Computing matrix group decompositions with
respect to a normal subgroup

Derek F. Holt, C.R. Leedham-Green,
E.A. O’Brien, Sarah Rees

Derek F. Holt
Mathematics Institute
University of Warwick
Coventry CV4 TAL
Great Britain

E-mail: dfh@maths.warwick.ac.uk

E.A. O’Brien

Lehrstuhl D fiir Mathematik
RWTH

Templergraben 64

52062 Aachen

Germany
obrien@math.rwth-aachen.de

C.R. Leedham-Green

School of Mathematical Sciences
Queen Mary and Westfield College
University of London

Mile End Road, London E1 4NS
Great Britain
C.R.Leedham-Green@Qqmw.ac.uk

Sarah Rees

Department of Mathematics and Statistics

University of Newcastle
Newcastle-upon-Tyne NE1 7TRU
Great Britain

Sarah.Rees@newcastle.ac.uk

The authors thank the School of Mathematical Sciences, Australian National University, for its
hospitality while much of this work was carried out.

1

Abstract

We describe an algorithm which can be used to investigate whether a matrix
group defined over a finite field decomposes with respect to a normal subgroup,
defined as the normal closure of a given set of matrices. The possible decom-
positions correspond to classes in Aschbacher’s classification of subgroups of the
general linear group.

1 Introduction

The purpose of this paper is to describe the algorithm SMASH, which has been devel-
oped by the authors as a tool to aid the computer recognition of a group described by
a generating set of matrices over a finite field. Given a set S of matrices in a group
G, not all of which are scalar, SMASH looks for certain kinds of decompositions of GG
and the underlying vector space V with respect to the normal subgroup N = (S)¢,
the normal closure of the subgroup generated by S. Implementations of the algorithm
are publicly available in the computational algebra systems, GAP [14] and MAGMA [2],
and the development of the algorithm has been strongly influenced by the performance
of these implementations.

Aschbacher’s theorem (in [1]) on the structure of subgroups of the general linear
group GL(d,q) is stated in more detail below. Essentially, it shows that if G is a
subgroup of GL(d,q), then, modulo scalars, G is either almost simple, or embeds in
GL(d,q') for some ¢' dividing ¢, or belongs to one of a number of classes of subgroups of
GL(d, q) which naturally give rise to a normal subgroup N of G. Two possible decom-
positions which involve a normal subgroup occur when G acts reducibly on the vector
space V' (that is, preserves a subspace of V), or irreducibly but not absolutely irre-
ducibly (in which case G is isomorphic to a subgroup of GL(d/e, ¢°) for some e > 1, and
is thus in Aschbacher’s class of subgroups which embed isomorphically in I'L(d/e, ¢%)).
These cases are disposed of using a variation of Parker’'s MEATAXE (see [12, 7]). Once
these possibilities have been eliminated, SMASH seeks to recognise the remaining classes
which involve a normal subgroup.

SMASH was initially developed as one component of an algorithm which can be used
to decide whether or not a matrix group is primitive. That algorithm is described in
detail in [6].

SMmAsH and the algorithm for primitivity testing have been written as part of a
general project to produce fast algorithms to recognise matrix groups, inspired by
the development of two Monte Carlo algorithms to recognise the special linear group
by Neumann & Praeger [11] and by Celler & Leedham-Green [10] (see also [9] for a
description of a non-deterministic constructive algorithm). Both of these algorithms
make use of the classification by Aschbacher and further use of this for more general
identification of a matrix group is proposed in [13].

The classification provided by Aschbacher’s theorem, reproduced here essentially
from [11], is given below. Here, as throughout this paper, G is a group of d x d

matrices over the finite field ' = GF(q), defined by a set of generating matrices, and
V is the underlying d-dimensional vector space over GF'(¢q) on which G acts.

Theorem 1 (Aschbacher, [1]) Let G be a subgroup of GL(d, q), and let Z denote its
subgroup of scalar matrices, that is Z = Z(GL(d, q)) NG. Then one of the following is

true:

1
2

9.

G acts reducibly, that is, G preserves a proper subspace of V.

G acts imprimitively, that is, G preserves a decomposition of V as a direct sum
VieVo®- - -V, of r > 1 subspaces of dimension s, which are permuted transitively
by G, and so G C GL(s,q) 1 S,.

G preserves a decomposition of V' as a tensor product U Q@ W of spaces of dimen-
sions r,s > 1 over F. Then G is a central product of subgroups of GL(r,q) and
GL(s,q). More precisely, G/Z C PGL(r,q) x PGL(s,q).

G preserves a decomposition of V' as a symmetric tensor product Vi@ Vo®---®V,,
of spaces all of dimension r > 1 over F, where d = r™. The components of
the product are permuted by G, and so G is an amalgamated wreath product of a
subgroup of GL(r,q) by a subgroup of Sp,. More precisely, G/Z C PGL(r,q)Sm.

G acts on'V as a group of semilinear automorphisms of a d/e-dimensional space
over the extension field GF(q%), for some e > 1, so G embeds in I'L(d/e, ¢°).

Modulo Z, G is conjugate to a subgroup of GL(d,q'), for some proper subfield
GF(¢') of GF(q), that is, G9 C GL(d,q').Z, for some g € GL(d, q).

For some prime v, d = r™, and G is contained in the normaliser of an r-group
R, of order either r*™*1 or 22™*2 Either R is extraspecial (in the first case),
or R is a 2-group of symplectic type, that is, a central product of an extraspecial
2-group with a cyclic group of order 4.

G/Z contains the derived subgroup of PGO(d,q), PGSp(d,q), PGU(d,q) or
PGL(d,q), and G itself is a subgroup of GO(d,q)Z, GSp(d,q)Z, GU(d,q)Z or
GL(d,q) respectively.

T C G/Z C Aut(T), for some non-abelian simple T = Gy/Z, for some subgroup
Gy of G.

The statements in the third and fourth cases are potentially misleading. In the
third case, the spaces U and W are in general modules for covering groups of G rather
than for G itself. A more precise description is that the projective representation on
V induced by G is equivalent to a tensor product of two projective representations of
G on U and W respectively. The same applies to the tensor product decomposition in
Case 4. Note also that the word “preserves” has been used in different senses in the

3

two cases, since U and W are fixed by G in Case 3, but permuted by G in Case 4. The
latter case is an instance of tensor induction; see Kovécs [8] for a detailed description.

