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Abstract

We describe an algorithm which seeks to decide whether or not an irreducible
matrix group defined over a finite field acts to preserve blocks of imprimitivity
and, if so, to find a block system. Implementations of the algorithm are publicly
available.

1 Introduction

In this paper we present an algorithm which seeks to decide whether or not a matrix
group of finite dimension over a finite field preserves a non-trivial system of blocks of
imprimitivity. In most cases, our algorithm will either find that the group is imprimitive
and return at least one block system, or it will prove that the group is primitive.
Occasionally, it may discover that the group is semilinear over an extension field before
resolving the primitivity question, in which case it does not conclusively settle whether
or not the group is imprimitive.

Let ¢ = p™, where p is prime and m > 1; let V' be the vector space F(f of row
vectors on which the general linear group, GL(d, q), acts.

Assume G is a subgroup of GL(d,q) and that G acts irreducibly on V. Then G
acts imprimitively on V' if there is a non-trivial direct sum decomposition

V=VieV,e...aV,

where Vi,...,V, are permuted by G. In such a case, each block V; has the same
dimension or size, which we shall denote by s, and we have the block system {Vi,..., V. }.
If no such system exists, then G is primitive. We use r and s throughout the paper to
denote the number and size of blocks, respectively.

The algorithm described in this paper is another contribution to the “recognition
project” for matrix groups defined over finite fields. The theoretical framework for much
of this project is provided by the Aschbacher [1] classification of maximal subgroups
of GL(d,q), where one of the nine “categories” is that the group acts imprimitively.
Algorithms have already been developed to recognise other categories. These include
the MEATAXE algorithms of Parker [10] and Holt & Rees [7] to recognise reducible
groups; and the Neumann & Praeger [9] recognition algorithm for groups containing
the special linear group.

We set as our goal to develop a “practical” algorithm which given as input a matrix
group, described by a generating set, of dimension up to about 100 over fields of
moderate size, can decide whether or not the group is primitive. Implementations of
the algorithm are publicly available in the computational algebra systems, GAP [12]
and MAGMA [2]. Our desire for a practical algorithm significantly influenced its final
structure.

Recall that G is irreducible if there is no non-trivial proper subspace of V' invariant
under G, and that G is absolutely irreducible if it remains irreducible under any exten-
sion of the ground field. When (' is irreducible but not absolutely irreducible, there is
an extension field E = GF(q¢°) of F, where e divides d, and V can be regarded as a
vector space of dimension d/e over E, with G acting linearly over E. More generally,
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we are interested in the case in which, for some such extension field E, the group G
acts semilinearly on V regarded as an E-space, where the field automorphisms which
occur fix F. That is to say, there is a homomorphism « of G into the Galois group of
E over F such that (Av)Y = A\9v9, forallv € V, all g € G, and all A\ € E. In this case,
we shall say that G is semilinear of degree e. If G is semilinear of degree e for some
e > 1, then we shall simply say that G is semilinear.

The projective order of an element g of G is the least positive integer o such that
¢° is a scalar matrix.

Our primitivity algorithm takes as input a generating set for a matrix group G,
which is assumed to act irreducibly on V. Three possible conclusions can be reached
by the algorithm:

() it decides that G is semilinear;
(77) it decides that G is imprimitive, and returns one block system;

(#74) it decides that G is neither semilinear nor imprimitive.

It is important to note that conclusion (i) does not prove that G is primitive, and
conclusion (i7) does not prove that G is not semilinear. However, each conclusion
effectively reduces the “recognition problem” to a simpler problem.

In summary, our primitivity algorithm proceeds as follows. If G is not absolutely
irreducible then, as we saw above, it is semilinear. Hence, we first decide whether or
not G is absolutely irreducible; if not, we terminate. Otherwise, we carry out a test
that will either prove that G is semilinear, or that G’ has an explicit block system on
which it acts as an abelian group, or that neither condition is satisfied; it is only in
the last case that the algorithm continues. The next step is to consider various cyclic
subgroups of GG. These may resolve the issue by consideration of their order, which
can only produce a negative answer, or by consideration of their action, which may
either produce a negative answer, or lead us to a block system. Finally, we consider
the actions of non-cyclic subgroups of GG in a series of tests which may again rule out
the existence of a block system or find one.

