
[Page 1]

Towards effective algorithms for linear

groups

E.A. O’Brien∗

Abstract. One of the major research directions in computational group theory over the
past 15 years has been the development of effective algorithms for the investigation of
subgroups of GL(d, F) where F is a finite field. We survey this work.

2000 Mathematics Subject Classification: 20C20, 20C40

1. Introduction

Research activity in computational group theory has concentrated on four pri-
mary areas: permutation groups, finitely-presented groups, polycyclic groups, and
representation theory.

It is now possible in practice to study the structure of permutation groups
having degrees up to about ten million; see Seress [77] for further detail. We
can readily compute useful descriptions (for certain quotients) of “large” finitely-
presented groups; see Sims [80] for further detail. Effective algorithms for the study
of (finite and infinite) polycyclic groups have been developed; see [48, Chapter 8]
for further detail.

While the study of a group via its modular representations is a fundamental
area of mathematical research, limited tools exist for such structural investigation.
Consider G = 〈X〉 ≤ GL(d, F) where F = GF(q). Natural questions arise. What
is the order of G? What are its composition factors? What are its Sylow sub-
groups? While similar questions about a subgroup of Sn, the symmetric group
of degree n, can be answered theoretically and practically using highly effective
polynomial-time algorithms, existing machinery for linear groups is much weaker.
For example, it is difficult to determine (using existing standard functions) the
order of a random subgroup of GL(6, 52) using either of the major computational
group theory systems, GAP [38] and Magma [14].

∗I am most grateful to Bill Kantor for his personal and professional support over many years.
I thank the organisers for the invitation and financial support to participate in the meeting. This
work was partially supported by the Marsden Fund of New Zealand via grant UOA124. I thank
Peter Brooksbank, Derek Holt, Alice Niemeyer, Cheryl Praeger, Ákos Seress, and the referee for
their careful reading, comments, and corrections to the paper.

2 E.A. O’Brien

A major topic of research over the past 15 years has been the development of
effective well-understood algorithms for the study of such groups. An associated
goal is to realise the performance of these algorithms in practice.

One measure of performance is that an algorithm is polynomial in the size of
the input; for G = 〈X〉 ≤ GL(d, q), the size of the input is O(|X|d2 log q). For a
discussion of complexity-related issues, see Seress [77].

1.1. Basic tasks.

Already the most basic computations are expensive for linear groups. Consider
multiplying two d × d matrices. Its complexity is O(dω) field operations, where
ω = 3 if we employ the traditional algorithm. Strassen’s divide-and-conquer algo-
rithm [82] reduces ω to log2 7. However, its Magma implementation demonstrates
better performance over the traditional method only for matrices defined over fi-
nite fields having degrees in the hundreds. Further, there are overheads: the
additional complexity of the implementation and memory used. While Copper-
smith & Winograd [37] demonstrate that ω can be smaller than 2.376, this seems
of limited practical significance.

Observe that we can compute large powersm of a matrix g in at most 2 blog2mc
multiplications by the standard recursive algorithm: gm = gm−1g if m is odd and
gm = g(m/2)2 if m is even.

The standard algorithm to compute the characteristic polynomial of a matrix
has complexity O(d3) [48, p. 227]. Storjohann [81] presents a deterministic algo-
rithm having similar complexity to determine its minimal polynomial; a simpler
randomised alternative having worst-case complexity O(d4) is described by Celler
& Leedham-Green [28].

1.2. Randomised and black-box algorithms.

Most of the algorithms for linear groups are randomised: they rely on random
selections, and the analysis of their performance assumes that we can select uni-
formly distributed random elements.

A Monte Carlo algorithm is a randomised algorithm which may return an
incorrect answer to a decision question, and the probability of this event is less than
some specified value. A Las Vegas algorithm is one which never returns an incorrect
answer, but may report failure with probability less than some specified value. If
one of the answers given by a Monte Carlo algorithm is always correct, then it is
one-sided. For a discussion of (concepts related to) these types of algorithms, we
refer the reader to Babai [5].

Babai [4] presented a Monte Carlo algorithm to construct in polynomial time
nearly uniformly distributed random elements of a finite group. No effective imple-
mentation of this algorithm is available. Instead, both GAP and Magma use the
product replacement algorithm of Celler et al. [27]. That this is also polynomial
time was established by Pak [73]. For a discussion of both algorithms, we refer

Towards effective algorithms for linear groups 3

the reader to [77, pp. 26-30]. Leedham-Green & O’Brien [60] present a variation
of the latter algorithm to construct random elements of a normal subgroup.

The concept of a black-box group was introduced by Babai & Szemerédi [10].
In this model, group elements are represented by bit-strings of uniform length; the
only group operations permissible are multiplication, inversion, and checking for
equality with the identity element.

Seress [77, p. 17] defines a black-box algorithm as one which does not use specific
features of the group representation, nor particulars of how group operations are
performed; it can only use the operations listed above. Some of the algorithms
surveyed here were first developed in the black-box context, usually under the
assumption that oracles to perform certain tasks are available.

One such is an order oracle to compute the order of an arbitrary element of a
group. In Section 2 we describe such an oracle for a linear group.

Another is a discrete log oracle which will provide, for a given non-zero element
µ of GF(q) and a fixed primitive element a of GF(q), the unique integer k in the
range 1 ≤ k < q for which µ = ak. For a description of discrete log algorithms,
see [78, Chapter 4].

Seress [77, Chapter 2] provides an excellent account of black-box algorithms:
these include Monte Carlo algorithms to compute the normal closure of a subgroup
and to construct the derived group of a black-box group.

One may intuitively think of a straight-line program for g ∈ G = 〈X〉 as an
efficiently stored group word on X that evaluates to g. While the length of a
word in a given generating set constructed in n multiplications and inversions
can increase exponentially with n, the length of the corresponding straight-line
program is linear in n. Babai & Szemerédi [10] prove that every element of a finite
groupG has a straight-line program of length at mostO(log2 |G|). In practice, both
Magma and GAP exploit straight-line programs. We do not explicitly consider
the concept further here, but refer the reader to Seress [77] for a discussion of its
theoretical and practical significance, particularly in evaluating homomorphisms
and relations.

1.3. The approaches.

The black-box group approach, initiated by Babai & Beals [7], seeks to determine
the abstract group-theoretic structure of G. The associated algorithms are black-
box, usually Monte Carlo.

Every finite group G has a series of characteristic subgroups

1 ≤ O∞(G) ≤ Soc∗(G) ≤ Pker(G) ≤ G,

where O∞(G) is the largest soluble normal subgroup of G. Here Soc∗(G)/O∞(G)
is the socle of the factor group G/O∞(G), and so Soc∗(G)/O∞(G) is isomorphic
to a direct product T1 × · · · × Tk of nonabelian simple groups that are permuted
by conjugation in G; further Pker(G) is the kernel of this permutation action. For
a more detailed account of this structure, see, for example, [48, pp. 31–32].

4 E.A. O’Brien

Given G = 〈X〉 ≤ GL(d, q), Babai & Beals [7] present a Monte Carlo algorithm
to construct subgroups H1, . . . ,Hk such that Hi/O∞(Hi) ∼= Ti, or Hi acts on a
permutation domain of size polynomial in d. If we can construct the Hi, then
we can construct G/Pker(G) ≤ Sk, which can be studied readily using permuta-
tion group methods. The remaining theoretical difficulty is the construction of
(generators for) the soluble radical of G in Monte Carlo polynomial time.

By contrast, the geometric approach seeks to investigate whether a linear group
G satisfies certain natural and inherent properties in its action on its underlying
vector space. If so, it determines an Aschbacher category of G, identifies an N CG
naturally associated with this category, and recursively studies G/N and N . Our
primary focus in this survey is the geometric approach.

Luks [65] proved that we can decide solubility for linear groups in polynomial
time, and presented deterministic algorithms to answer a variety of questions for
soluble linear groups. These algorithms are polynomial, not in the size of the input
group G, but in the largest prime divisor of |G| other than the characteristic. This
work has been developed and extended by Miyazaki [66]. While Cooperman and
O’Brien developed a prototype implementation of Luks’ algorithm in 2000, its full
potential has not yet been practically realised.

1.4. The major tasks.

In designing algorithms for the structural investigation of a simple group G = 〈X〉,
we identify three natural and significant tasks.

• Determine the name of G.

• Construct an isomorphism between G and a “standard” copy of G.

• Given g ∈ G, write g as a word in X: with considerable abuse of notation,
we say that this task is the word-problem for G.

Two major types of algorithms have been developed to solve these tasks. A
non-constructive recognition algorithm names G. (More precisely, it may sim-
ply establish that G contains a particular named group as a composition factor.)
Clearly such an identification is useful. If, for example, we identify G as a member
of a particular family of finite simple groups, then we may apply algorithms to G
which are specially designed for this family.

A constructive recognition algorithm constructs an explicit isomorphism be-
tween G and a “standard” (or natural) representation H of G and exploits this
isomorphism to write an arbitrary element of G as a word in its defining generators.