The nature of the embedding in the fifth case also needs to be described more
precisely. In this case, V can be regarded as a vector space of dimension d/e over
GF(q°) and, for each g € G, there is an automorphism ga of GF(q¢°) fixing GF(q),
such that (Av)? = A9 for all v € V and A € GF(¢?). We denote the group of
semilinear transformations of V' of this form by I'L(d/e, ¢¢). We stress that this notation
means the subgroup of the full semilinear group consisting of those maps for which the
associated field automorphism « of GF(¢°) fixes the field F = GF(q). (So, for example
['L(2,2%) and T'L(2, 42) are nonisomorphic groups.) In this situation, we shall simply
say that G embeds in ['L(d/e, ¢°), although this is a little sloppy, because there are
many different embeddings of 'L(d/e, ¢°) in GL(d, q). We shall also describe this case
by saying simply that G is semilinear.

Under the assumption that G' has already been shown to act absolutely irreducibly
on the space V, and given a set S of matrices of GG, not all of which are scalar, SMASH
investigates whether GG has one of the following decompositions with respect to the

normal subgroup N = (S)¢:

(i) G acts imprimitively on V', with blocks Vi, V5,...,V,, and N preserves each of
the subspaces V;.

(ii) G is a group of semilinear (but not linear) automorphisms in some dimension
dividing d, over an extension field of GF(¢). Thus G embeds in 'L(d/e, ¢°) but
not in GL(d/e, ¢%), and N C GNGL(d/e, ¢°).

(iii) G preserves a tensor product decomposition U @ W of V', and N acts as scalar
matrices on U. Thus N preserves a decomposition of V' as a direct sum of
subspaces isomorphic to W, and fixed by V.

(iv) For some prime r, where d = r™, G is the normaliser of an r-group, R, of order
r?m+l or 222 In this case, IV is contained in RZ.

(v) G preserves a symmetric tensor product of m spaces each of dimension r, and is
an amalgamated wreath product of a subgroup of GL(r,q), and a subgroup of
the symmetric group S,,, for some r,m with d = r™. Then N preserves each of
the m factors of the tensor product.

The investigations of the first four types of decompositions are conclusive; that is, if
G decomposes in one of these ways with respect to N, SMASH will identify at least
one such decomposition. However the investigation of the symmetric tensor product
decomposition is at present a non-deterministic algorithm, and so the failure to find
such a decomposition does not conclusively demonstrate its non-existence.

Section 2 of this paper describes the theoretical basis for the algorithm, and Section
3 lists the main steps. The main procedures are described in greater detail in Section 4.
Section 5 addresses termination and complexity. Section 6 gives performance statistics,
and suggests possible improvements to the algorithm.

4

2 The theory behind SMASH

Suppose that G acts absolutely irreducibly on the d-dimensional space V over F' =
GF(q), and that N is a normal non-scalar subgroup of G. Then, by Clifford’s theorem
(see [3], or [5]), for some ¢ > 1, V splits as a direct sum Wy @ Wo @ --- & W; of
irreducible F'N-modules, all of the same dimension. For some r,s’ > 1, with rs’ = ¢,
the W;s partition into r sets containing s’ pairwise isomorphic F'N-modules each, and
if Vi, Va,...,V, are each the sum of s’ pairwise isomorphic W;s, so that V =V, @ Vo &
---@® V., then G permutes the V;s transitively.

If » > 1, then the subspaces V; form the blocks of a non-trivial system of imprimitiv-
ity, and N preserves each V;. Thus we have Case (i) of the above list of decompositions.

If r =1, then V decomposes as a direct sum of ¢ irreducible, pairwise isomorphic
FN-modules, W; = W, W,, ..., W,, each of dimension d' = d/t over F. Either all of
the W; are absolutely irreducible as F"N-modules or all are not. There is an integer
e > 1 such that, for each 7, the matrices describing the action of N on W; can be
written as d'/e x d'/e matrices over GF(q°), and W, can then be regarded as an
absolutely irreducible module for N of dimension d'/e over GF(¢¢). In particular
W is absolutely irreducible as a GF(¢°) N-module. Now we apply Schur’s lemma (see,
for example, [5]), which states that every non-trivial endomorphism of an absolutely
irreducible GF'(¢°) N-module corresponds to multiplication by a scalar matrix over
GF(¢°). Hence we see that Hompy (W, V) is t-dimensional as a vector space over
GF(q°), with {61,60,...,0,;} as a basis, where 6; is the identity map from W to itself,
and 6; is an isomorphism from W to W;.

Suppose first that the W; are not absolutely irreducible over GF'(g), that is, e > 1.
Then N|w,, the restriction of N to W;, embeds in GL(d'/e, ¢°) for each i. With respect
to this embedding, a basis for W as a d'/e-dimensional space over GF'(¢¢) can be found
by computing the centralising ring for . Using Schur’s lemma again, we see that this
is isomorphic to the field GF(q%), or rather, the ring of d'/e x d'/e scalar matrices
over that field. Applying each of the maps 6;, for + > 1, we can extend this basis to a
basis B for the whole of V, and thus find an embedding of N in GL(d/e, ¢°). We shall
demonstrate that G is a subgroup of I'L(d/e, ¢¢) (not in GL(d/e, ¢%)) by exhibiting an
appropriate subgroup K of GL(d/e, ¢°) which is normalised by G.

Since {6,605, ..., 0;} forms a basis for Homgy (W, V) as a vector space over GF(¢°),
every translate of W under G can be found as the image of W under a map of the form
St Aif;, where A; is a linear transformation of W corresponding to field multiplication
by an element of GF(q¢). Let L be the subgroup of GL(d,q) which fixes all the
translates of W by G. Then L is normalised by G. It is fairly easy to see that, with
respect to the basis B, each element of L is made up of ¢ copies of a single d’ x d’ matrix
A along the diagonal, where A corresponds to an element of GL(d'/e, ¢¢) embedded in
GL(d,q). Therefore L is isomorphic to GL(d'/e, q). Let K be the centraliser of N in
L. Then K is also normalised by G, and is isomorphic to the group of d’'/e x d' /e scalar
matrices over GF(¢°). This embeds in GL(d, q) as a group of matrices, each with d/e

identical e x e blocks along the diagonal. The normaliser of K in GL(d, q) isT'L(d/e, ¢°),
so since G normalises K, G must be a subgroup of I'L(d/e, ¢°). (The inclusion of G as
a subgroup of GL(d/e, ¢°) is prohibited by the fact that G acts absolutely irreducibly
on V.) Thus we have Case (ii) of the list of decompositions.