Our methods for proving the primitivity of GG, or for finding a block system, do
not constitute an algorithm that will provably answer the question in all cases. Even
if we can decide that GG is not semilinear, then it is theoretically possible that the
algorithm will not terminate, or that it will not do so in an acceptable period of
time. However, we know of no example where the performance of the algorithm is
unacceptable for degrees up to 100 over moderate fields; see the performance tables in
Section 8 for details, and note that some of these cases have degrees well over 100. The
fine tuning of the algorithm will depend on the speed of its various components, and
our first implementations of these components can no doubt be speeded up by varying
amounts.

A key component of our test for primitivity is the algorithm encoded as the pro-
cedure MINBLOCKS — given a non-trivial subspace of a block, the algorithm finds the
block system with minimal block size that contains this subspace.

Another key component is the algorithm encoded as the procedure SMASH. It
is described in [6]. In summary, given a set S of elements of a matrix group G, this
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algorithm investigates whether GG has certain decompositions with respect to the normal
closure, (S)€, of (S) in G.

The primitivity algorithm consists of a sequence of tests of increasing cost and
complexity. Usually, a test is premised on the assumption that a block system exists
for some particular values of » and s. In practice, the test then seeks either to rule
out the existence of a block system of this particular size, or to find a subspace of a
block to supply to MINBLOCKS. Such a call to MINBLOCKS may, in fact, find a block
system having a size different from s.

This paper is organised as follows. We first describe the important components of
our algorithm. In Sections 3, 4 and 5, we present the steps of the algorithm. Finally,
we report on its implementation, and comment on its effectiveness and performance.

2 Components of our algorithm

In this section, we describe each of the components, MINBLOCKS and SMASH, in turn.
We also discuss an important feature of the MEATAXE algorithm.

In Section 6, we mention other essential components of our primitivity algorithm:
selecting random elements, and computing their orders, projective orders, and charac-
teristic polynomials.

2.1 The MINBLOCKS algorithm

The algorithm encoded as MINBLOCKS has some parallels with the coincidence proce-
dure of a coset enumerator.

Let S be a collection of subspaces of V. We call an element W of S independent if
there is no subset of §, not containing W, whose sum intersects W non-trivially.

The algorithm takes as input a set S consisting of a single subspace of V. At each
stage in its application, the elements of S are independent subspaces of V. We compute
the image of each subspace in S under the given generating set of G. If the subspaces
in § are permuted by the generators, then they form a block system as required. If
not, a subspace W € S and an element g of G are found such that Wg ¢ S. If Wgq is
independent of the other spaces in S, it is added to §. Otherwise, a minimal subset 7
of § is found such that Wg is dependent on 7 — that is to say, such that W g intersects
the (direct) sum of the elements of 7 non-trivially. Then 7 is removed from S and
replaced by Y yc7 U + Wyg. This process is continued until either S consists of the
single space V, or a block system is found. In practice, however, the procedure can
halt as soon as an element of S has dimension greater than half the dimension of V.
It can be speeded up if, whenever a space is replaced by a space of larger dimension,
all the other spaces in § are discarded.