For example, if G is an alternating group of degree n, then a constructive
recognition algorithm sets up an isomorphism between G and the standard copy
H on n points generated by a 3-cycle and an (n− 1)- or n-cycle.

Two algorithms which solve the word-problem for a given group, but do not
(readily) fit the constructive recognition model, are outlined in Sections 7.4 and
7.5.

Towards effective algorithms for linear groups 5

As part of their ongoing work on groups of Lie type, Cohen, Murray & Taylor
[31] developed the generalised row and column reduction algorithm: for certain
matrix representations, this algorithm writes an element of a group of Lie type
as a word in its Steinberg generators. This is one component of a solution to the
word-problem for these groups. (Of course, we must first construct the Steinberg
generators as words in the defining generators of the input group.)

1.5. An overview.

We aim to provide an introduction to this research topic; both its high level of
activity and our current state of knowledge dictate that this is a report of “work
in progress”. For an excellent survey of related topics, see Kantor & Seress [55].

While it is still too early to predict the final outcome of “matrix group recog-
nition”, we believe that a realistic and achievable goal is to provide effective well-
understood algorithms to answer many questions for linear groups of “small” de-
gree. The principal outstanding practical obstacle is constructive recognition for
classical groups, presented as matrix groups in defining characteristic. Increas-
ingly, the division between the two approaches sketched in Section 1.3 is artificial.
While some algorithms are developed in a black-box context, usually under the
assumption that oracles to perform certain tasks are available, their implemen-
tations accept as input a linear group or a permutation group, where algorithms
which are not black-box perform such tasks. Further, Mark Stather and others
already exploit ideas from both approaches, and we expect that some mixture will
ultimately prove most effective at a practical level.

In Section 2 we describe an order oracle for a linear group. Aschbacher’s classifi-
cation of maximal subgroups of classical groups into nine categories is summarised
in Section 3. Section 4 surveys existing algorithms to decide membership of the
categories, and in Section 5 we discuss how to exploit the associated geometry.
In Section 6 we survey non-constructive algorithms which name the finite simple
groups, and in Section 7 survey algorithms which solve the word-problem for these
groups. Finally, we consider short presentations for simple groups, which may be
used to verify that the results of randomised algorithms are correct.

2. Determining orders

A natural question is: determine the order of g ∈ GL(d, q). The task currently
requires factorisation of numbers of the form qi − 1, a problem generally believed
not to be solvable in polynomial time. (Since GL(d, q) has elements of order O(qd),
we cannot simply compute powers of g until we obtain the identity!)

Celler & Leedham-Green [28] present the following algorithm to compute the
order of g ∈ GL(d, q).

• Compute a “good” multiplicative upper bound E for |g|.

6 E.A. O’Brien

• Now factorise E =
∏m

i=1 p
αi
i where the primes pi are distinct.

• If m = 1, then calculate gpj
1 for j = 1, 2, . . . , α1 − 1 until the identity is

constructed.

• If m > 1 then express E = uv, where u, v are coprime and have approx-
imately the same number of distinct prime factors. Now gu has order k
dividing v and gk has order ` say dividing u, and the order of g is k`. Hence
the algorithm proceeds by recursion on m.

How do we obtain a good multiplicative upper bound? Given g, determine and
factorise its minimal polynomial f(x) =

∏t
i=1 fi(x)mi where deg(fi) = di. Now

β = logp maxmi and set

E = lcm(qd1 − 1, . . . , qdt − 1)× pβ .

Observe that |g| divides E. Celler & Leedham-Green [28] prove the following:

Theorem 2.1. If we know a factorisation of E, the cost of the order algorithm is
O(d3 log q log log qd) field operations.

If we fail to complete the factorisation of E, then we obtain a pseudo-order for
g – namely, a multiple of its order by some large prime(s). For most theoretical
and practical purposes this suffices.

Implementations of the algorithm in both GAP and Magma use databases of
factorisations of numbers of the form qi − 1, prepared as part of the Cunningham
Project [18].

A related problem is the following. Let G be a black-box group having an order
oracle, and let N CG: determine the order of an element of G/N .

Leedham-Green & O’Brien [60] present an algorithm for this task. Let g ∈ G
and let m be its order. The basic algorithm iterates the following operation for
some preassigned number of times.

• a := random element of N ;

• m := gcd(m, |ga|);

It then returns m as the estimate of the order of the image of g in G/N .
If the basic algorithm returns m > 1, we apply the following refinement. For

every prime p dividing m, apply the basic algorithm to gm/p. If the algorithm
returns 1 or any number prime to p as the order of the image of gm/p, then the
order of the image of g divides m/p; now repeat this refinement with m replaced
by m/p.

Babai & Shalev [9] prove the following:

Lemma 2.2. Let N be a simple non-abelian normal subgroup of G. The refined
algorithm, with high probability, returns the order of g modulo N as 1 if g ∈ N .

Towards effective algorithms for linear groups 7

Hence this algorithm can decide membership in a normal subgroup (provably
so for one which is simple), and thus is important for working with quotients of
black-box groups.

A consequence, of practical and theoretical importance, is a one-sided Monte
Carlo algorithm to prove that a black-box group G is perfect: we prove that
every generator of G is an element of its derived group and so learn that G is
perfect. An implementation is available in Magma, and is used extensively in our
implementation of the identification algorithm of Section 6.2.

3. Geometry following Aschbacher

As mentioned in the introduction, a classification of the maximal subgroups of
GL(d, q) by Aschbacher [3] underpins the “geometric” approach to the study of
linear groups. Let Z denote the group of scalar matrices of G. Then G is almost
simple modulo scalars if there is a non-abelian simple group T such that T ≤
G/Z ≤ Aut(T), the automorphism group of T .

We summarise Aschbacher’s classification as follows: a linear group preserves
some natural linear structure in its action on the underlying space and has a
normal subgroup related to this structure, or it is almost simple modulo scalars.

More formally, we paraphrase the theorem as follows.

Theorem 3.1. Let V be the vector space of row vectors on which GL(d, q) acts,
and let Z be the subgroup of scalar matrices of G. If G is a maximal subgroup of
GL(d, q), then one of the following is true:

C1. G acts reducibly.

C2. G acts imprimitively: G preserves a decomposition of V as a direct sum
V1 ⊕ V2 ⊕ · · · ⊕ Vr of r > 1 subspaces of dimension s, which are permuted
transitively by G, and so G ≤ GL(s, q) o Sym(r).

C3. G acts on V as a group of semilinear automorphisms of a (d/e)-dimensional
space over the extension field GF(qe), for some e > 1 and so G embeds in
ΓL(d/e, qe). (This includes the class of “absolutely reducible” linear groups,
where G embeds in GL(d/e, qe).)

C4. G preserves a decomposition of V as a tensor product U ⊗W of spaces of
dimensions d1, d2 > 1 over F . Then G is a subgroup of the central product
of GL(d1, q) and GL(d2, q).

C5. G is definable modulo scalars over a subfield: for some proper subfield GF(q′)
of GF(q), Gg ≤ GL(d, q′).Z, for some g ∈ GL(d, q).

C6. For some prime r, d = rm and G/Z is contained in the normaliser of an ex-
traspecial group of order r2m+1, or of a group of order 22m+2 and symplectic-
type.

8 E.A. O’Brien

C7. G is tensor-induced: it preserves a decomposition of V as V1⊗V2⊗· · ·⊗Vm,
where each Vi has dimension r > 1 and the set of Vi is permuted by G, and
so G/Z ≤ PGL(r, q) o Sym(m).

C8. G normalises a classical group in its natural representation.

C9. G is almost simple modulo scalars.

Of course, the nine Aschbacher categories are not mutually exclusive. Further,
seven have a normal subgroup associated with a decomposition.

In broad outline, this theorem suggests that a first step in investigating a linear
group is to determine (at least one of) its categories in the Aschbacher classifica-
tion. If a category is recognised, then we can investigate the group structure more
completely using algorithms designed for this category. Usually, we have reduced
the size and nature of the problem. For example, if G ≤ GL(d, q) acts imprimi-
tively, then we obtain a permutation representation of degree at most d for G; if G
preserves a tensor product, we now consider two linear groups of smaller degree.
If a proper normal subgroup N exists, we recognise N and G/N recursively, ulti-
mately obtaining a composition series for G. Many questions about the structure
of G can be answered by first considering its composition factors.

What of the almost simple groups? Liebeck [62] proved that the maximal non-
classical subgroups of GL(d, q) have order at most q3d, small by comparison with
GL(d, q) which has order O(qd2

).
Further, the absolutely irreducible representations of degree at most 250 of all

quasisimple finite groups are now explicitly known: see Hiss & Malle [43] and
Lübeck [64]. (Recall that G is quasisimple if G is perfect and G/Z(G) is simple.)
The algorithmic potential of these lists remains to be realised.

4. Membership of an Aschbacher category

We survey work on deciding if G ≤ GL(d, F), where F = GF(q), acting on the
underlying vector space V , is a member of the first seven Aschbacher categories. In
Section 6.1 we report on a Monte-Carlo algorithm which decides if G is in C8. We
first consider an algorithm which plays an important role in such investigations.

