¢) has an element of order n. */

put n = x*m, where x is the characteristic of GF(¢) and x [ m;
if @ = 0 return LeastProjectiveSemiSimple (n,q);

put factor = x* 1 + 1;

if m = 1 return factor,

return factor + LeastLinearSemiSimple (m, q);

end

Suppose now that we find g € GG of projective order n. What does this tell us about
possible tensor factorisations? There are three possible outcomes. If d = uw, with
1 < u < w, then a tensor decomposition of the natural module V as U ® W, with U
and W of dimensions u and w, is clearly possible if LEASTPROJECTIVE(n, q) < u, and is
impossible if n has no coprime factorisation as nyny with LEASTPROJECTIVE(n1,q) < u
and LEASTPROJECTIVE(ng, ¢) < w. In the remaining case, the decomposition is possi-
ble, but only if some non-scalar power of g acts as a scalar on one of the tensor factors;
we now use the projectivity test to resolve the question.



3 The projectivity test

The algorithm described in Leedham-Green & O’Brien (1996, §4) for constructing a
flat from a projectivity takes as input a putative u-projectivity, g, in some unspecified
G-invariant u-projective geometry on V. It constructs a flat in this projective geometry
and hence finds a tensor decomposition over K, or it finds a tensor decomposition over
an extension field of K, or it decides that g is not a projectivity. It is encoded as the
procedure ISPROJECTIVITY.

Assume that, by applying the order test, we find ¢ € G whose projective order is
not the order of an element of PGL(u,q), where d = uw and u < w. In this case, a
tensor decomposition is only possible if some power of g acts as a scalar on U — that
is, as a projectivity. So for some prime p dividing n, we send ¢g"/? to ISPROJECTIVITY.
If no tensor decomposition results, then the projective order of the action of g on both
U and W must be a multiple of p%*, where « is the p-adic value of n. If there is no
factorisation of p®n as nins where the greatest common divisor of n; and ns is p* and
LEASTPROJECTIVE(n,q) < u and LEASTPROJECTIVE(ng, q) < w, then the desired
tensor factorisation of V' does not exist. Otherwise, we take another prime ¢ dividing n,
send ¢g"™¢ to ISPROJECTIVITY, and either find a tensor decomposition or another prime
power that must divide n; and n,. Repeating, we either find a tensor decomposition,
or prove that no tensor decomposition of the required dimensions exists.

4 The polynomial factorisation test

We are now in the situation where we have at least one factorisation of d as uw
where u < w, and the projective order n of every selected random element g of GG
satisfies the condition LEASTPROJECTIVE(n,q) < u. To decide if the action of g on
V' is compatible with a tensor decomposition of V' as the tensor product of spaces
of dimensions u and w, we now need a more sensitive invariant than the order of g
and consider the characteristic polynomial, say f(z), of g. As we observed earlier, a
necessary condition for the required tensor decomposition to exist is that f(x) should
be the tensor product of a monic polynomial of degree u and a monic polynomial of
degree w. We now show how to decide if f(x) has such a factorisation.

Although not needed in the present context, the formula for forming the tensor
product of two polynomials with indeterminate coefficients can be readily computed.
If f is a monic polynomial, let S;(f) denote the sum of the i-th powers of the zeros
of f, including multiplicities. The Newton and Waring formulae provide polynomial
expressions for S;(f) in terms of the coefficients of f, and also for the coefficients
of f as polynomials in S;(f) for 1 < i < d, where d is the degree of f. Details of
these formulae can be found, for example, in Macdonald (1995). Now observe that
Si(f) = Si(f1)Si(f2) if f = fi ® fo. Combining this information solves the problem.

In practice, to compute the tensor product of two polynomials when the coefficients
are given members of the ground field, it is more efficient to write down the companion
matrices of the two factors, form their tensor product as matrices, and compute the



characteristic polynomial of this matrix.