2.2 The SMASH algorithm

The algorithm encoded as the SMASH procedure is discussed in detail in [6]. Here, for
completeness, we summarise its details. It is of interest in its own right, but here we
focus on its application to primitivity testing.
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Assume that the matrix group G acts absolutely irreducibly on the d-dimensional
space V over F' = GF(q). The input to SMASH consists of generators for G and a set
of matrices S, not all of which are scalar. Then SMASH investigates whether G has one

of the following types of decompositions with respect to N = (S)¢:

1. G acts imprimitively on V', with blocks Vi, V5,...,V,, and N fixes each block;

2. G preserves a tensor product decomposition U @ W of V| and the induced action
of N on U is scalar;

3. G is semilinear of degree e, for some divisor e of d with e > 1, and N acts linearly
on V regarded as a vector space over GF(¢°);

4. G preserves a symmetric tensor product decomposition of V', where N preserves
the tensor factors;

5. G has a normal subgroup M with MZ(G) = NZ(G), where M is either an
extraspecial group of odd prime-power order or a 2-group of symplectic type.

The investigation is conclusive with one exception — in its current form, SMASH may
fail to discover that G preserves a symmetric tensor product.

Clifford’s theorem (see [4]) provides part of the theoretical underpinning for SMASH.
Let N be a normal non-scalar subgroup of G. Then, for some ¢ > 1, V splits as a direct
sum W1 W,y - -@W,; of irreducible F'N-modules, all of the same dimension. For some
r,s' > 1, with rs’ = ¢, the W;s partition into r sets containing s’ pairwise isomorphic
F N-modules each, and if V1, V5, ...,V are each the sum of s’ pairwise isomorphic W;s,
sothat V =V, ®&Vo®---®V,, then G permutes the Vs transitively. Four situations
arise:

e If r > 1 then G acts imprimitively on V' (decomposition type 1).

e If r =1 and ¢t > 1 and the W; are absolutely irreducible as F"N-modules, then V'
can be recognised as a tensor product preserved by G (decomposition type 2).

e If r = 1 and the W; are not absolutely irreducible as F'N-modules, then G is
semilinear (decomposition type 3).

e Otherwise, both r and ¢ equal 1 and N acts absolutely irreducibly on V. (In its
general application, SMASH now seeks to determine whether G' has a decomposi-
tion of type 4 or 5 — in our restricted context of primitivity testing, we terminate.)

The application of SMASH to primitivity testing occurs as follows. If G has a block
system containing r blocks of size s, then there is a homomorphism from G to S,.

In each test, we choose a particular value of  and assume that there is such a block
system. With this assumption, during the application of the test, we may discover that
a particular non-scalar element of G' must lie in the kernel of the homomorphism from
G to S;.

If we find such an element, g, we seek to build up its normal closure, {g)¢, in G
and then determine which of our four conditions applies.



In practice, a set S is initialised to contain g. Then S is supplied to SMASH, which
seeks to satisfy one of the four conditions under the assumption that (S) = N. If none
is satisfied, then (S) cannot be normal in G, and SMASH seeks to build up the normal
closure of (S) under G by adding random conjugates to S; it then applies relevant
parts of the procedure to this larger set. Eventually, SMASH will terminate when one
of the conditions is satisfied (which could conceivably occur before (S) = N).

If SMASH discovers that G is semilinear, it is not currently possible to settle con-
clusively whether or not G acts imprimitively.

If SmASH discovers that GG preserves a tensor product U @ W of V' with the induced
action of NV on U scalar, then we seek to decide whether or not G acts imprimitively
on the first component, U, of the tensor decomposition. If the action of G on U is
imprimitive, then G is also imprimitive in its action on V, and a block system for V'
can be constructed from that found for U. Conversely, suppose that, in this situation, G
has a block system in which ¢ € G is non-scalar and g fixes all blocks. Then N = (g)¢
must also fix all blocks. But, as we saw above, NV preserves a decomposition of V" as a
direct sum of irreducible F'N-submodules isomorphic to W. The blocks must therefore
be sums of s’ such subspaces for some s, and it follows that G is imprimitive on U
with blocks having size s'.

If SmAsH discovers that N acts absolutely irreducibly on V, then ¢ cannot fix a
block system containing r blocks, and so we can rule out .

In summary, a call to SMASH ensures that we learn that GG is semilinear and we
can draw no conclusion about its primitivity; or we find a block system; or we rule out
some of the possible block sizes.