4.1. The Smash algorithm.

In essence, the Smash algorithm presented in [46] is a constructive realisation of
Clifford’s theorem [30].

Assume that G acts absolutely irreducibly on V . Let S ⊆ G contain at least
one non-scalar element. In summary, this algorithm investigates whether G has
certain decompositions with respect to the normal closure 〈S〉G. The possible
decompositions correspond to categories in Aschbacher’s theorem.

Towards effective algorithms for linear groups 9

We now consider these in more detail. Let N be a normal non-scalar subgroup
of G. Then, for some t ≥ 1, V splits as a direct sum W1 ⊕ W2 ⊕ · · · ⊕ Wt of
irreducible FN -modules, all of the same dimension. For some r, s′ ≥ 1, with
rs′ = t, the Wis partition into r sets containing s′ pairwise isomorphic FN -
modules each. If V1, V2, . . . , Vr are each the sum of s′ pairwise isomorphic Wis, so
that V = V1 ⊕V2 ⊕ · · · ⊕Vr, then G permutes the Vis transitively. Four situations
arise:

• If r > 1 then G acts imprimitively on V (type C2).

• If r = 1 and t > 1 and the Wi are absolutely irreducible as FN -modules,
then V can be recognised as a tensor product preserved by G (type C4).

• If r = 1 and the Wi are not absolutely irreducible as FN -modules, then G
is semilinear (type C3).

• Otherwise, both r and t equal 1 and N acts absolutely irreducibly on V .
Now N/Z(N) is a direct product N0×N0× · · ·×N0 of m copies of a simple
group N0, and N is a central product of m groups N1, each isomorphic to an
extension of Z(N) by N0. If N0 is cyclic, then G normalises an extraspecial
or symplectic-type group (type C6). Otherwise N0 is non-abelian simple.
If m = 1, G is almost simple, and Smash fails to find a decomposition;
otherwise m > 1 and G is tensor-induced (type C7).

The complexity of the resulting algorithm is at worst O(d6) [46]. An implementa-
tion is distributed with Magma.

4.2. Reducible groups.

The maximal subgroups in this category are the maximal parabolic subgroups.
If the action of G on V is unipotent, then it is easy to diagonalise G and we

find a composition series for G by elementary linear algebra. If there is a proper
section S of V on which G acts non-trivially, then we write down the action of
G on S; the kernel of the resulting homomorphism is the subgroup of G which
centralises this section.

The MeatAxe is a one-sided Monte Carlo algorithm to decide whether or not
G acts irreducibly on V . The original algorithm, incorporating ideas of Norton
and Parker, is described in [74]. It was generalised and analysed by Holt & Rees
[45], a task completed by Ivanyos & Lux [52]. In summary, their algorithm is
the following. Let M denote the FG-module and let A denote the F -algebra
spanned by the generators of G. Select a random element θ of A, determine its
characteristic polynomial c(x) of θ, and factorise it. Let χ = p(θ) where p(x) is an
irreducible factor of c(x). Hence χ has non-trivial nullspace N . If p(x) is a factor
of multiplicity one, then N is irreducible as an F 〈θ〉-module. Now compute the
FG-submodule of M generated by a single non-zero vector in N . If we obtain a
proper submodule, we conclude that G acts reducibly on V ; otherwise we must
repeat the random selection a number of times.

10 E.A. O’Brien

The MeatAxe has complexity O(d3.5 log q) [45], [52]. Implementations are
distributed with GAP and Magma.

4.3. Imprimitive groups.

Groups in this category act irreducibly but imprimitively on V ; maximal subgroups
in this category are stabilisers of direct sum decompositions V = ⊕r

i=1Vi where
dim(Vi) = d/r = s. (A space Vi is a block, the set {V1, . . . , Vr} is a block system.)

If G stabilises such a decomposition, then we obtain a homomorphism φ : G 7−→
Sym(r) and its kernel is a normal subgroup of G.

Holt et al. [47] present an algorithm to decide if an absolutely irreducible group
G acts imprimitively on its underlying space V .

One of its key components is the MinBlocks algorithm: given a non-trivial
subspace of a block of imprimitivity, the algorithm finds the block system with
minimal block dimension that contains this subspace.

The Smash algorithm of Section 4.1 applies when G does not act faithfully on
the system of blocks. If G has a block system containing r blocks of dimension
s, then there is a homomorphism from G to Sr. From a consideration of element
orders and characteristic polynomials, we may discover that a particular non-scalar
g ∈ Gmust lie in the kernel of the homomorphism from G to Sr. If so, we construct
its normal closure N = 〈g〉G, and then search for a decomposition with respect
to N .

If G acts faithfully as a permutation group on the blocks, then we seek to
construct the stabiliser of a block.

Suppose that G acts imprimitively on V with blocks of dimension s, and let
H be the stabiliser of one such block, W . Our strategy attempts to find H and
W , or to establish that the assumption is false. If W exists, then V is isomorphic
to the induced module WG, where W is regarded as an FH-module. Thus, W
must be irreducible as an FH-module, since otherwise V would not be irreducible
as an FG-module. From [50, Chapter V, Satz 16.6], we have HomFG(WG, V) ∼=
HomFH(W,V). Since we assume that V is an absolutely irreducible FG-module,
HomFG(WG, V) has dimension 1 over F . It follows that the only FH-submodule
of V that is isomorphic to W is W itself.

This suggests that we try to construct the stabiliser, H, of a fixed but unknown
block, W , of dimension s. If we succeed in constructing H, then we can find W
by first applying the MeatAxe algorithm to the action of H on V , and then,
for each FH-composition factor Vi of dimension s, calculating HomFH(Vi, V). If
HomFH(Vi, V) has dimension one, then W is the unique image in V of every
nonzero homomorphism, and we can find the block system by applying Min-
Blocks to this image.

We may assume that the permutation action of G on the blocks is primitive,
and so H must be a maximal subgroup of G of index r. We try to construct H
by working up a chain of subgroups, starting with a cyclic subgroup and then
adjoining new generators. At some point in our construction, our investigations

Towards effective algorithms for linear groups 11

may prove that no such H exists, and so we can conclude that G does not preserve
a block system with block dimension s.

An implementation of the algorithm is distributed with Magma.

4.4. Semilinear groups.

Groups in this category preserve on V the structure of a vector space over an
extension field of GF(q) and maximal subgroups in this category are GL(d/e, qe).e
where e is a prime dividing d.

Assume that the FG-module M is irreducible. Holt & Rees [45] describe an
extension of the MeatAxe to determine the centralising field E of M together
with a d × d matrix which generates E as a field over F . In particular, M is
absolutely irreducible if and only if E = F .

Holt et al. [46] present an algorithm to decide if an absolutely irreducible group
acts semilinearly. In summary, we construct a subset S of random elements of the
derived group of G, and now apply Smash to decide if G preserves the appropriate
decomposition with respect to 〈S〉G = G′.

If G is both imprimitive and semilinear, we may fail to decide that G is semi-
linear, since repeated calls to Smash always conclude that G acts imprimitively.

An implementation of the algorithm is distributed with Magma.

4.5. Tensor products.

Groups in this category preserve on V the structure of a tensor product of two
subspaces, and maximal subgroups in this category are subgroups of the central
product GL(e, q) ◦GL(f, q) where d = ef .

Leedham-Green & O’Brien [58] provide a description of a tensor decomposition
of V in terms of a projective geometry whose flats are certain subspaces of V . In
[59] we exploit this geometrical approach and some other ideas to obtain a practical
algorithm to decide tensor decomposability.

Here we summarise the approach, first recalling the concept of equivalence of
tensor decompositions.

Definition 4.1. A u-tensor decomposition of V is a linear isomorphism α from
U ⊗ W onto V , where U and W are vector spaces, with U of dimension u. If
α : U ⊗W → V and β : U ′ ⊗W ′ → V are u-tensor decompositions of V , then α
and β are equivalent if there are linear isomorphisms φ : U → U ′ and ψ : W →W ′

such that α = (φ⊗ ψ)β.

If V is an FG-module, where F is the underlying field and G is a group, then
a u-tensor decomposition of V as FG-module requires U and W as above to be
FG-modules, and α to be an FG-isomorphism; and in the definition of equivalence
φ and ψ are required to be FG-isomorphisms.

A u-projective geometry on V , where u divides the dimension of V , is a projec-
tive geometry where the k-flats are of dimension ku, the join of two flats is their

12 E.A. O’Brien

sum, and their meet is their intersection. Thus, in a u-tensor decomposition of V ,
the subspaces of V that are the images of subspaces of U ⊗W of the form U ⊗W0,
where W0 runs through the set of subspaces of W , form a u-projective geometry
on V . More generally, a u-tensor decomposition of V as FG-module gives rise to a
u-projective geometry on V where W0 runs through the set of FG-submodules of
W . This projective geometry is G-invariant, in that the set of flats is G-invariant.

In [58] it was shown that this construction of a u-projective geometry from a
tensor decomposition of V as FG-module sets up a one-to-one correspondence be-
tween the set of G-invariant projective geometries on V and the set of equivalence
classes of tensor decompositions of V as FG-module. A point in the projective
geometry corresponding to a u-tensor decomposition of V has dimension u as a
subspace.