A discussion of the uniqueness of tensor factorisation and related topics is best
conducted in the context of ring theory. In order to construct a ring with the tensor
product of two polynomials being their product in the ring, we need to extend the
definition of tensor product to formal power series. For this to be possible, a slight
change in the construction is necessary. We now take polynomials with constant term
1 rather than monic polynomials. If f and g are polynomials over the field K with con-
stant term 1, and zeros au, ...,y and By, .. ., B, respectively, including multiplicities,
define f ® g to be the polynomial with constant term 1, and zeros {«;/3;}, including
multiplicities. The advantage of this definition is that it extends by continuity to the
set K[[z]] of formal power series over K with constant term 1. This now becomes a
ring, where the addition operator is the usual multiplication of polynomials, and the
multiplication operator is ®. The zero of this ring is 1 and the identity is 1 — x.

It is easy to see that the ring is not an integral domain. For example, let a be a
positive integer, and consider the polynomial f(z) = (1—z+2%/2)® (1 —az?) in Q, [[z]].
This polynomial has as its zeros {£b + b}, where b is a square root of a~!. Replacing
a by —a does not change this set, so f(z) is also equal to (1 —z +22/2) ® (1 + az?). It
follows that 1 — x + z2/2 is a zero divisor in K;[[z]] for every field K of characteristic
not equal to 2.

The relationship between the products ® and ® may be explained as follows. If f
and g are polynomials of degrees m and n respectively, with non-zero constant term,
and leading coefficients a and b respectively, define f ® g to be a™b™(f/a)®(g/b). Then
fog=(-1)"f®y.

The ring K[[z]] has long been of interest to algebraic geometers; more generally,
they consider A-rings, where analogues of exterior powers and tensor products arise.
The semi-group of polynomials under tensor products and the uniqueness of tensor
factorisation — which fails in general — are considered in Brawley & Carlitz (1987) and
Glasby (1995).

We now revert to the question of determining whether or not the characteristic
polynomial f(z) of g has a tensor factorisation of the required form. This we do by
successively trying all possible factors of degree u and testing if one of these tensor-
divides f(z). Since u < w, this should be more efficient than testing all possible values
for the factor of degree w. We now require an algorithm that will determine whether or
not a given monic polynomial with non-zero constant term will tensor-divide another
such polynomial. One possible approach is to compute the formula for the tensor
product of two polynomials of the given degrees, and use this as a means of obtaining
quotients, if they exist. However, in our case a faster method is available.

Suppose that g is of projective order n, and that ¢™ is the scalar ¢, so that the irre-
ducible factors of f(z) are irreducible factors of 2" —¢; say f(z) = [[;_, fi(z)*. Now ¢"
must act as some scalar, say ¢, on U, and as $9~" on W. Let u(z) = []}_; u; (z)%, where
the u;(z) are the irreducible factors of 2™ — 6, and let w(z) = [[;_, wk(x)", where the
wy () are the irreducible factors of 2 — ¢!, and u(z) and w(x) are the characteristic
polynomials of g acting on U and W respectively. Now u;(z) ® wg(z) = [, fi(x)%i*



where f;(z) runs through the irreducible factors of 2™ — ¢, and we compute these ¢;jj.
We observe that
QG = Zﬂﬂkczjk,
J:k

and these equations in the vy, have a solution over N if and only if the required tensor
factorisation of f(z) exists. Our method is, then, to try all possible values for the g,
subject to the condition that ) ; 8;deg(u;(z)) = deg(u(z)) where deg(u;(z)) is the
degree of u;(x), stopping if we find a solution over N for the ;. If we find no solution
over N, then the required tensor factorisation does not exist. A useful improvement
to the above method may be obtained by observing that we may multiply the action
of u(x) on U by some scalar A and divide its action on W by A, without harm. Thus
6 need only vary over the representatives of K*/(K*)". Also, if v € K is a maximal
m-~th root of 1 where m divides the order of g, then we prune the possible choices for
u(z) so that no two differ by a tensor factor (z — v).

How do we decide whether a system of linear equations has a solution over N? This
is, of course, a well-known problem in integer programming.

Consider the matrix, A say, of the system of linear equations which determine the
vk If A has zero nullity (for example, if u(z) is not a zero divisor), then the equations
either have a unique solution over Z, or they are inconsistent over Z. But sometimes
we find an integral solution that has negative terms, and A has non-zero nullity.