From now on, we shall assume that the W; are all absolutely irreducible over GF'(q).
We consider separately the cases t > 1 and ¢t = 1.

Suppose first that ¢t > 1. Choose a basis B = {b;; : 1 <i<¢,1<j<d'} forV
such that, for each ¢, {b;; : 1 < j < d'} is a basis for W;, and for each %, j, we have
bij = b1;0;. Then G preserves a decomposition of V' as a tensor product U ® W, where
W is an N-module isomorphic to each W;, and N acts as scalars on the t-dimensional
space U. We now describe how to find the tensor decomposition with respect to the
basis B.

First, for ¢ € G, the translate, Wg, of W by ¢ is isomorphic to W as an F'N-
module, and we can find an F'N-module automorphism 6, of V' such that Wg = W4,.
Since the maps 6; form a basis for Hompgx (W, V) we can find elements x11, 12, - .., Z1;
of F such that 8,|w = 1101 + 1202 + . . . + 21,6;. Now 90;1 fixes W, and so there is an
F-linear map ¢ on W such that g|w = ¢0,|w. If ¢ is represented by a d’ x d’ matrix
y = (yi;) over F' with respect to the basis {b11, b12,..., b1} of W, we see that the first
d' rows of the matrix representing g with respect to B consist of ¢ blocks of size d’ x d’
from left to right, corresponding to the matrix y multiplied by each of x11, 19, ..., z1;.

To complete the picture, we need to consider the action of g on the translates
W; = W6; of W, for each i > 1. But 6,9 = g6?. So the rows of the matrix for g
with respect to B which correspond to its action on W; are the same as the rows of
the action on W of ¢g#] and hence of ¢#,0]. And since N is normal in G, and 6,
commutes with the action of N, 6 commutes with the action of N. So ¢ = 6,67 is
an F'N-module homomorphism from W to V. Hence we can find z;1, 249, . .., z; such
that 0'|w = 21601 + T40s + ... + z40;, and so we see that rows d'(i — 1) + 1 to d'i of
the matrix representing ¢ with respect to B consist of ¢ blocks of size d' x d’ from left
to right, corresponding to the matrix y multiplied by each of x;1, 2, ..., z;. So the
matrix for g is clearly the Kronecker product of the ¢ x ¢ matrix = (x;;) and the
d' x d' matrix y = (y;;). Thus we have Case (iii) of the list of decompositions. Note
that, for a given g, the matrices x and y are only determined up to multiplication by a
scalar matrix. The corresponding representations of G are projective representations
rather than ordinary representations.

Now suppose that ¢ = 1. The group N acts absolutely irreducibly, so its centre
Z(N) consists of scalar matrices, and hence is cyclic.

Suppose also that N is minimal with respect to N/Z(N) being non-trivial. (The
theory below depends on this assumption, although there are particular circumstances
where a decomposition might be found, even if N did not satisfy this condition.) Then
N/Z(N) is a direct product Ny X Ny X --- x Ny of m copies of a simple group Ny, and
N is a central product of m groups Ny, each isomorphic to an extension of Z(N) by
N().

First suppose that Ny is cyclic, and therefore that N/Z(N) is an elementary abelian
r-group for some prime r. We claim that then N is extraspecial or of symplectic type
(that is, a central product of an extraspecial 2-group with a cyclic group of order 4).

Since N/Z(N) is non-trivial, N cannot be abelian. For z,y in N, we have [z,y]|" =
[z",y] = 1 (since 2" is in Z(N)), so N’ has exponent r. Since N’ lies in Z(N), which
is cyclic, we must have |N'| = r.

First suppose that r is odd. Let M be the set of elements of NV of order dividing r.
Since N' is central, for any z,y in N we have (zy)" = 2"y"[y, z]""~1/2, and so, since
N' has exponent r, M is a subgroup of N. But M is clearly characteristic in N, and
hence normal, so by the minimality of N, either M C Z(N), or M = N. For r odd,
an r-group containing a unique subgroup of order r is cyclic, so N contains more than
one subgroup of order r. Hence M is not cyclic, and so cannot lie in Z(N). Therefore
N = M, so Z(N) = N’ has order r, and N is extraspecial of exponent r.

Now suppose that » = 2. Then N’ has order 2, and N/Z(N) is an elementary
abelian 2-group. This time let M be the set of elements of /V of order dividing 4. Then
for z,y in N, as above, (zy)* = 2*y*[y, 2], so again M is a characteristic subgroup of
N, and hence is normal in N. Again, by the minimality of N, either M C Z(N) or
M = N.

If M C Z(N), then suppose that z and y are non-central elements of N, with
xZ(N) # yZ(N), and with the order of z at least the order of y. Then z and y
are both outside M, so both have order greater than 4. Also, 2 and y? are central
(since N/Z(N) has exponent 2). Therefore, since Z(N) is cyclic, for some ¢, y* = 2%,
and (yz=9)* = (v*)*(z72¢)?[z~¢,y]® = 1. Thus yz ¢ is in M, and hence in Z(N),
contradicting the fact that *Z(N) and yZ (V) are distinct non-trivial elements of the
elementary abelian 2-group N/Z(N). Therefore M = N.

Since N has exponent 4 and Z(N) is cyclic, Z(N) has order 2 or 4. Either Z(N)
has order 2, and N is extraspecial, or it has order 4, and N is of symplectic type. Thus
we have Case (iv) of the decomposition.

Finally suppose that Ny is non-abelian simple. If m = 1, G is almost simple,
and SMASH fails to find a decomposition. If m > 1 we get Case (v) of the list of
decompositions. With respect to an appropriate basis, V' can be decomposed as a tensor
product X; ® Xo ® -+ - ® X, of spaces on each of which N acts as N;. Conjugation of
N by G permutes the central factors of N and hence the factors of the tensor product.
So G/Z(G) is isomorphic to a wreath product of Ny with a subgroup of S,,.

3 The main algorithm

We assume that G acts absolutely irreducibly on the d-dimensional vector space V' over
F = GF(q). We are given S as a set of matrices in G, not all of which are scalar. We
use V() to denote V' viewed as an F'(S)-module.