The following theorem is proved in [58].

Theorem 4.2. Let V be a vector space of dimension uw. For each u-tensor de-
composition α : U ⊗W 7→ V , define F(α) to be {α(U ⊗ X) : X ≤ W}. Then
the map [α] 7−→ F(α) is a bijection between the set of equivalence classes [α] of
u-tensor decompositions of V and the set of u-projective geometries on V .

In [58] an algorithm FindPoint having complexity O(d3) is presented: given
as input a subspace F of V , it determines whether or not F is a flat in a G-
invariant u-projective geometry on V , and, in the affirmative case, returns the
corresponding tensor decomposition of V .

Hence the problem of finding a tensor decomposition of an FG-module V as
U ⊗ W , where U and W are modules for a covering group of G, is equivalent
to constructing a point in one of the two corresponding projective geometries: a
subspace of V of the form u⊗W or U ⊗ w for u ∈ U \ {0} or w ∈W \ {0}.

We use two approaches to find a flat in a suitable G-invariant projective geom-
etry, or to prove that no such geometry exists.

If G does not act faithfully modulo scalars on one of the factors in the putative
tensor decomposition, then (a variation of) Smash constructs the decomposition.
If G acts faithfully modulo scalars on each of the factors in every tensor decom-
position of V , then we consider the H-submodule structure of V for “suitable”
subgroups H of G. A subgroup H is suitable if it is guaranteed to act reducibly on
at least one of the tensor factors, say W , in every putative tensor decomposition.
Then at least one of the H-invariant subspaces of V is a non-trivial flat in the
corresponding u-projective geometry.

Hence, to apply the algorithm successfully, we wish to construct H ≤ G that
normalises sufficiently few subspaces of V that we can process these subspaces,
but which also acts reducibly on W if the required tensor factorisation exists. One
simple criterion we employ is the following. If p is the characteristic of F and
H is a p-local subgroup, then H cannot act irreducibly in any dimension greater
than one: the subspace of V centralised by a p-group must be non-trivial, and this
space is normalised by H.

Of course no suitableH may exist and hence the algorithm may fail to complete;
our experience suggests that it is easy to construct the tensor decomposition, but

Towards effective algorithms for linear groups 13

sometimes difficult to prove that no decomposition exists. An implementation of
the algorithm is distributed with Magma.

4.6. Smaller field modulo scalars.

Let G = 〈X〉 be an absolutely irreducible subgroup of GL(d,K), and let F be a
proper subfield of the finite field K.

Glasby, Leedham-Green & O’Brien [40] present an algorithm to decide con-
structively whether or not G is conjugate to a subgroup of GL(d, F).K×, where
K× denotes the centre of GL(d,K).

Theorem 4.3. There is a Las Vegas algorithm that takes as input the finite fields
F < K, and an absolutely irreducible group G := 〈X〉 ≤ GL(d,K), and decides in
O(|X|d3) field operations in K, plus O∼(d log q) field operations in F , whether or
not G is conjugate to a subgroup of GL(d, F). If so, then a conjugating matrix is
returned; otherwise false is returned.

The algorithm of Glasby & Howlett [39] has similar complexity but assumes a
discrete logarithm oracle for F . Our algorithm avoids use of the discrete logarithm,
and hence its performance is demonstrably better if F is “large”.

A variation of Theorem 4.3 allows us to decide membership in the Aschbacher
category.

Theorem 4.4. There is a Las Vegas algorithm that takes the same input as the
algorithm in Theorem 4.3, but with the additional assumption that G′ acts abso-
lutely irreducibly on the given KG-module V ; if G is conjugate to a subgroup of
GL(d, F)K×, it returns a conjugating matrix, or otherwise returns false. This
algorithm has the same complexity as the algorithm in Theorem 4.3.

We also generalise the algorithm of Theorem 4.4 in two ways to address the case
when G acts absolutely irreducibly, but G′ does not. It suffices, for the algorithm
of Theorem 4.3 to produce a positive answer, that we find for each g ∈ X a scalar
kg ∈ K× such that if g is replaced by kgg then the resulting set generates a group
that can be conjugated into GL(d, F). Thus we find such scalars by considering
the elements of X in turn, and then carry out a backtrack search through all
possible scalars; in practice we restrict the choice of scalars significantly. The
second approach is to use Clifford’s theorem [30] to analyse the structure of the
KG-module.

An implementation of the algorithm is distributed with Magma.

4.7. Normalisers of p-groups.

Groups in this category are the normalisers of certain absolutely irreducible,
symplectic-type r-groups, where r is a prime, d a power of r and q ≡ 1 (mod r).

Niemeyer [69] proved the following.

14 E.A. O’Brien

Theorem 4.5. Let p and r be primes with r ≥ 3. Let e be the smallest integer such
that pe ≡ 1 mod r and put q = pe. Let R0 be a given embedding of a symplectic-
type extraspecial r-subgroup R of order r3 and exponent r into GL(r, q). There is
a constructive, one-sided Monte Carlo algorithm which takes as input a group G
generated by a set X of matrices in GL(r, q) and decides whether or not G has
a normal subgroup isomorphic to R0. The algorithm costs O(ξ + (log r log log r +
log q + |X|)µ + δ) field operations, where µ is the cost of a group operation, ξ is
the cost of selecting a random element, and δ is the cost of finding an r-th root of
an element in GF(q).

The general case is considered by Brooksbank, Niemeyer & Seress [23]. Imple-
mentations of these algorithms are available in GAP and Magma.

4.8. Tensor-induced groups.

Let G ≤ GL(d, q) be tensor-induced. Then G preserves a decomposition of V as

U1 ⊗ U2 ⊗ · · · ⊗ Ur

where each Ui has dimension u > 1 and r > 1, and the set of Ui is permuted by G.
Leedham-Green & O’Brien [60] present an algorithm to decide if G is tensor-

induced. We may readily reduce to the case where G acts primitively on the set of
tensor factors. In summary, we consider homomorphisms from G onto a primitive
subgroup of Sr, and construct such mappings, or prove that none exists.

In particular, we construct a set of subsets of G in one-to-one correspondence
with the set of conjugacy classes of subgroups of G of index r, each subset gener-
ating a group in the corresponding class.

The standard low-index subgroup algorithm described in [80] constructs such
classes when G is a finitely-presented group. Critically, the relations used to obtain
subgroups of index at most r do not need to be satisfied by G, but rather by G/K
where K is a normal subgroup contained in the intersection of the kernels of all
homomorphisms of G into Sr.

We construct a generating set for a subgroup K of Kr, the verbal subgroup of
G corresponding to the variety generated by Sr, by evaluating instances of some
known laws of the variety. This we can do modulo the assumption that r is small.
(This is a realistic assumption: if we assume that d ≤ 500, then r ≤ 5, unless
u = 2, in which case r ≤ 8.)

We next obtain a presentation for a preimage ofG/K; here we use the algorithm
of [60] to construct random elements of a normal subgroup, and the algorithm
outlined in Section 2 to estimate the order of an element of G modulo a normal
subgroup.

We apply the low-index subgroup algorithm to this presentation to construct
subgroups of bounded index and obtain their preimages in G.

We next determine whether or not a subgroup M of appropriate index in G
preserves a tensor decomposition of V with factors U of dimension u and W of

Towards effective algorithms for linear groups 15

dimension ur−1. If M does not preserve such a tensor decomposition, then G is
not tensor-induced and the algorithm terminates.

If M preserves such a tensor decomposition, it remains to decide whether or
not G is tensor-induced from a subgroup of index r. In particular, we determine
whether or not W can be decomposed into r − 1 tensor factors of dimension u in
such a way that the resulting set of r u-dimensional tensor factors of V is permuted
by G.

An implementation of the algorithm is distributed with Magma.

5. Exploiting the geometry

In ongoing work, Leedham-Green and O’Brien have developed the concept of a
composition tree, which seeks to realise and exploit the Aschbacher classification.
Leedham-Green [57] provides a detailed description of this concept and its practical
realisation. Here we summarise it briefly.

A composition series for a group R can be viewed as a labelled rooted binary
tree. The nodes correspond to sections of R, the root node to R. A node that
corresponds to a sectionK of R, and is not a leaf, has a left descendant correspond-
ing to a proper normal subgroup N of K and a right descendant corresponding
to K/N . The right descendant is an image under a homomorphism; usually these
arise naturally from the Aschbacher category of the group, but we also exploit
additional ones applying to unipotent and soluble groups. The left descendant of
a node is the kernel of the chosen homomorphism.

The tree is constructed in right depth-first order. Namely, we process the node
associated with K: if K is not a leaf, construct recursively the subtree rooted at
its right descendant I, then the subtree rooted at its left descendant N .