One approach to deciding whether there is a solution over N to the system of equa-
tions is outlined in Adams & Loustaunau (1994, pp. 105-107). In summary, they
translate the integer programming problem into an equivalent problem about polyno-
mials, by letting the unknown non-negative variables be exponents of variables in a
polynomial ring. They then compute a Grobner Basis for the ideal generated, and use
this basis to solve the polynomial problem. We have used an implementation of this
technique in MAGMA to test its feasibility. The time taken to compute the Grobner Ba-
sis grows exponentially with the number of variables and this computation is sometimes
too expensive a component of our overall algorithm.

On the other hand, Gaussian Elimination allows us to decide quickly whether there
is a solution to the system over Z. Hence, on performance grounds, we solve the
system first over Z. There are three possible outcomes. First, if there is no solution,
then we know that the polynomial has no tensor factorisation for this choice of u(x).
Second, our solution may be unique or it may already be over N. Finally, if the solution
obtained is over Z and it is not unique, we have various options: decide whether there
is a solution for this u(z) over N by using the Grébner Basis (or some other) approach;
search for a conclusive factorisation of f(x) involving a different u(z); or terminate the
test and select a new element.

The alternating group of degree 8 in dimension 28 over GF(11) is one example
where the non-negative test is effective in deciding that there is no tensor product as
4 x 7. There is an element of order 15 where, for some possible u(z), the system of
linear equations determining the ~y; has a solution over Z, but for no possible u(x), is
there a solution over N. The solution over Z is always unique.



We thus have a test that may reject, but cannot prove, the possibility of a tensor
decomposition. The test is quite powerful in practice; Table 1 gives some indication
of its performance. If ¢ is large, cases can arise in which the test would be too slow
for some group elements. However, it is easy to see in advance if the test will be slow
for a particular element, the critical limiter being the number of irreducible factors of
™ — ¢, and we can simply decline to carry out the test in such cases.

As a final theoretical point, it may be worth noting that there is a marked difference
between the problems which arise with tensor factorisation and standard factorisation
of polynomials. If f(z) € K[z] has degree mn, then f(x) can only be the tensor
product of a polynomial of degree m and one of degree n if the coefficients of f(x)
satisfy certain integral polynomial equations independent of K. If 2™ — cjz™ ! +

-+ 4 (=1)™" ¢y, has such a tensor factorisation, then (cy, ..., ¢y,) must lie in a graded
ideal in Z[z1,. .., Ty, where x; has weight 5. The reader can verify that z* — c;23 +
c2x? — c3x + ¢4 can only be the tensor product of two polynomials, each of degree 2, if
c2 = clcy. Form = 3 and n = 2, it is less easy to verify that a non-zero element of least
weight in this ideal is a polynomial of weight 19 and involves 28 distinct monomials.
We thank Ruth Schwingel for this discouraging information; see Schwingel (1996) for
further details.

5 Computing the stabiliser of a space

The algorithms presented in Section 6 for computing p-local subgroups of a matrix
group G use as a central component the following method for computing the stabiliser
in G of a subspace U of a vector space V.

A naive approach to obtaining elements of the stabiliser of U is to construct the
image of U under the action of a large number of random elements of G' and to record
both the image and the element used. If two images coincide, that is Ug; = Ugs, then
g1, * stabilises U. Since we cannot afford to store either a large number of images or
random group elements, we modify this approach by initially storing instead a hash
address for each image and noting only the number of the random element giving rise
to this image. In a second stage, we now resolve all coincidences in the hash table. We
reset the random element seed and repeat the random element generation. For each
recorded coincidence, we now decide whether the random elements ¢g; and g, that give
rise to this coincidence satisfy Ug; = U gs.

This method can be obviously generalised to find elements of the set-wise stabiliser
of a set of subspaces of V.

The product replacement algorithm, to construct random elements of a finite group,
only requires one multiplication to compute each random element, after an initialisation
stage. See Celler, Leedham-Green, Murray, Niemeyer & O’Brien (1995) for details;
further analysis of this algorithm can be found in Diaconis & Saloff-Coste (1996).