Note that the set S generates N as a normal subgroup, but not necessarily as a
subgroup, that is, N = (S)“ but it is not necessarily true that N = (S). The algorithm

deals with this by adding conjugates of elements of S to S as necessary.

The basic idea is first to find a breakdown of V(g as a direct sum of irreducible
F{(S)-modules Wy, W, ..., W;. If t > 1, or t = 1 but (S) does not act absolutely
irreducibly on W, we attempt to recognise one of the three decompositions where G acts
imprimitively, or preserves a tensor product, or is a non-linear subgroup of a semilinear
group, using the functions MINBLOCKS, TENSORPRODUCT, and SEMILINEAR. If none
of these situations occurs, it must be because (S) # (S)¢ and hence the modules W;
are not in fact irreducible F(S)%-modules, so S is enlarged through the addition of
conjugates, and the algorithm is restarted with the new enlarged S. This iteration
continues until either a decomposition is found (in which case SMASH returns that
decomposition) or (S) is found to act absolutely irreducibly on V. In the second
case, we apply the tests EXTRASPECIAL and SYMTENSORPRODUCT, in an attempt
to identify G either as a normaliser of a group of prime power order or as a group
preserving a symmetric tensor product. If a decomposition is found, it is returned by
SMASH. Otherwise, SMASH returns false. The tests are described in more detail in
Section 4.

The algorithm proceeds as follows.

Step 1. Find a random irreducible F'(S)-submodule W of V(5. If W # V is found,
go to Step 2. Otherwise, that is, if Vi) is irreducible, go to Step 8.

Step 2. Try to express V(g as a direct sum of irreducible F(S)-modules which are
translates of W. First check if the translates of W are direct summands, then
check if they are F'(S)-modules, finally check if they are irreducible. If any one of
these checks fails, a conjugate of an element of S is identified which does not fix
W. Add this to S, and restart. Otherwise, V(gy is a direct sum W, @W,®---®&W,;
of irreducible F'(S)-submodules W;, where each W; is a translate of W = W;. Go
to Step 3.

Step 3. Use MINBLOCKS to try to find a system of imprimitivity with W as a subspace
of one of the blocks. If MINBLOCKS returns false, go to Step 4, otherwise return
the system of imprimitivity found by MINBLOCKS.

Step 4. Use IsoMMoOD to test each pair (Wy,W;), where ¢ > 1, for isomorphism as
F(S)-modules. If all pairs are isomorphic, find a basis B = {b;; : 1 < <¢,1<
j < d'} of V, such that, for each 4, {b;; : 1 < j < d'} is a basis for W, and the
isomorphism from W; to W; maps each b, to b;;, and go to Step 5. Otherwise,
add to S a random conjugate which does not fix W, and restart.

Step 5. Test W for absolute irreducibility as an F(S)-module. If W is absolutely
irreducible, go to Step 6; otherwise go to Step 7.

Step 6. Use the TENSORPRODUCT test to try to write each generating matrix of G
as a tensor product of matrices of dimensions ¢ and d’ with respect to the basis
B found in Step 4. If this fails, add to S a random conjugate which does not fix

8

W, and restart, otherwise return the tensor decomposition found by TENSOR-
ProbucrT.

Step 7. Let ¢ be a d x d' matrix generating the field of centralising elements of the
action of (S) on W. Construct the d x d matrix C which acts as ¢ on each
of the isomorphic modules W;. Use the SEMILINEAR test to see if G embeds in
I'L(d/e,q?) with S in GL(d/e, q%) and C as a d/e x d/e scalar matrix over GF(¢°).
If SEMILINEAR returns false, add to S a conjugate which does not commute with
C, and restart. Otherwise return the decomposition found by SEMILINEAR.

Step 8. At this stage Vi) must be irreducible. Test V(g for absolute irreducibility. If
Visy is absolutely irreducible, go to Step 10. Otherwise go to Step 9.

Step 9. Let C be a d x d matrix generating the field of centralising elements of the
action of (S) on V. Use the SEMILINEAR test to see if G embeds in I'L(d/e, ¢°)
with S in GL(d/e, ¢°) and C as a d/e x d/e scalar matrix over GF'(¢¢). If SEMI-
LINEAR returns false, add to S a conjugate which does not commute with C', and
go back to Step 8. Otherwise return the decomposition found by SEMILINEAR.

Step 10. If d = r™ for a prime r, use the EXTRASPECIAL test to see if G normalises
an r-group, and if so return a set of generators for the r-group and the action of
G on those. Otherwise go to Step 11.

Step 11. Use the SYMTENSORPRODUCT test to attempt to find a decomposition of
G as an amalgamated wreath product of a subgroup of GL(r,q) by a subgroup
of the symmetric group S,,, where d = r™. Return such a decomposition, if it
can be found, otherwise return false.

4 The procedures called by SMASH

The tests for irreducibility and absolute irreducibility of modules, and also the test
IsoMMoD for isomorphism between two modules are described in [7]. The test for
absolute irreducibility computes a centralising matrix as required, and the test for
isomorphism returns appropriate bases. Random irreducible submodules of Vg, are
generated, where necessary, using a modification of the test for irreducibility.

The procedure MINBLOCKS, which searches conclusively for a system of imprimi-
tivity containing a specified subspace as a subspace of a block, is described in [6]. It
remains to describe the procedures SEMILINEAR, TENSORPRODUCT, EXTRASPECIAL
and SYMTENSORPRODUCT.

4.1 The test SEMILINEAR

As input for SEMILINEAR we have (G, a set S of elements of G, a matrix C' of GG, and
an integer e. The subset S of G is known to embed in GL(d/e, ¢°), for e > 1, and the

9

d x d matrix C is known to act as multiplication by a scalar A (a field generator of
GF(g°)) for that embedding. The matrix C' is, of course, central in GL(d/e, ¢¢). Then
G acts as a semilinear group of automorphisms on the d/e-dimensional space if and
only if, for each generator g of G, there is an integer ¢ = i(g) such that Cg = gC?', that
is, g corresponds to the field automorphism A — \?". In that case, we have a map from
G to the (cyclic) group Aut(GF(¢%)), and C centralises the kernel of this map, which
thus lies in GL(d, ¢°). We test this as follows. First, if possible, we find i = i(g) such
that wCg = wgC? for a single vector w of the d-dimensional space (in fact the first
vector of the standard basis) and then we check that vCg = vgC? for all other vectors
v in the basis. The test returns false if no such i(g) is found, for some generator g.