It is easy to construct I, since it is the image of K under a homomorphism
φ. We generate a random element of N as follows. Let K = 〈x1, . . . , xm〉, and
let I = φ(K) = 〈x1, . . . , xm〉. Choose random k ∈ K, and evaluate φ(k) ∈ I. By
solving the word-problem for I, we establish that φ(k) = w(x1, . . . , xm). Then the
residue k · w(x1, . . . , xm)−1 ∈ N . Hence, by selecting sufficient random elements
of K, we construct with high probability a generating set for N .

We assign to the root node R a set of random elements which are used for
“quality control” in constructing the composition tree. Their images and residues
are determined for each new node constructed. We test if these random elements
satisfy the homomorphism specified; if their images under the homomorphism are
in the image; if the residues are in the kernel. If any of these tests fail, we know
that the generating set for some kernel which is an ancestor of the node is not
correct. We add more generators to this kernel and construct the subtree having
this root again.

We solve the word-problem directly for a leaf – namely, a composition factor of
the root group R – using a variety of techniques which we survey in Section 7. If
we solve the word-problem for the left and right descendants of a node, then we

16 E.A. O’Brien

readily solve the word-problem for the node, and so recursively obtain a solution
for the root node. Hence, given x ∈ GL(d, q), we can decide if x ∈ R; if so, we can
write x as a word in the user-supplied defining generators of R.

Recently, Mark Stather refined the composition tree concept to construct a
chief tree of a group, whose leaves are the chief factors of the group.

6. Non-constructive recognition

The algorithms to name a finite simple group exploit the concept of a primitive
prime divisor.

Let b, e be positive integers with b > 1. A prime r dividing be−1 is a primitive
prime divisor of be − 1 if r|(be − 1) but r 6 |(bi − 1) for 1 ≤ i < e. Zsigmondy [87]
proved that be − 1 has a primitive prime divisor unless (b, e) = (2, 6) or e = 2 and
b+ 1 is a power of 2. Recall that

|GL(d, q)| = q(
d
2)

d∏
i=1

(qi − 1).

Hence primitive prime divisors of qe − 1 for various e ≤ d divide both the orders
of GL(d, q) and of classical groups.

We say that g ∈ GL(d, q) is a ppd(d, q; e)-element (or sometimes simply a ppd-
element) if its order is divisible by some primitive prime divisor of qe − 1.

6.1. Classical groups in natural representation.

Much of the recent activity on algorithms for linear groups was stimulated by Neu-
mann & Praeger [68], who presented a Monte Carlo algorithm to decide whether
or not a subgroup of GL(d, q) contains SL(d, q).

Niemeyer & Praeger [71] answer the equivalent question for an arbitrary clas-
sical group. Underpinning the work is a classification of the subgroups of GL(d, q)
containing ppd-elements for e > d/2 obtained by Guralnick et al. [41]. In [71], they
refine this classification, focusing on pairs of elements in G which are ppd(d, q; e1)
and ppd(d, q; e2) for d/2 < e1 < e2 ≤ d. With few exceptions, if G contains
such elements, then G contains one of the classical groups. They determine the
proportion of such ppd-elements in classical groups, and also list the exceptions.
In summary, the resulting Monte Carlo algorithms are highly efficient, having
complexity O(log log d(ξ + dω(log q)2)), where ξ is the cost of selecting a random
element and dω is the cost of matrix multiplication.

For an excellent account of this and related work, see Praeger [76]. For a report
on the resulting implementation, which is distributed with Magma, see [70].

Towards effective algorithms for linear groups 17

6.2. Black-box groups of Lie type.

Babai et al. [8] present a black-box algorithm to name a group G of Lie type
in known defining characteristic p. The algorithm selects a sample of random
elements in G, and determines whether the orders of these elements are divisible
by certain primitive prime divisors. From this divisibility information, it constructs
the Artin invariants of G: the leading invariant is usually the largest k such that
G contains elements of order ppd(p, k)-order. With certain exceptions, the Artin
invariants determine G. The algorithm of Altseimer & Borovik [1] distinguishes
between PΩ(2m+ 1, q) and PSp(2m, q) for odd q > 3.

The central result of [8] is the following.

Theorem 6.1. Given a black-box group G isomorphic to a simple group of Lie
type of known characteristic, the standard name of G can be computed using a
polynomial-time Monte Carlo algorithm.

In 2001 Malle and O’Brien developed a practical implementation of the result-
ing algorithm. Our procedure takes as input a quasisimple group in known defining
characteristic. We also include identification procedures for the other quasisimple
groups. If the non-abelian composition factor is alternating or sporadic, then we
identify it by considering the orders of random elements. Our implementation is
distributed with GAP and Magma.

Observe that Theorem 6.1 assumes that the defining characteristic of the input
group of Lie type is known. The algorithm of Kantor & Seress [54] to determine
the characteristic does not appear to be practical; an alternative was developed
by Liebeck & O’Brien [63] and our implementation is distributed with Magma.

7. Solving the word-problem

We focus on approaches which solve the word-problem – and sometimes provide
much additional information – for simple groups.

7.1. Black-box classical groups.

Cooperman, Finkelstein & Linton [36] made a critical breakthrough, presenting a
constructive recognition algorithm for GL(n, 2).

This inspired the work of Kantor & Seress [53]; in summary, they prove the
following.

Theorem 7.1. There is a Las Vegas algorithm which, when given as input a black-
box perfect group G ≤ GL(d, q) where G/Z(G) is isomorphic to a classical simple
group C of known characteristic, produces a constructive isomorphism G/Z 7−→ C.

18 E.A. O’Brien

A partial implementation of the algorithm, developed by Brooksbank, Seress
and others, is available in GAP and Magma. The algorithm is not polynomial in
the size of input: its running time has a factor of q = pe because a necessary step
is to find an element of order p.

Recall that g ∈ G is p-singular if its order is divisible by p. A group of Lie type
having defining characteristic p has a small proportion of p-singular elements.
Combining the results of Isaacs, Kantor & Spaltenstein [51] and Guralnick &
Lübeck [42], we obtain the following.

Theorem 7.2. If G is a group of Lie type defined over GF(q), then 2
5q < ρ(G) <

5
q , where ρ(G) denotes the proportion of p-singular elements in G.

Brooksbank & Kantor [22] identify that the obstruction to a polynomial-time
algorithm for constructive recognition of the classical groups is PSL(2, q). Babai
& Beals [7] formulate the problem explicitly as follows.

Problem 7.3. Find an element of order p in PSL(2, pe) as a word in its defining
generators in polynomial time.

Since ρ(PSL(2, q)) ≤ 2/q, a random search will involve O(q) selections.
A consequence of the work of Landazuri & Seitz [56] is that the degree of a

faithful projective representation of PSL(2, q) in cross characteristic is polynomial
in q rather than in log q. Hence the critical case is a matrix representation of
SL(2, q) in defining characteristic.

Conder & Leedham-Green [32] and Conder, Leedham-Green & O’Brien [33]
present an algorithm which constructively recognises SL(2, q) as a linear group in
defining characteristic in time polynomial in the size of the input. The principal
result is the following.

Theorem 7.4. Let G be a subgroup of GL(d, F) for d ≥ 2, where F is a finite field
of the same characteristic as GF(q); assume that G is isomorphic modulo scalars
to PSL(2, q). Then, subject to a fixed number of calls to a discrete log oracle for
GF(q), there is a Las Vegas algorithm that constructs an epimorphism from G to
PSL(2, q) at a cost of at most O(d5τ(d)) field operations, where τ(d) denotes the
number of divisors of d.

Underpinning our work is a well-known characterisation of the absolutely irre-
ducible representations of SL(2, q), due to Brauer & Nesbitt [15].

Theorem 7.5. Let K be a finite field of characteristic p, and let V be an absolutely
irreducible KG-module for G = SL(2, q), where q = pe. Suppose that V cannot be
written over a smaller field. Then K is a subfield of GF(q), and V ⊗K GF(q) '
T1 ⊗ T2 ⊗ · · · ⊗ Tt, where Ti is the si-fold symmetric power Si of the natural
GF(q)[G]-module M twisted by the fi th power of the Frobenius map, with 0 ≤
f1 < f2 < · · · < ft < e, and 1 ≤ si < p for all i.

Towards effective algorithms for linear groups 19

Let q be a power of a prime p, and let V be a finite-dimensional vector space
over a finite field of characteristic p. In summary, our algorithm takes as input
a subset X of the linear group GL(V) that generates a group G isomorphic to
SL(2, q) or to PSL(2, q), and constructs the natural projective representation of G
by constructing the image of X under a homomorphism of G onto PSL(2, q).

How do we find a transvection in the natural representation H of SL(2, q)? We
find by random search an element a of order q − 1 in H, and a random conjugate
b of a. Next we construct c ∈ H and an integer i such that bic and a have a
common eigenvector. Observe that [a, bic] is a transvection. While a suitable c
can be found easily, computing i relies on a discrete logarithm oracle.

Brooksbank [19], [21] and Brooksbank & Kantor [22] have exploited this work to
produce better constructive recognition algorithms for black-box classical groups.
Kantor & Seress [55] summarise the outcome as follows.