If the stabiliser of U has index n in G, the number of field operations required to
find, with given probability, an element of the stabiliser of U is proportional to d®y/n.
For we expect to construct about O(y/n) images of U before finding a coincidence, it



takes O(d®) field operations to produce a random element of GG, and the number of
field operations required to compute the image of a basis of U and to reduce this basis
to echelon form is O(ud?), where u is the dimension of U. In practice, we allow n to
take values up to about 1000 000.

As presented, this algorithm can only produce random elements of the stabiliser S
of U in G. However, if we have a test for deciding whether or not an element of G lies in
a given subgroup of S, then we can modify the algorithm to produce a generating set of
S with arbitrarily high confidence. Namely, if Hj, is the subgroup of S generated by the
first £ random elements of S that we find, and if Hy = Hy.4, then we can assert, after
the (k +1t)-th random element of S has been constructed, that S = Hj, with confidence
at least 1 — (1/2%). In specific examples, an easy membership test is often available;
if a precise test is not practical, then a statistical profile of, for example, the orders
of elements may lead to a reasonably effective test. We may also be in a situation —
for example, if S is almost simple — where S has very few subgroups of small index,
and so we also expect that every subset of S with significantly more elements than are
contained in a minimal generating set for S will generate the whole of S.

6 Constructing p-local subgroups

We present algorithms for constructing p-local subgroups of a matrix group G, consider
when these subgroups act reducibly on at least one factor in a putative tensor decom-
position of the underlying vector space, and mention some problems associated with
our approach. These subgroups are used as input to the reducible subgroup component
of our algorithm.

While our primary interest here is in producing large p-local subgroups of G, we
believe that modified versions of these algorithms, combined with a membership test
similar to that discussed in Section 5, would allow us to construct, with a high level of
probability, a generating set for the normaliser of a given p-subgroup of G.

6.1 p-local subgroups for p = x(K)

Given a p-subgroup P of GG, where p is the characteristic of the ground field K, we
wish to construct a subgroup H of G with a normal p-subgroup that is generated, as
normal subgroup, by P.

The theoretical basis for the algorithm is the following easy result.

Lemma 6.1.1 Let P be a p-subgroup of G < GL(d,p?). Then P® is a p-group if and
only if V has a series, as G-module, whose factors are centralised by P.

Proof. If PY is a p-group, define V, = (0), and define V; for 4 > 0 so that V;/V;_; is
the subspace of V/V; ;| that is centralised by P¢. Since P¢ is a p-group, V; = V for
some t. Since P¢ is normal in G, the Vj are G-submodules of V, as required.

Conversely, if V has a series {V;} of the required form, then P centralises V;/V; ;
for all 4, and hence is a p-group. ||
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Hence, to find a p-local subgroup where p = x(K), we proceed as follows. Given
a non-scalar p-group P, we compute a series of P-submodules of V whose factors
are centralised by P, and take the p-local subgroup to be the subgroup H of G that
stabilises the terms in this series. In practice, we use the series {U;}, where Uy = (0),
and for ¢ > 0 we define U; so that U;/U;_; is the subspace of V/U;_; that is centralised
by P.

To compute H, we first compute the stabiliser H; of U; in GG, then the stabiliser Ho
of Uy in Hy, etc. Elements of the stabiliser S of a subspace of V may be constructed as
described in Section 5. We can obtain elements of S in other ways. First, we may have
an element of the normaliser of P given in advance, and this will certainly stabilise
each of the subspaces constructed. Second, we are likely to find, when computing the
stabiliser H; of U; in H;_;, that the whole of H;_; stabilises U;; this is easy to check.
This is bound to occur if, as we hope, H is a maximal subgroup of G.

We exploit these ideas as follows. We first find a random element of G' of order
p. This is done by constructing random elements until we find an element k& whose
minimum polynomial has a repeated factor. This is equivalent to k£ having order a
multiple of p. We then compute the order, pm say, of k, and take ¢ = k™. We now
have a p-group P = (g), and an element k of its centraliser, and we construct the
p-local subgroup H as described above.

Recall that we construct H because we wish to search among the H-submodules of
V for potential flats in a G-invariant geometry. Hence, we want a p-local subgroup H
where the lattice of H-submodules of V' is relatively small. In practice, finding a p-local
subgroup, when one exists, is faster than computing the relevant lattice. Thus we look
for a subgroup H where the H-submodule lattice of V' has relatively short composition
length, in the expectation that such a lattice has a small number of submodules.