4.2 The test TENSORPRODUCT

As input for TENSORPRODUCT we have G, V, and the basis B = {b;; : 1 <1i < d;,1 <
j < dy}. We seek to decompose the action of G on V' as a tensor product of spaces of
dimensions d; and do, with respect to B. We simply run through each of the generating
matrices g of G in turn, and try to express g = (g;;) as a tensor product with respect
to that basis. To do this we need to find a d; x d; matrix z = (x;;) and a dp X ds
matrix y = (y;;) with ¢ = 2 ® y. In this case,

9(i1—1)da+ia,(j1—1)da+j2 — Li1jiYizgo

for all i1, j1, 19, jo with 1 < 41,77 < dy, and 1 < 49, jo < dy. We find a possible matrix y
by locating a non-zero entry g, ;, in g, and setting y equal to the dy X dy submatrix of ¢
which contains the (79, jo) position when g is naturally cut up into ds X dy submatrices.
More specifically,

Yizjo = Gkda+iz,ld2+j2

for 1 < iz,jQ < dg, where k£ = [(lo — 1)/d2],l = [(]0 — 1)/d2] Then we define a d1 X d1

matrix x by the rule
g(i171)d2+k0,(j1*1)d2+l0

Lijy =

Giojo
for 1 <1y, 71 < di, where kg = 19 — kdo, lg = jo — lds. Either the equation
9(i1—1)da+ia,(j1—1)da+j2 = Li1j1 Yiago
holds, for all 41, 71, 79, jo With 1 < 41,51 < dq, and 1 < 49, jo < dy, or there is no tensor

decomposition of g with respect to the basis B.

4.3 The test EXTRASPECIAL

This test requires that S acts absolutely irreducibly on the underlying vector space.
It begins by factorising d. If d is not a prime power, ™, or if the r-th power of some
element of (S) is not scalar, the test returns false immediately.

10

Next we try to construct a sequence x1, Y1, Ta2, Y2, - - - , Tm, Ym, Of non-scalar elements
of (S), which satisfy the following: z; and z; commute for all 7, j; ; and y; commute
for all 7,j; x; and y; commute for distinct ¢, j; but the commutator of z; and y; is
equal to z for all i, where z is a scalar element of (S) of order r. If at any stage the
construction fails, the test returns false.

First, we choose ;1 to be a non-scalar matrix in S, then choose y; to be a non-scalar
matrix in S which does not commute with z;, and define z to be the commutator of
1 and y;. If the order of z is not equal to r, then the test returns false. Otherwise x;
and z, are marked as selected.

The remaining elements s, yo, . . . , i, Ym are chosen one at a time as follows. Once
r1,Y1,---,%;,y; have been chosen for some ¢ < m, a non-scalar element s of S is
considered which has not been already marked as selected. If one of the commutators
[z;,s] or [y;,s], for j < i, is not in (z), then we return false. Otherwise, we define
integers u; and v;, less than r, for j < i, by the equations [z;, s| = 2" and [y;, s|] = 2":.
Then the element sz7'y;™“'z5? ... z;"y; " must commute with all z; and y; with j <.
If it is also non-scalar, we define it to be z;,;. If this element is scalar, then we
consider another element s, and repeat the procedure, and return false if we exhaust
all possibilities for s before completing the construction of z;,;. If we succeed in
defining x;;1, then we mark the element s that was used as selected.

The element y;,1 is chosen in much the same way. Another non-scalar element s of
S, which has not been marked as selected, is considered, and an element s, is defined
to be sty My ... xity; ", if this is non-scalar and does not commute with x; 1,
where the integers u; and v; are chosen as before. As before, if one of the integers
u; or v; cannot be defined we return false. If sxi'y; "3’ ...z7"y; ™ is scalar, or
commutes with z;,,, a different s is considered. If no suitable sy can be constructed
in this way, the test returns false. Assume that a non-scalar sy, has been constructed,
where [x;,1, So] = 2%; then y,,, is set equal to s¥ , where v’ is the multiplicative inverse
of u mod r. If the commutator [z;,1, So| is not a power of z, then the test returns false.
If we succeed in defining y;,1, then we mark the element s that was used as selected.

It remains to verify that the elements x1,yi, - .., Tm, Ym generate (S) mod Z, and
that (S)Z is normal in G. We verify that the elements generate (S) by selecting each
remaining non-scalar element s of S in turn, postmultiplying it by appropriate powers
of each z; and ¥; as above until the resultant element s’ commutes with each z; and ;,
and then checking that s’ is scalar. Similarly, we verify that (S) is normal by selecting
each conjugate x of each element of {x1, 23, ..., ZTm, ym} by a generator of G in turn,
postmultiplying x by appropriate powers of each z; and y; until the resultant element
z' commutes with each z; and y;, and then checking that z’ is scalar. If at any stage
this procedure fails, the test returns false, otherwise G has been proved to normalise a
group of order either r?m+! or 22m+2,

11

4.4 The test SYMTENSORPRODUCT

The test SYMTENSORPRODUCT starts by factorising d. If d is not a proper power,
the test returns false. Otherwise, for all pairs ,m > 1 such that d = r™, we attempt
to express V' as a symmetric tensor product of m spaces of dimension r. If we find
a decomposition of V' corresponding to an embedding of G/Z in PGL(r,q) Sy, then
(S)¢ should preserve each factor of the tensor product decomposition, and G should
permute the factors.

We start by trying to express V(s as a tensor power; that is, we try to decompose
V as a tensor product of m spaces of dimension r, each of which is preserved by (S).
The procedure is naturally iterative. We try first to express V as a tensor product
of two spaces of dimension r™ and 7™, and then to express each of those (if they
have dimension greater than r) as a tensor product. At each stage we apply SMASH
on the appropriate F'(S)-module to help us to find such a decomposition (omitting
Steps 10 and 11 of the algorithm). Of course SMASH needs generators for a normal
subgroup of (S) as input, so we have to supply those. This we do using the following
random technique. Suppose that V' has already been expressed as a tensor product
Vi’eV,®---® Vg, but, say, Vi has dimension r*, for some u > 1, and we want to
try to write V}, as a tensor product. We simply select a sequence of N, random
elements s; of S (for some predetermined limit N,,,,). Then we run SMASH on the
F(S)-module V, with the set {s¥} as input, where k; is chosen so that some prime
power of sf" is scalar. (This is because, modulo scalars, G is contained in the direct
product of its induced actions on the spaces V;, and by choosing elements of a direct
product in the manner just described, we are likely to find elements that act trivially
on some factors, but not on others.) If for some s; we find a decomposition of Vj, as a
tensor product Uy ® Wy, then we can write V as Vi ® --- ® Vi1 ® U, ® Wy, and so
we continue to attempt to break it down completely as a tensor product of spaces of
dimension r. If we fail to decompose at any stage after trying V,,,, random elements,
then we give up. Thus it is clear that this test can only give a result in the case where
the decomposition is found, and not otherwise. To resolve this, we require an efficient
procedure which can determine conclusively whether or not a given module could be
expressed as a tensor product.