Theorem 7.6. There is a Monte Carlo algorithm which, when given as input a
black-box G such that C = G/Z(G) is PSL(d, q), PSp(2m, q) or PSU(d, q) and
a constructive recognition oracle for SL(2, q), outputs a constructive isomorphism
G/Z(G) 7−→ C. The running time of the resulting algorithms is a polynomial in
the input length plus the time of polynomially many calls to the SL(2, q) oracle.

For example, the complexity of Brooksbank’s algorithm [21] for PSU(d, q) is
O(d2 log d(ξ+χ log q+ d log4 q), where ξ is the cost of selecting a random element
and χ is the cost of an SL(2, q)-oracle.

Recently Brooksbank & Kantor [24] developed an algorithm having similar
complexity for the orthogonal groups.

7.2. Classical groups in their natural representation.

The algorithm of Celler & Leedham-Green [29] for constructive recognition of
SL(d, q) in its natural representation has effective cost O(d4q). Recently, Brooks-
bank [20] developed similar algorithms for other classical groups in their natural
representation: their effective cost is O(d5 log2 q), subject to calls to an SL(2, q)
oracle.

In ongoing work, Leedham-Green and O’Brien are developing new algorithms
for the classical groups, given as linear groups in defining characteristic; these use
an SL(2, q) oracle and their complexity involves log q.

7.3. Alternating groups.

Beals et al. [11] prove the following.

Theorem 7.7. Black-box groups isomorphic to An or Sn with known value of n
can be recognised constructively, in O(ξn+ µ|X|n log n) time, where ξ is the time
to construct a random element, µ is the time for a group operation, and X is the
input generating set for the group.

20 E.A. O’Brien

Beals et al. [12] present an alternative linear group algorithm designed for the
deleted permutation module. Implementations of these algorithms are available in
GAP and Magma.

An alternative algorithm, developed by Bratus & Pak [16], was further refined
and implemented in Magma by Derek Holt.

7.4. Using centralisers of involutions.

The centraliser of an involution in a black-box group having an order oracle can
be constructed using an algorithm of Bray [17].

Assume we wish to construct elements of CG(h), for involution h ∈ G. Con-
struct a conjugate hk of h, where k is a random element of G. Let D be the
dihedral group generated by h and hk, and let the order of D be 2n.

(i) If n is odd, D contains an element t such that ht = hk. Then tk−1 is an
element of CG(h).

(ii) If n is even, D contains a central involution x. Then x and xk−1
both

centralise h.

It is easy to prove that the elements of CG(h) produced under step (i) are
uniformly distributed. Parker & Wilson [75] prove that certain classical groups
contain “sufficient” elements of this type having odd order.

Theorem 7.8. There is an absolute constant c such that if G is a finite simple
classical group, with natural module of dimension d over a field of odd characteris-
tic, and h is an involution in G, then [h, g] has odd order for at least a proportion
c/d of the elements g ∈ G.

Borovik [13] considers involution centralisers in the study of black-box groups and
announced a weaker version of this theorem. A result similar to Theorem 7.8 is
also established for the exceptional groups in [75].

For each sporadic group we can calculate explicitly the proportion of [h, g]
which have odd order. Since, for every class of involutions, this proportion is at
least 17%, we can readily construct centralisers.

The centraliser-of-involution algorithm [44] reduces the problem of testing
whether an arbitrary g ∈ G is a member of H ≤ G to instances of the same
problem for CH(t) for (at most) three involutions t ∈ H. The algorithm is con-
structive: if g ∈ H then it returns a word for g in the generators of H.

We summarise the algorithm. Assume we are given a black-box group G with
an order oracle, g ∈ G, and a subgroup H of G. We wish to decide whether or not
g ∈ H.

1. Find h ∈ H such that |gh| = 2`. Now define z = (gh)`.

2. Find x, an H-involution, such that |xz| = 2m. Now define y = (xz)m.

Towards effective algorithms for linear groups 21

3. Construct X = CH(x) and decide if y ∈ X.

4. If so, construct Y = CH(y) and decide if z ∈ Y .

5. If so, construct Z = CH(z) and decide if gh ∈ Z.

Note that 〈x, z〉 is D2m having central involution y = (xz)m. Hence y is in the
centraliser of x and z is in the centraliser of y.

If any of the membership tests fail, we immediately conclude that g 6∈ H;
otherwise, on termination, we have proved that g ∈ H.

An implementation is distributed with Magma.

7.5. The Schreier-Sims approach.

Underpinning most effective algorithms for permutation groups is the concept of
a base and strong generating set (BSGS).

Let a group G act faithfully on Ω = {1, . . . , n}. Recall that a base for G
is a sequence of points B = [β1, β2, . . . , βk] such that the sequence stabiliser
Gβ1,β2,...,βk

= 1. This structure determines a chain of stabilisers

G = G(1) ≥ G(2) ≥ · · · ≥ G(k) ≥ G(k+1) = 1,

where G(i) = Gβ1,β2,...,βi−1 . A strong generating set corresponding to B is a subset
S of G such that G(i) =

〈
S ∩G(i)

〉
, for i = 1, . . . , k.

The central task is the construction of basic orbits – the orbit Bi of the base
point βi+1 under G(i). Observe that |G(i) : G(i+1)| = |Bi|, a basic index. Using
Schreier’s Lemma, Sims [79] presented a deterministic algorithm to construct the
required strong generating sets. For an analysis of the algorithm, see Seress [77,
p. 64].

By contrast, the random Schreier-Sims, introduced by Leon [61], finds gener-
ating sets by considering random elements of G. It is usually significantly faster
and provides smaller strong generating sets. In practice, it terminates when some
stopping condition becomes true. Usually, we stop when a predetermined number,
N , of consecutive random elements have all been found to be redundant as strong
generators. If the random elements are uniformly distributed, the probability that
we do not have a complete BSGS is now less than 2−N . If the order of G is known
in advance, we can terminate when the product of basic indices reaches this value.

Of course, there is a natural faithful action of a linear group G ≤ GL(d, q) on
the underlying vector space V = GF(q)d: namely, vg = v · g for v ∈ V and g ∈ G.
Hence we can apply the Schreier-Sims algorithm to G and construct a BSGS for
its action on the vectors of V , where the base points are standard basis vectors
for V . Observe however that the size of V is qd and so grows exponentially with d.
The basic orbits obtained are usually very large; if G is a simple group, the first
basic index is often |G|.

By choosing base points which give shorter basic orbits, we extend signifi-
cantly the range of application of the Schreier-Sims. Butler [25] first developed

22 E.A. O’Brien

the Schreier-Sims algorithm for linear groups, choosing as base points the one-
dimensional subspaces of V . Murray & O’Brien [67] developed a more general
strategy for selecting base points for linear groups which we expect a priori to
have “small” orbits. In summary, we select some common eigenvectors for a col-
lection of random elements of the group, and use related spaces to obtain a base.

Most critical to the successful application of the Schreier-Sims algorithm is the
index |G(i) :G(i+1)|. While Sn has a subgroup of index n, the “optimal” subgroup
chain for GL(d, q) is

GL(d, q) ≥ qd−1.GL(d−1, q) ≥ GL(d−1, q) ≥ . . .

where the leading index is qd − 1 and so grows exponentially with d. Further,
many linear groups have no “small-degree” permutation representation and so no
useful stabiliser-chain. For example, the largest maximal subgroup of the sporadic
simple group J4 has index 173 067 389.

Despite these limitations, the algorithms underpin most of the long-standing
machinery for computing with linear groups. Implementations are available in
GAP and Magma, and are very effective for “small” degree representations defined
over “small” fields. While the model borrows heavily from permutation groups, it
does not write down an explicit permutation representation for the group, relying
instead on a stabiliser-chain. See, for example, the algorithm of Butler & Cannon
[26] to construct centralisers of elements of linear groups.

An algorithm which uses subset chains to solve the word-problem for black-box
groups is described by Ambrose et al. [2].

7.6. Sporadic groups.

Wilson [84] introduced the concept of standard generators for the sporadic groups.
He and others provide black-box algorithms for their construction. Generating
sets for maximal subgroups, representative of conjugacy classes and other struc-
tural information are now obtained by evaluating known words in these standard
generators. For further details, see the Atlas WEB site [85].

For each sporadic group, O’Brien & Wilson [72] present black-box algorithms
which construct chains of subgroups. For a specific matrix representation, each
chain now determines a stabiliser chain for (variations of) the Schreier-Sims algo-
rithm. Some subgroups in the chain act reducibly on the underlying vector space;
hence we construct a module composition series, and, by estimating orbit sizes,
select “good” base points for the Schreier-Sims algorithm. With this assistance,
the Schreier-Sims or the centraliser-of-involution algorithm [44] solves the word-
problem for all Atlas representations [85] of most sporadic groups; the exceptions
are the Baby Monster and the Monster where strategies developed by Wilson and
others are employed [86]. Implementations are available in Magma.

Towards effective algorithms for linear groups 23

8. Presentations for groups

Most of the algorithms surveyed here are randomised; Monte Carlo or Las Vegas
in nature, they rely on random selections.