If H is such that the H-submodule lattice of V' has composition length greater than
some pre-assigned value (or is otherwise unsuitable), we can search in H for another
element, h say, of order p that commutes with g but which does not centralise the same
H-invariant series as g, and hence is not conjugate in H to g. Then taking P = (g, h),
we can start again to find a new p-local subgroup. Alternatively, we look (in H) for
another element ¢’ of order p that is not conjugate in GL(d, q) to g, and start again
with ¢’. Our experience is that we tend, for obvious reasons, to find larger rather than
smaller p-local subgroups, provided that they exist.

6.2 p-local subgroups for p # x(K)

Here we consider the task of constructing p-local subgroups of GG for primes p not equal
to the characteristic of K.

Our starting point is a random element, h say, of projective order a multiple of p.
A suitable power, g say, of h gives us an element of projective order p, and order some
power of p. We find a Jordan decomposition of V' under the action of ¢g. That is, we
express V as a direct sum of (g)-invariant subspaces Ji, ..., J; such that the minimum
polynomial of g acting on J; is f;, where the f; are distinct and irreducible. We take
the direct decomposition of V' in which each direct summand is the direct sum of all
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the J; for which the corresponding f; have a given degree. We construct as large a
subgroup S of the subgroup of G' that stabilises each of these direct summands as we
can find. The method used is that described in Section 5.

We now construct as large a subgroup 7' of the subgroup of S that preserves the
set of subspaces {J;} as we can find. This is done by looping over the degrees of the
fir for each degree ¢, replace S by as large a subgroup as we can find of the set-wise
stabiliser in S of the set of subspaces J; for which f; has degree ¢.

Suppose that all the f; have degree 1; that is, if g has order pf, then K contains a
primitive p’-th root of 1. Then ¢ and all its T-conjugates are diagonal when written
with respect to a basis that exhibits the Jordan decomposition of V. Hence, (g)” is an
abelian p-group, and 7" is p-local as required.

If some f; has degree greater than 1, we write g and the generating matrices for 7’
over a splitting field for the f;, and apply the above steps again, with 7" playing the
role of G. This involves conjugating the matrices with matrices whose coefficients do
not lie in K, but we can then conjugate the new T' by the inverse of these matrices to
obtain the matrices of the new T in terms of the earlier basis; the resulting matrices
have entries in K.

In general, we expect all but one or two of these steps to be trivial, because the
complete parent group will already stabilise the space. In particular, all but one of the
steps is clearly trivial if we find a p-local subgroup that is maximal in G.

6.3 Testing reducibility of p-local subgroups

Having constructed a p-local subgroup H, with normal p-subgroup P, we use the
H-submodules of V' of suitable dimension to search for flats giving rise to a tensor
decomposition of V. Since our earlier tests have failed to disprove the existence of a
tensor decomposition, we are quite hopeful that one exists, in which case it is again
likely that H will act reducibly on one, or indeed on both, of the tensor factors.
However, we may find that no H-submodule of V' is a flat in a G-invariant u-projective
geometry on V. If this happens, we wish to prove that if such a tensor decomposition
did exist, then H would have to act reducibly on at least one of the factors. If p is
the characteristic of K, then this condition is automatic. If not, we can reduce to the
case in which P is a minimal normal subgroup of H. If P is cyclic, then the following
consequence of Clifford’s theorem provides a necessary criterion for H to act irreducibly
on W. A proof can be found in Leedham-Green & O’Brien (1996).

Theorem 6.3.1 If H is a subgroup of G that acts irreducibly on W, and normalises
the cyclic group generated by g, where g has projective order p, then the characteristic
polynomial of g acting on W is of the form [, fi(z)!, where f; is an irreducible factor
of P — X\ for some scalar A, and the f; are the conjugates of fi under the action of H.
That is, if fi(z) =1;(x — 0;), and h € H conjugates g to g° for some integer s, then
h conjugates fi(z) to [];(z — 63).

Hence, if H acts irreducibly on W, then the characteristic polynomial of ¢ must have
a tensor factorisation involving such a factor. We have developed an effective imple-
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mentation of this criterion, which uses a modified version of the algorithm presented
in Section 4.