Once the F(S)-module V' has been expressed as a tensor product V1@ Vo®---®V,,
of r-dimensional spaces over GF(q), we attempt to construct the action of G' on such
a module.

Since the tensor product decomposition has been constructed via a series of binary
decompositions, it is first necessary to reorder the basis to give a natural tensor basis
{biyiy. im }, from which the factors Vi, Vs, ..., V}, can easily be identified.

Now for each generator g of G we attempt to find the action of g as a permutation
on the factors of the tensor product V; @ Vo ® - - - ® V,,, by expressing it as a product of
transpositions. Failure to do this shows that g has no such action on {Vi, Vs, ..., V. },
and so in this case the test returns false. We have not however excluded the possibility
of G permuting the factors of some other tensor product preserved by N, which we

12

have failed to find.

More precisely, we define the d x d matrix m;, to be the matrix which permutes
the j-th and k-th factors of the tensor product by swapping pairs of basis elements
biy..ij.ig.im a0 by iy i i,- We postmultiply g by each of the matrices g, in turn
until, for some ki, the matrix of gm, can be expressed as a Kronecker product of
matrices and y acting on the spaces V; and Vo, @ V3 ®---®V,,, and so gmy,, preserves
the factor V;. Considering now the action (represented by y) of gmy, on Vi and
Vo®@Vs®---®V,, we try to find k9 such that gmg, mor, preserves both factors V4 and
V5, and then iterate to find k3, k4 etc. If we succeed in each stage of the iteration
through the factors we have found the permutation action 7, of g on the factors V; as
a product of transpositions (m, k) ... (2, k2)(1, k1) in S,,,. If we fail, it is because g
does not permute the factors of this tensor product.

Once we have found such a permutation for every generator g we have proved that G
preserves a symmetric tensor decomposition, and thus is a subgroup of an amalgamated
wreath product of GL(r, q) with S,,.

5 Termination and complexity

In this section, we consider the question of whether SMASH will terminate, and we
estimate the complexity of the algorithm. Since some steps in the procedure involve
choosing random elements from the group until we find one with certain properties, it
is theoretically possible that it will never terminate, because we could be unlucky with
every choice. However, provided we can show that the proportion of elements with the
required property is at least c, for some fixed ¢ > 0, then the probability of choosing
n elements without success is at most (1 — ¢)", which approaches 0 as n approaches
infinity. We assume here that we are able to choose random elements of the group, and
all of the arguments in this section are made under that assumption.

We shall show that the probabilistic complexity of SMASH is bounded by a poly-
nomial function of the dimension d of the group. This means that there is a positive
integer n such that, for any given € > 0, there is a constant K such that SMASH will
terminate within time K'd" with probability at least 1 —e. The constant K will depend
on the number of generators of G’ and the initial number of generators of S, which we
are assuming to be fairly small constants. It will also depend on the order ¢ of the
field, but only to the extent that the basic field operations are, and the complexity
here is log(g), which is not significant for reasonably small fields.

Our worst case analysis produces the value of 6 for n, which is much worse than
we would like. When designing matrix group algorithms, we aim for complexity O(d?),
which is the same as that of matrix multiplication. One of the factors d in our O(d®)
estimate arises from the fact that we could conceivably have to apply the MEATAXE
as many as d times in Step 1 to find an irreducible F'(S)-submodule of V. (The steps
of the algorithm are as listed in Section 3.) In fact this is highly improbable (although
we have not attempted to estimate the precise probability). Experience shows that

13

at most two or three MEATAXE calls are necessary in practice. The fact that V is
completely reducible as an F(S)“-module (that is, decomposes as a direct sum of
irreducible submodules) tends to decrease the number of calls required. Another factor
of d? in the complexity arises from the fact that a large number of iterations of the
main SMASH loop could theoretically be necessary. So, if we can find some heuristic
means of keeping this number down to constant size, then, for practical purposes, we
would get the complexity down to O(d?). There is some discussion on the best ways
of achieving this in Section 6.

Turning now to the precise analysis, let us first consider how many times we may
have to go through the main loop. With each iteration, we adjoin one more element to
S, and this element either does not fix the subspace W, in which case the length of an
F(S)-composition series of V' decreases, or it fails to centralise the matrix C' (in Steps 7
and 9), in which case the centralising field of one of the composition factors decreases.
Clearly, the first possibility can happen at most d — 1 times altogether. When the
second possibility occurs, the order of the centralising field of some F'(S)-composition
factor of dimension f is reduced from ¢° to ¢¢, for some integers e, €, f, where e divides
f and €' divides e. Since the sum of the dimensions of all composition factors is d, it
is not hard to see that the number of times that this could happen altogether is also
bounded above by d. This argument puts an upper bound of 2d on the number of
iterations. It has the unfortunate consequence that we have to assume that the set S
has size O(d). In fact, there exist examples in which d — 1 iterations occur in practice.
We find one by choosing G = GL(d, q) and letting S initially contain just one element
A = (a;j), which is a diagonal matrix with all entries 1 or 0 except for a;;.

For each iteration of the main loop, we have to go through the steps listed in
Section 3. The worst of these is Step 1. As we have already remarked, we may require
up to d — 1 iterations of the MEATAXE. We use the algorithm and implementation
described in [7]. There is a configuration described there for which the algorithm fails
to terminate. Since this is highly improbable, we shall ignore it. We are justified
in doing this, because the configuration cannot arise when the module is completely
reducible and we know that V is indeed completely reducible as an F(S)“-module.
We could therefore escape from the configuration by adding random conjugates to
S. With this exception, the MEATAXE has probabilistic complexity O(d?) for a fixed
set of generating matrices. However, since we have to assume that S has size O(d),
this complexity increases to O(d*), so we end up with complexity O(d®) for Step 1.
Recently, Leedham-Green suggested a method of handling the bad configuration in the
MEATAXE, and an implementation of his method in MAGMA indicates that it works
well in practice, although it currently lacks a theoretical analysis.