How do we verify the results obtained? For example, how do we prove that
the composition tree for a given group G is correct? One method of verification
is to use a presentation. By constructing a composition tree for G, we obtain M ,
a group with composition factors the leaves. Then |M | ≤ |G|, perhaps properly if
we fail to construct completely the kernel of a homomorphism. We now construct
a presentation for M and verify that G satisfies the relations for M . Hence G is a
quotient of M and we conclude that G = M .

Since we must evaluate relations, we are interested in “short” presentations.
The length of a presentation is the number of symbols needed to write the presen-
tation. A presentation for G is short if its length is O(log2 |G|).

Combining the results of Babai et al. [6], Hulpke & Seress [49], and Suzuki [83],
we obtain the following.

Theorem 8.1. For every finite simple group except 2G2(q) there is a known short
presentation.

For Lie rank at least 2, these are reduced versions of the Curtis-Steinberg-Tits
presentations.

Conder, Leedham-Green & O’Brien [34] prove the following.

Theorem 8.2. The alternating and symmetric groups of degree n have presen-
tations on log n generators, where the number of relators is O(log n), and the
presentation length is O(log n log log n).

This represents a significant improvement over known (Coxeter) presentations
which have length O(n2). The consequent shorter presentations for the classi-
cal groups are described in [35].

References

[1] Christine Altseimer and Alexandre V. Borovik. Probabilistic recognition of orthogo-
nal and symplectic groups. In Groups and Computation, III (Columbus, OH, 1999),
volume 8 of Ohio State Univ. Math. Res. Inst. Publ., pages 1–20. de Gruyter, Berlin,
2001.

[2] Sophie Ambrose, Max Neunhöffer, Cheryl E. Praeger and Csaba Schneider. Gener-
alised sifting in black-box groups. LMS J. Comput. Math., 8:217-250, 2005.

[3] M. Aschbacher. On the maximal subgroups of the finite classical groups. Invent.
Math., 76:469–514, 1984.

[4] László Babai. Local expansion of vertex-transitive graphs and random generation in
finite groups. Theory of Computing, (Los Angeles, 1991), pp. 164–174. Association
for Computing Machinery, New York, 1991.

24 E.A. O’Brien

[5] L. Babai. Randomization in group algorithms: conceptual questions. In Groups and
Computation, II (New Brunswick, NJ, 1995), 1–17, Amer. Math. Soc., Providence,
RI, 1–17, 1997.

[6] L. Babai, A.J. Goodman, W.M. Kantor, E.M. Luks, and P.P. Pálfy. Short presen-
tations for finite groups. J. Algebra, 194(1):79–112, 1997.

[7] László Babai and Robert Beals. A polynomial-time theory of black box groups. I.
In Groups St. Andrews 1997 in Bath, I, volume 260 of London Math. Soc. Lecture
Note Ser., pages 30–64, Cambridge, 1999. Cambridge Univ. Press.

[8] László Babai, William M. Kantor, Péter P. Pálfy, and Ákos Seress. Black-box
recognition of finite simple groups of Lie type by statistics of element orders. J.
Group Theory, 5(4):383–401, 2002.

[9] László Babai and Aner Shalev. Recognizing simplicity of black-box groups and the
frequency of p-singular elements in affine groups. In Groups and Computation III,
Ohio State Univ. Math. Res. Inst. Publ., pages 39–62. de Gruyter, Berlin, 2001.

[10] László Babai and Endre Szemerédi. On the complexity of matrix group problems,
I. In Proc. 25th IEEE Sympos. Foundations Comp. Sci., pages 229–240, 1984.

[11] Robert Beals, Charles R. Leedham-Green, Alice C. Niemeyer, Cheryl E. Praeger,
and Ákos Seress. A black-box group algorithm for recognizing finite symmetric and
alternating groups. I. Trans. Amer. Math. Soc., 355(5):2097–2113, 2003.

[12] Robert Beals, Charles R. Leedham-Green, Alice C. Niemeyer, Cheryl E. Praeger,
and Ákos Seress. Constructive recognition of finite alternating and symmetric
groups acting as matrix groups on their natural permutation modules. J. Alge-
bra, 292:4–46, 2005.

[13] A.V. Borovik. Centralisers of involutions in black box groups. In Computational
and statistical group theory (Las Vegas, NV/Hoboken, NJ, 2001), 7–20, Contemp.
Math., 298, Amer. Math. Soc., Providence, RI, 2002.

[14] Wieb Bosma, John Cannon, and Catherine Playoust. The Magma algebra system
I: The user language. J. Symbolic Comput., 24:235–265, 1997.

[15] R. Brauer and C. Nesbitt. On the modular characters of groups, Ann. of Math.
42:556–590, 1941.

[16] Sergey Bratus and Igor Pak. Fast constructive recognition of a black box group
isomorphic to Sn or An using Goldbach’s conjecture. J. Symbolic Comput. 29:33–
57, 2000.

[17] John N. Bray. An improved method for generating the centralizer of an involution.
Arch. Math. (Basel), 74:241–245, 2000.

[18] John Brillhart, D.H. Lehmer, J.L. Selfridge, Bryant Tuckerman, and S.S.
Wagstaff, Jr. Factorizations of bn ± 1, volume 22 of Contemporary Mathe-
matics. American Mathematical Society, Providence, RI, second edition, 1988.
http://www.cerias.purdue.edu/homes/ssw/cun/index.html.

[19] Peter A. Brooksbank. A constructive recognition algorithm for the matrix group
Ω(d, q). In Groups and Computation, III (Columbus, OH, 1999), volume 8 of Ohio
State Univ. Math. Res. Inst. Publ., pages 79–93. de Gruyter, Berlin, 2001.

[20] Peter A. Brooksbank. Constructive recognition of classical groups in their natural
representation. J. Symbolic Comput., 35:195–239, 2003.

Towards effective algorithms for linear groups 25

[21] Peter A. Brooksbank. Fast constructive recognition of black-box unitary groups.
LMS J. Comput. Math., 6:162–197 (electronic), 2003.

[22] Peter A. Brooksbank and William M. Kantor. On constructive recognition of a black
box PSL(d, q). In Groups and Computation, III (Columbus, OH, 1999), volume 8
of Ohio State Univ. Math. Res. Inst. Publ., pages 95–111. de Gruyter, Berlin, 2001.

[23] Peter Brooksbank, Alice C. Niemeyer and Ákos Seress. A reduction algorithm for
matrix groups with an extraspecial normal subgroup. These Proceedings.

[24] Peter A. Brooksbank and William M. Kantor. Fast constructive recognition of black
box orthogonal groups. J. Algebra, 2006.

[25] Gregory Butler. The Schreier algorithm for matrix groups. In SYMSAC ’76, Proc.
ACM Sympos. symbolic and algebraic computation, pages 167–170, New York, 1976.
(New York, 1976), Association for Computing Machinery.

[26] Gregory Butler and John J. Cannon. Computing in permutation and matrix groups
I: Normal closure, commutator subgroups, series. Math. Comp., 39:663–670, 1982.

[27] Frank Celler, Charles R. Leedham-Green, Scott H. Murray, Alice C. Niemeyer
and E.A. O’Brien. Generating random elements of a finite group. Comm. Algebra,
23:4931–4948, 1995.

[28] Frank Celler and C.R. Leedham-Green. Calculating the order of an invertible ma-
trix. In Groups and Computation II, volume 28 of Amer. Math. Soc. DIMACS
Series, pages 55–60. (DIMACS, 1995), 1997.

[29] F. Celler and C.R. Leedham-Green. A constructive recognition algorithm for the
special linear group. In The atlas of finite groups: ten years on (Birmingham, 1995),
volume 249 of London Math. Soc. Lecture Note Ser., pages 11–26, Cambridge, 1998.
Cambridge Univ. Press.

[30] A.H. Clifford. Representations induced in an invariant subgroup. Ann. of Math.,
38:533–550, 1937.

[31] Arjeh M. Cohen, Scott H. Murray, and D.E. Taylor. Computing in groups of Lie
type. Math. Comp. 73:1477-1498, 2003.

[32] Marston Conder and Charles R. Leedham-Green. Fast recognition of classical groups
over large fields. In Groups and Computation, III (Columbus, OH, 1999), volume 8
of Ohio State Univ. Math. Res. Inst. Publ., pages 113–121. de Gruyter, Berlin, 2001.

[33] M.D.E. Conder, C.R. Leedham-Green, and E.A. O’Brien. Constructive recognition
of PSL(2, q). Trans. Amer. Math. Soc., 358:1203-1221, 2006.

[34] M.D.E. Conder, C.R. Leedham-Green, and E.A. O’Brien. Short presentations for
alternating and symmetric groups. Preprint, 2005.

[35] M.D.E. Conder, C.R. Leedham-Green, and E.A. O’Brien. Short presentations for
classical groups. Preprint, 2005.

[36] G. Cooperman, L. Finkelstein, and S. Linton. Constructive recognition of a black-
box group isomorphic to GL(n, 2). In Groups and Computation II, volume 28 of
Amer. Math. Soc. DIMACS Series, pages 85–100. (DIMACS, 1995), 1997.