If P is non-cyclic, the structure of the characteristic polynomial of g could perhaps
be used to provide similar (if more complex) necessary criteria for H to act irreducibly
in the appropriate dimension. In practice, we can generally settle the question by either
taking p to be the characteristic of K, or by taking P to be cyclic, or having some
other theoretical way of deciding that H would have to act reducibly.

6.4 Problems with this approach

Three central problems arise with the p-local subgroup test. First, every proper sub-
group of G may be of such large index that our stabiliser technique for finding a p-local
subgroup is ineffective. Second, the lattice of H-submodules of V' may be too large.
Third, we may have problems in proving that our p-local subgroup acts reducibly on a
putative tensor factor.

A typical case in which we cannot hope in practice to find a large p-local subgroup
using the stabiliser approach is when G is a large subgroup of a general linear group. For
example, if G is GL(d, q), and V is the tensor square of the natural module for G, then
the p-local subgroup we need to find is the natural module extended by GL(d — 1, q).
In an attempt to address this problem, we have developed a prototype algorithm that
constructs the relevant subgroup whenever G is isomorphic to a group lying between
SL(d,q) and GL(d,q).

Clearly, there are groups whose p-local subgroups are not large enough to provide
a suitable submodule lattice. For example, we have frequently encountered problems
when G is isomorphic to an alternating or symmetric group since, in this case, a p-local
subgroup is likely to leave far too many subspaces of V' invariant. We need algorithms to
find alternating subgroups on one (or two) fewer points, and prove that these must act
reducibly on a putative tensor factor. More generally, we hope to develop algorithms
to construct other reducible subgroups.

7 An overview of the algorithm

The input to the algorithm is a set of matrices which generate a subgroup G of GL(d, q).
We first compute all proper factorisations of d as uw and store these as a list L.
The steps of the algorithm are the following:

1. Order test;

[\)

. Projectivity test;

3. Polynomial factorisation test;

S

. Reducible subgroup test.
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The first three steps are each applied to a small number of random elements. In
applying these, we either rule out certain of the possible factorisations of d as uw, or
in applying the projectivity test find a tensor decomposition. It is possible that the
order test generates no elements which are potential projectivities. If this is the case,
we call ISPROJECTIVITY with a small number of random elements of G which have
prime projective order.

As input to the final stage, we now have a (hopefully shorter) list, £, of possible
factorisations of d as uw. We construct a small number of reducible subgroups looking
for subgroups H which satisfy the following requirements: the composition length of
V as an H-module is small and H acts reducibly in at least one of the dimensions
that occur in a factorisation in £. Usually the subgroups constructed are p-local for
various primes p. Among the resulting collection, we then select the smallest number of
subgroups which both permit us to decide all factorisations in £ and give the smallest
composition length.

We now process these subgroups in order of increasing composition length. The
algorithm for finding a point in our projective geometry from a flat, described in
Leedham-Green & O’Brien (1996, §3), is encoded as the procedure FINDPOINT. For
the selected reducible subgroup H, we first compute the lattice of H-submodules of V;
each subspace of dimension a multiple of an outstanding v is then handed to FiND-
PoinT. If we do not find a tensor decomposition, then we eliminate another possible
factorisation from L.

7.1 Complexity of the algorithm

The complexity of the algorithm is a delicate issue. If G does not preserve a tensor de-
composition of V', we expect in “most” cases to prove this in approximately O(d?log q)
field operations. If there is a tensor decomposition in which some non-scalar element
of G acts as a scalar on one of the tensor factors, we also expect to find the tensor
decomposition in O(d?logq) field operations.

If these simple algorithms fail, the worst case analysis becomes meaningless. In
the best case, if n is the least index of a p-local subgroup H of G, finding a p-local
subgroup requires at least O(d®y/n) field operations. The most expensive part of the
algorithm is usually computing the lattice of H-submodules of V. If the composition
length of V' as an H-module is “too large” for a particular H, we do not attempt to
compute this lattice.