The remaining steps up to Step 9, which are the ones that form the components
of the main SMASH loop, can all be seen to have complexity at worst O(d*log(q)),
so we shall just go through them briefly. Since S has size O(d), it is straightforward
to see that Step 2 has complexity O(d*). Step 3 does not depend on S, but uses the
generators of G and a given subspace. The main loop of the MINBLOCKS algorithm
calculates the images of a basis of V' under the generators of GG, and express the result

14

in terms of the basis using Gaussian elimination. This has complexity O(d?). Other
parts of the procedure involve amalgamating and renumbering blocks. Since there can
be at most d — 1 block amalgamations altogether, this has complexity at worst O(d?).
Step 4 is another O(d*) process, since the size of S is O(d). In Steps 5 and 8, we may
conceivably have to consider all divisors of d in our search for the centralising field, so
this could have complexity O(d*log(q)). Step 6 just involves scanning the entries of
the generators of G, and so has complexity O(d?). In Steps 7 and 9, the matrix C has
to be raised to the power ¢¢, where e < d. This could involve up to dlog(q) matrix
multiplications, and so these steps have complexity O(d*log(q)).

We stress that the theoretical complexity of these components does not necessarily
give an accurate indication of which are the most expensive steps in practice, for groups
of small degree. As reported in Section 6, for examples of degree up to about 100, Step
1 takes up the bulk of the time, while the theoretically slow Steps 5, 7, 8 and 9 are fast
in practice.

Most of the steps can conclude with a search for a random conjugate of an element of
S that either does not fix W, or does not centralise the matrix C. Since the elements of
N = (S)¢ that fix W or centralise C' form subgroups of N, at least half of the elements
of N must have the required property, so we can expect to find a suitable conjugate
quickly. Calculating the conjugate and testing the property each have complexity
O(d?).

The final two steps, 10 and 11, can only happen once, and so they are not affected
by the number of times we go through the main loop. For the extraspecial case (Step
10), we have d = r™, where N = (S)¢ has order r>™*! or 222 An irredundant
generating set for N has size 2m + 1 or 2m + 2, respectively, and since whenever we
add a new element to S, we always make (S) bigger, it follows that our final set S of
generators for N has at most 2m + 1 + ¢ elements, where ¢ is the initial size of S. For
each pair of generators of N, we have to form their commutator, identify the resulting
power of the central element z, and multiply by a power of a generator. The last of
these has the highest complexity, which is O(d® log(r)). Similar considerations apply to
the calculation of the conjugation action of G' on /N, where we form the commutators
of the generators with their conjugated images under each generator of G. Thus the
whole process has complexity at worst O(m?d>log(r)), which is asymptotically less
than O(d*).

Step 11 is theoretically the slowest of all, since it involves recursive calls of SMASH.
However, in the recursive calls we omit Steps 10 and 11 of the algorithm (since we
are only interested in inhomogeneous tensor product decompositions), so the recursion
causes no problem with termination. If d = r™ and we are looking for m tensor factors
of degree r, then we need m — 1 successful recursive calls to find the full decomposition,
and for each of these, we may have up to N,,., unsuccessful recursive calls. However,
all but the first of the tensor product decompositions sought will be on spaces of
dimension 7™ for m' < m, and so in fact the total complexity of the recursion is still
only a constant times the complexity of Steps 1 — 9 of SMASH. Thus Step 11 does not

15

increase the total complexity of SMASH, it merely multiplies it by a constant. Once
the decomposition has been found, it has to be verified by computing the permutation
action of the generators of G' on the tensor factors. This can be seen to have complexity
about O(m?2d?®), which is small in comparison with the recursive part of Step 11.

6 Performance and possible improvements

We used our GAP implementation to test the performance of the algorithm. The tests
were carried out on a Silicon Graphics Iris WorkStation using GAP 3.2. The precise
times should not be taken too seriously, since they can vary considerably from run to
run, due to random aspects of the algorithm. Furthermore, our implementation in GAP
is a prototype, which makes no claims to particular efficiency. The times are useful
primarily for comparison purposes.

The six tables give CPU times for various runs of SMASH and correspond to the
different possible outcomes. In the first, SMASH finds no decomposition, and in the
remaining five, it finds one of the five possible decompositions. Each CPU time is in
seconds, and is followed by two numbers in brackets. The first of these is the initial
size of the set S given to SMASH as input, and the second is the number of times that
SMASH needed to go through the main loop; for each cycle through this loop after the
first, a new element is added to S, and so the final size of S is one less than the sum
of these two numbers.

Most of the names of the groups in these examples are reasonably self-explanatory
(such as 3J3, which is the 3-fold central cover of the sporadic simple group J3) and follow
the notation of the Atlas [4]. The group E; is the direct product of an extraspecial
group of order 3% with the group I'L(1,77). The module is a tensor product of modules
of dimension 9 and 7 for these groups over the field GF(7). This group is a subgroup
of T'L(9,77) and so it is semilinear. It is also imprimitive (since the first direct factor
is) and of course it is a tensor product, so it appears in three of the tables. The
decomposition found by SMASH depends on the set S, but it can also differ from run
to run with the same input, due to random aspects of the algorithm. The group Es
is the direct product of the quaternion group Qg with T'L(25, 3?), and the module is a
tensor product of modules of dimensions 2 and 50 for these groups over the field GF(3).
This group is also semilinear and imprimitive. The group E5 appearing in Table 4 is a
direct product of L3(2) and L3(3) acting on a tensor product of modules of dimensions
3 and 26 for these groups over GF(2). The groups N,» in Table 5 are normalisers of
extraspecial groups or groups of symplectic type of order ™. The group P in Table 3
is 02 l 03.

The number d in the tables is the dimension of the representation. The number r
in Table 3 is the number of blocks in the system of imprimitivity found by SMASH, and
the number r in Table 4 is the dimension of the isomorphic irreducible modules found
for the normal closure of S. So r and d/r are the degrees of the modules in the tensor
product decomposition found by SMASH.