[37] Don Coppersmith and Shmuel Winograd. Matrix multiplication via arithmetic pro-
gressions. J. Symbolic Comput. 9:251–280, 1990.

26 E.A. O’Brien

[38] The GAP Group. GAP – Groups, Algorithms, and Programming, Version 4.4; 2004.
(http://www.gap-system.org)

[39] S.P. Glasby and R.B. Howlett. Writing representations over minimal fields, Comm.
Algebra 25:1703–1712, 1997.

[40] S.P. Glasby, C.R. Leedham-Green and E.A. O’Brien. Writing projective represen-
tations over subfields. J. Algebra, 295:51–61, 2006.

[41] Robert Guralnick, Tim Penttila, Cheryl E. Praeger, and Jan Saxl. Linear groups
with orders having certain large prime divisors. Proc. London Math. Soc., 78:167–
214, 1997.

[42] R.M. Guralnick and F. Lübeck, On p-singular elements in Chevalley groups in
characteristic p. In Groups and Computation, III (Columbus, OH, 1999), volume 8
of Ohio State Univ. Math. Res. Inst. Publ., pages 169–182, de Gruyter, Berlin, 2001.

[43] G. Hiss and G. Malle. Low-dimensional representations of quasi-simple groups. LMS
J. Comput. Math., 4:22–63, 2001. Also: Corrigenda LMS J. Comput. Math., 5:95–
126, 2002.

[44] P.E. Holmes, S.A. Linton, E.A. O’Brien, A.J.E. Ryba and R.A. Wilson. Construc-
tive membership testing in black-box groups. Preprint, 2005.

[45] Derek F. Holt and Sarah Rees. Testing modules for irreducibility. J. Austral. Math.
Soc. Ser. A, 57:1–16, 1994.

[46] Derek F. Holt, C.R. Leedham-Green, E.A. O’Brien, and Sarah Rees. Comput-
ing matrix group decompositions with respect to a normal subgroup. J. Algebra,
184:818–838, 1996.

[47] Derek F. Holt, C.R. Leedham-Green, E.A. O’Brien, and Sarah Rees. Testing matrix
groups for primitivity. J. Algebra, 184:795–817, 1996.

[48] Derek F. Holt, Bettina Eick, and Eamonn A. O’Brien. Handbook of computational
group theory. Chapman and Hall/CRC, London, 2005.

[49] Alexander Hulpke and Ákos Seress. Short presentations for three-dimensional uni-
tary groups. J. Algebra, 245:719–729, 2001.

[50] B. Huppert. Endliche Gruppen I, volume 134 of Grundlehren Math. Wiss. Springer-
Verlag, Berlin, Heidelberg, New York, 1967.

[51] I.M. Isaacs, W.M. Kantor and N. Spaltenstein. On the probability that a group
element is p-singular. J. Algebra 176:139–181, 1995.

[52] Gábor Ivanyos and Klaus Lux. Treating the exceptional cases of the MeatAxe.
Experiment. Math., 9:373–381, 2000.

[53] William M. Kantor and Ákos Seress. Black box classical groups. Mem. Amer. Math.
Soc., 149(708):viii+168, 2001.

[54] William M. Kantor and Ákos Seress. Prime power graphs for groups of Lie type. J.
Algebra, 247(2):370–434, 2002.

[55] W.M. Kantor and Á. Seress. Computing with matrix groups. In Groups, Combina-
torics & Geometry (Durham, 2001), 123–137, World Sci. Publishing, River Edge,
NJ, 2003.

[56] Vicente Landazuri and Gary M. Seitz. On the minimal degrees of projective repre-
sentations of the finite Chevalley groups. J. Algebra, 32:418–443, 1974.

Towards effective algorithms for linear groups 27

[57] C.R. Leedham-Green. The computational matrix group project. In Groups and
Computation, III (Columbus, OH, 1999), 229–248. de Gruyter, Berlin, 2001.

[58] C.R. Leedham-Green and E.A. O’Brien. Tensor products are projective geometries.
J. Algebra, 189:514–528, 1997.

[59] C.R. Leedham-Green and E.A. O’Brien. Recognising tensor products of matrix
groups. Internat. J. Algebra Comput., 7:541–559, 1997.

[60] C.R. Leedham-Green and E.A. O’Brien. Recognising tensor-induced matrix groups.
J. Algebra, 253:14–30, 2002.

[61] Jeffrey S. Leon. On an algorithm for finding a base and strong generating set for a
group given by generating permutations. Math. Comp., 20:941–974, 1980.

[62] Martin W. Liebeck. On the orders of maximal subgroups of the finite classical
groups. Proc. London Math. Soc. (3), 50:426–446, 1985.

[63] Martin W. Liebeck and E.A. O’Brien. Finding the characteristic of a group of Lie
type. Preprint, 2005.

[64] F. Lübeck. Small degree representations of finite Chevalley groups in defining char-
acteristic. LMS J. Comput. Math. 4: 135–169, (electronic), 2001.

[65] Eugene M. Luks. Computing in solvable matrix groups. In Proc. 33rd IEEE Sympos.
Foundations Comp. Sci., 111–120, 1992.

[66] T. Miyazaki. Deterministic algorithms for management of matrix groups. In Groups
and Computation, III (Columbus, OH, 1999), 265–280. de Gruyter, Berlin, 2001.

[67] Scott H. Murray and E.A. O’Brien. Selecting base points for the Schreier-Sims
algorithm for matrix groups. J. Symbolic Comput., 19:577–584, 1995.

[68] Peter M. Neumann and Cheryl E. Praeger. A recognition algorithm for special
linear groups. Proc. London Math. Soc. (3), 65:555–603, 1992.

[69] Alice C. Niemeyer. Constructive recognition of normalisers of small extra-special
matrix groups. Internat. J. Algebra Comput., 15:367–394, 2005.

[70] Alice C. Niemeyer and Cheryl E. Praeger. Implementing a recognition algorithm
for classical groups. In Groups and Computation, II (New Brunswick, NJ, 1995),
volume 28 of DIMACS Ser. Discrete Math. Theoret. Comput. Sci., pages 273–296,
Providence, RI, 1997. Amer. Math. Soc.

[71] Alice C. Niemeyer and Cheryl E. Praeger. A recognition algorithm for classical
groups over finite fields. Proc. London Math. Soc., 77:117–169, 1998.

[72] E.A. O’Brien and R.A. Wilson. Optimal stabiliser chains for sporadic and other
linear groups. Preprint, 2005.

[73] Igor Pak. The product replacement algorithm is polynomial. In 41st Annual Sym-
posium on Foundations of Computer Science (Redondo Beach, CA, 2000), 476–485,
IEEE Comput. Soc. Press, Los Alamitos, CA, 2000.

[74] R.A. Parker. The computer calculation of modular characters (the Meat-Axe). In
M.D. Atkinson, editor, Computational Group Theory, pages 267–274, London, New
York, 1984. (Durham, 1982), Academic Press.

[75] Christopher W. Parker and Robert A. Wilson. Recognising simplicity of black-box
groups. Preprint, 2005.

28 E.A. O’Brien

[76] Cheryl E. Praeger. Primitive prime divisor elements in finite classical groups. In
Groups St. Andrews 1997 in Bath, II, 605–623, Cambridge Univ. Press, Cambridge,
1999.

[77] Ákos Seress. Permutation group algorithms, volume 152 of Cambridge Tracts in
Mathematics. Cambridge University Press, Cambridge, 2003.

[78] Igor E. Shparlinski, Finite fields: theory and computation. The meeting point of
number theory, computer science, coding theory and cryptography. Mathematics and
its Applications, 477. Kluwer Academic Publishers, Dordrecht, 1999.

[79] Charles C. Sims. Computational methods in the study of permutation groups. In
Computational problems in abstract algebra, pages 169–183, Oxford, 1970. (Oxford,
1967), Pergamon Press.

[80] Charles C. Sims. Computation with finitely presented groups. Cambridge University
Press, 1994.

[81] Arne Storjohann. An O(n3) algorithm for the Frobenius normal form. In Proceed-
ings of the 1998 International Symposium on Symbolic and Algebraic Computation
(Rostock), 101–104, ACM, New York, 1998.

[82] V. Strassen. Gaussian elimination is not optimal. Numer. Math. 13:354–356, 1969.

[83] Michio Suzuki. On a class of doubly transitive groups. Ann. of Math. 2, 75:105–145,
1962.

[84] Robert A. Wilson. Standard generators for sporadic simple groups. J. Algebra,
184(2):505–515, 1996.

[85] R.A. Wilson et al.. Atlas of Finite Group Representations,
at http://brauer.maths.qmul.ac.uk/Atlas

[86] R.A. Wilson. Computing in the Monster. In Groups, Combinatorics & Geometry
(Durham, 2001), 327–335, World Sci. Publishing, River Edge, NJ, 2003.

[87] K. Zsigmondy. Zur Theorie der Potenzreste, Monatsh. für Math. u. Phys., 3:265–
284, 1892.

E.A. O’Brien, Department of Mathematics, University of Auckland, Private Bag 92019,
New Zealand

Email: obrien@math.auckland.ac.nz