To justify and clarify our claims on the complexity of the simpler parts of the algo-
rithm, an informal discussion follows. We assume throughout that the time required
for a field operation is bounded. The complexity of the order test is the complexity
of constructing a random element of GG, plus the complexity of computing the order
of an element of G. To assert that these have complexity O(d®) and O(d?loggq) re-
spectively are (slightly optimistic) interpretations of the results in Celler et al. (1995)
and Celler & Leedham-Green (1996b). To compute the characteristic polynomial f(z)
of an element g of G has complexity O(d®). To compute the minimum polynomial
has Las Vegas complexity O(d?); that is, the algorithm will, with probability greater
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than 1 — (1/2%), terminate in time O(dt). Hence, the procedures ISPROJECTIVITY
and FINDPOINT each have Las Vegas complexity O(d?). To decide whether or not a
polynomial of degree d = uw, with u < w, is the tensor product of polynomials u(x)
and w(x) of degrees u and w respectively requires considering all possible candidates
for u(x) where u(z) must be a product of powers of certain irreducible polynomials. If
there are k irreducible polynomials in the factorisation of u(x), the exponents of k£ — 1
of these determine the exponent of the k-th. Hence, if £ < 7, then the number of
candidates for u(z) is at most O(u®) = O(d®). The amount of work required to deter-
mine whether or not a given candidate for u(z) tensor divides f(z) is also a function
of k, as it involves solving approximately k£ integer linear equations in approximately
k unknowns. The numbers here are only approximate, as they are the number of irre-
ducible factors of ™ — 6 for various values of #, where n is the projective order of g.
This estimate also ignores the problem of negative exponents. If the matrix defining
the equations has positive nullity, then we may use the Grobner Basis approach, which
has exponential cost in the number of variables, to decide if there is a solution over
N. However, since such cases are rare, the cost can “usually” be ignored. So we can
run a number of these tests on elements of projective order bounded in theory by 7
in O(d®) field operations. In practice, we are prepared to consider much larger orders,
the critical limiter being the number of irreducible factors of z™ — 6.

8 Implementation and performance

In developing an implementation of our algorithm, we have extensively used existing
implementations of other algorithms.

We use the product replacement algorithm to generate random elements of G. For
details, see Celler et al. (1995).

We compute the order of an element of G using an algorithm of Celler & Leedham-
Green (1996b). They have also developed effective algorithms for computing charac-
teristic and minimal polynomials of matrices defined over finite fields.

An algorithm to obtain the lattice of submodules of a KG-module is described by
Lux, Miiller & Ringe (1994), and an implementation of their algorithm is distributed as
a package with GAP. Another algorithm has been developed by Cannon and Leedham-
Green and is available in MAGMA.

Implementations of our algorithm are available in both GAP and MAGMA. The
computations reported in Table 1 were carried out using MAGMA Version 1.3 on a HP
9000/730, and all CPU times are given in (rounded) seconds. Twenty random elements
of each group were selected for the order test. For each group, we list its ATLAS name
(Conway et al., 1985), report its dimension, and the finite field it is defined over. If
we found a tensor decomposition, then we list the dimensions of the factors; if no
decomposition exists, we indicate this by “~”. In the final column, we identify the
test which either produced the tensor decomposition for this group or proved that it
preserves no tensor decomposition.