16

G 6A; M, 3J5 L(3,5) Mo,

d 24 55 80 124 154

Time || 14.0 (1,5) | 29.5 (1,4) | 57.6 (1,3) | 155.9 (1,3) | 287.3 (1,4)
6.1 (1,2) |11.3(1,2) | 39.1 (1,2) | 62.0 (1,2) | 145.0 (1,2)
8.7 (4,2) |23.0(4,2)|30.2(4,1) | 53.7 (4,1) | 138.8 (4,1)
53 (4,1) |9.1(4,1) |23.0(4,1)]39.2 (4,1) |156.3 (4,1)

Table 1: SMASH returns false

The results in Table 1, in particular, seem to indicate that it is preferable not to
start with too small a set S. The timings in the first line have S initially containing
a single involution, and those in the second line start with a single random element.
In the third line, we start with four conjugate involutions, and in the fourth line four
random elements in the normal closure of the initial involution. It seems preferable
not just to enlarge the set S by random conjugates of its initial elements, but to use
random conjugates of products of its elements. Of course, we do not wish to make S
unnecessarily large, and the size four seems to be a reasonable compromise for these
sorts of examples. Of course, in some examples, particularly those in Tables 5 and 6,
the smallest cardinality of a generating set of the normal closure of S is quite large,
and so it is inevitable that we will end up making several passes of the main SMASH
loop.

Although the tables do not indicate this, in general a large proportion of the total
time is taken up with testing modules for irreducibility, using the MEATAXE algorithm
(well over half of the time in the examples in Table 1). In some of the larger examples,
the time taken to express the module as a sum of translates of an irreducible (S)-
module can also be large. These processes can certainly be made to run much faster
with more efficient implementations; in the C language, for example. The procedure
MINBLOCKS used to find blocks of imprimitivity is relatively inexpensive. A possible
variation of the algorithm would be to apply Step 3 to W before, rather than after, Step
2 (see Section 3). This will usually be less fast if the group is primitive, particularly if
a large number of passes through the main SMASH loop are necessary, but it can lead
to dramatic improvements in the imprimitive case. In the example that takes 1706
seconds in Table 3, if we apply this policy, then the CPU time can decrease to as little
as 50 seconds. The example taking 539 seconds in Table 4 increases to 671 seconds
with this policy, but if we increase the initial size of S to 4 (according to the policy
advocated above), then the time goes down to 166 seconds.

A tentative conclusion is that if the set S has initial size less than 4, then its size
should be increased to about 4 by adding random elements of the normal closure of S
before starting the main algorithm, and that the option should be available to apply
Step 3 to W before Step 2. It is difficult to make definitive decisions about these
matters, since performance can vary so much from example to example.

17

G L'L(10,3%) | T'L(10,8%) E; E, ['L(1,19'9)
d 20 50 63 100 100
Time || 27.9 (2,10) | 114.4 (2,10) | 20.2 (5,1) | 44.9 (3,1) | 183.4 (1,1)
8.5 (5,2) 42.3 (5,1)
Table 2: SMASH returns semilinear
G Ag 1 B Myt My, | B4 E, 6A70C; 6A71C7
r 6 11 3 2 7 168
d 24 55 63 100 168 168
Time || 24.1 (1,4) | 30.9 (1,2) | 14.4 (2,1) | 33.7 (1,3) | 1706 (1,8) | 161.7 (1,1)
Table 3: SMASH returns imprimitive
G E1 E2 E3 E3 E2 M22 X N35
T 9 7 3 26 50 21
d 63 63 78 78 100 189
Time || 16.7 (2,1) | 20.0 (4,1) | 52.5 (1,2) | 23.3 (2,1) | 63.3 (2,1) | 539.1 (1,4)
Table 4: SMASH returns tensor product
G N26 N73 N28 N35 N212 N39
d 4 7 8 9 32 81
Time || 5.7 (1,4) | 0.7 (1,2) | 2.6 (1,6) | 2.3 (1,4) | 30.2 (1,10) | 374.5 (1,8)
Table 5: SMASH returns extraspecial
G J1 10y Nos 2 S5 GL(3,17%) 1S, | SL(2,2") 1 L(3,2)
d 7? =49 43 =64 3t =281 27 =128
Time || 117.2 (1,6) | 503.8 (2,9) | 584.0 (1,14) 1539.2 (1,14)

Table 6: SMASH returns symmetric tensor product

18

References

1]

2]

9]

[10]

[11]

[12]

[13]

[14]

M. Aschbacher, On the maximal subgroups of the finite classical groups, Invent.
Math. 76 (1984) 469-514.

Wieb Bosma and John Cannon, Handbook of MAGMA functions. School of Math-
ematics and Statistics, Sydney University, 1994.

A_H. Clifford, Representations induced in an invariant subgroup, Ann. of Math.
38 (1937), 533-550.

J.H. Conway, R.T. Curtis, S.P. Norton, R.A. Parker and R.A. Wilson, Atlas of
finite groups, Clarendon Press, Oxford 1985.

Larry Dornhoff, Group Representation Theory, part A, Marcel Dekker Inc. 1971,
New York.

Derek F. Holt, C.R. Leedham-Green, E.A. O’Brien and Sarah Rees, Testing matrix
groups for primitivity, J. Algebra 183, 1996.

Derek F. Holt and Sarah Rees, Testing modules for irreducibility, J. Austral. Math.
Soc. Ser. A, 57 (1994), 1-16.

L.G. Kovacs, On tensor induction of group representations, J. Austral. Math. Soc.
Ser. A, 49 (1990), 486-501.

Frank Celler and C.R. Leedham-Green, A Non-Constructive Recognition Algo-
rithm for the Special Linear and Other Classical Groups, preprint.

Frank Celler and C.R. Leedham-Green, A Constructive Recognition Algorithm for
the Special Linear Group, preprint.

Peter M. Neumann and Cheryl E. Praeger, A recognition algorithm for special
linear groups, Proc. London Math. Soc. 65 (1992), 555-603.

R.A. Parker, The computer calculation of modular characters. (The Meat-Axe),
in Computational Group Theory, ed. M.D. Atkinson Academic Press, London,
267-274, 1984.

Cheryl E. Praeger, Computation with matrix groups over finite fields, in Groups
and Computation, ed. Larry Finkelstein, William M. Kantor, DIMACS Series
in Discrete Mathematics and Theoretical Computer Science, Vol. 11, American
Mathematical Society, 189-196, 1993.

Martin Schonert et al., GAP — Groups, Algorithms and Programming. Lehrstuhl
D fiir Mathematik, RWTH, Aachen, 1994.

19