Since the algorithm has a random component, the times listed should be viewed
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Group Dimension q | Factorisation | Time Notes
As x As 52 7 5x5 1.5 Projectivity test
6.4 12 72 3x4 160.0 3-local subgroup
Ag 16 2 4x4 6.8 2-local subgroup
Ay 20 2 - 0.6 Polynomial factorisation
6.4; 24 112 4x6 220.1 3-local subgroup
Ag 20 11 - 1.0 Polynomial factorisation
Ag 28 11 - 2.9 Polynomial factorisation
Ag 21 17 - 0.4 Order test
Ag 28 49 - 3.8 Polynomial factorisation
Ag 168 17 8 x 21 818.2 Ag as reducible subgroup
(3%2:4x Ag) -2 18 7 3x6 0.8 Projectivity test
(3%2:4x Ag) -2 27 7 3x9 1.3 Projectivity test
SL(2,5) 6 72 2x3 4.9 3-local subgroup
SL(2,25) 16 52 4x4 4.9 5-local subgroup
SL(6,49) 36 72 6x6 34.9 | SL(5,49) as reducible subgroup
SL(7,25) 49 52 TxT 59.1 | SL(6,25) as reducible subgroup
Us(2) 30 52 5%6 87.1 2-local subgroup
Us(2) 30 72 - 44 Polynomial factorisation
Us(2) 58 5 - 2.0 Order test
L»(13) 14 7 - 0.1 Order test
Ly(17) 18 41 - 0.2 Order test
Ly(31) 32 21 - 1.1 Order test
L, (81) 82 41 - 10.1 Order test
M, 55 7 - 1.3 Order test
M, 55 7 - 2.0 Order test
Mss 54 7 - 1.7 Order test
Cos 22 2 — 0.1 Order test
Cos 22 3 - 0.2 Order test
Ru 28 5 - 0.7 Order test
Ji 14 7 - 0.2 Order test
Ji 27 11 - 1.9 Polynomial factorisation
He.2 50 7 - 2.7 Order test
He.2 102 2 - 18.1 Order test
Ly 111 5 - 4.5 Order test
Ju 112 2 - 2.1 Order test
Z4x2.HS 112 17 2 x 56 37.8 Projectivity test

Table 1: Performance of implementation for a sample of groups
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only as a general guideline. In an attempt to provide a realistic guide to performance,
we report the CPU time averaged over three consecutive executions.

We now report in a little more detail on three examples. The first two illustrate
that a representation may support more than one distinct tensor decomposition of the
same degrees. We thank Stephen Glasby and L.G. Kovacs who suggested them.

Example 8.1 The alternating group Ag has a representation of dimension 168 over
various finite fields. This representation is primitive and can be constructed as the
tensor product of the representation of degree 8 with either of the two distinct rep-
resentations of dimension 21. We construct Ag as a subgroup of Ag and use Ag as a
reducible subgroup to find both tensor decompositions.

Example 8.2 Let G be the split extension of GL(2,3) acting on its natural mod-
ule. Then G has exactly 3 irreducibles of dimension 2, and exactly 2 of dimension
8 over GF(11). The tensor product of each 2-dimensional irreducible with each 8-
dimensional gives the same irreducible imprimitive 16-dimensional representation. The
natural module acts trivially on all three 2-dimensional modules over GF'(11). How-
ever, GL(2,3) acts faithfully on two of the 2-dimensionals, but as S3 on the third.
Again, we find these distinct factorisations.

Our final example illustrates the tensor factorisation over an extension field dis-
cussed in Leedham-Green & O’Brien (1996, §3).

Example 8.3 There is a 45-dimensional representation of 3.0’ N over GF(7); in fact,
there are two classes of such representations, conjugate by an outer automorphism.
Restricting to the preimage G of the maximal subgroup (32 : 4 x Ag) - 2 of O'N the
representation becomes reducible, with a submodule V' of dimension 18. If we send a
suitable involution to ISPROJECTIVITY, we find a tensor decomposition of V' as 3 x 6.
However, if we send an element ¢ of order 5 to ISPROJECTIVITY and search for a
G-invariant 3-geometry, an eigenspace F' of dimension 6 of g is sent to FINDPOINT.
The matrices written with respect to the geometric basis constructed for the set of
G-images of F' in general position are not proportional and all matrices in the algebra
of dimension 6 generated by the geometric transformations between flats are zero or
non-singular. That is, V' is isomorphic to U ® Wy ® GF(49) for some 3-dimensional
module W, where G acts non-trivially on GF(49) and hence acts semi-linearly on V'
as a GF(49)-space.

To conclude, we observe that those representations which pose practical difficul-
ties for the algorithm share certain common features. They are representations of
almost simple groups which we can easily decide (from the ATLAS or other sources)
do not preserve tensor decompositions. Usually we are attempting to eliminate one
possible factorisation d = uw, where u are w are approximately equal. Every random
element considered potentially supports a tensor decomposition, there are no poten-
tial u-projectivities, and the p-local subgroups constructed do not provide sufficiently
small submodule lattices. As indicated earlier, we plan to address such examples by
developing new techniques for constructing other reducible subgroups.
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