2.3 The MEATAXE algorithm

Let F' be a finite field and G a finite group. The MEATAXE is an algorithm for deciding
whether or not an F'G-module is irreducible and, where it is reducible, for finding an
explicit submodule. It was first implemented and described by Parker [10], using ideas
of S.P. Norton. Since then, it has become a standard tool in computational group
theory, and there have been several efficient implementations. The original version was
designed for small fields (and mainly for groups that are close to being simple), and
its efficiency decreases sharply as the size of the field increases. A version which does
not suffer from these deficiencies was developed by Holt & Rees [7]. Both the original
and the Holt—Rees version can decide whether or not two irreducible F'G-modules are
isomorphic.

Thus, for a general F'G-module V, it is possible to identify its composition factors,
and determine their multiplicities in V. Since the calls to the MEATAXE are recursive,
the composition factors are not in general found as submodules of V' (but rather of some
quotient of V). However, where U is a composition factor of V, it is also possible to use
the MEATAXE machinery to find a submodule W of V', containing U as a composition
factor of nonzero multiplicity m, with the property that no proper F'G-submodule of
W has U occurring as a composition factor with the same multiplicity m. We shall
denote such a submodule by V. In general, Vy need not be unique, but we shall see
that it is unique in the case when U has multiplicity one in V.



Since we make use of this facility, and it does not appear to have been described
elsewhere, we describe it here. It is not a new idea however. A similar technique
is used in the Lux and Ringe implementation of the MEATAXE, which can find all
FG-submodules of V; for a description of their submodule lattice algorithm, see [11].

Let G = {(g1,--.,9n), and let V be an FFG-module defined by matrices A;,..., A,
corresponding to the g;. Let R be the ring of polynomials over F' in the non-commuting
variables xi,...,x,. Then, for an FG-module V, there is a ring homomorphism ¢y
from R to the algebra generated by the matrices A;, defined by z; = A; for 1 <1 < n.
In the MEATAXE, we attempt to find 6 € R such that ¢y (#) has small but non-trivial
nullspace Ny (#). For certain selected v € Ny (), we then use the so-called spinning
process to calculate the minimal FG-submodule (v)FG of V that contains v. Using
this technique on V' and on its dual, we either find an explicit submodule, or we obtain
enough information to deduce theoretically that V' is irreducible; see Holt & Rees [7]
for further details.

Assume that we have used these techniques to find the distinct composition factors
Ui, ..., U; of V with multiplicities. We then find elements 6; of R such that Ny, (6;) is
nonzero, but Ny, (60;) is zero for ¢ # j. We do this by considering random elements of
R. Tt can be shown by probabilistic arguments that we can expect to find suitable 6;
reasonably quickly, at least when the composition length of V' is not too large. Since
U; is a composition factor of V, it follows that Ny (6;) must be nonzero for each i.
Choose v; € Ny (6;) with v; # 0. We claim that Vi, := (v;) FG has the required
minimality property. Since v; € Ny(6;) and v; € Vi, we have v; € Ny, (6;), which is
therefore nonzero. As Ny, (0;) = 0 for j # i, this implies that the multiplicity m of Uj
in Vy, is nonzero. Suppose that X is a submodule of Vi, which has U; with the same
multiplicity m. Then, again using the fact that Ny, (6;) = 0 for j # 4, we see that
Ny, (6;) = Nx(6;). But then v; € Nx(6;) and so v; € X, which forces X to equal Vy,.
This establishes the claim.

If U has multiplicity 1 in V', then the intersection of any two submodules V; and V,
of V' that have U as a composition factor must itself have U as a composition factor,
for otherwise U would have multiplicity two in (V3 + V32)/(V1 N V3). It follows that Vi,
is the unique minimal such submodule in this situation.

3 Reduction tests

As the first step of the primitivity algorithm, we apply two reduction tests to the
supplied group.

The input to the algorithm is a generating set of matrices, g1, ..., g, for a group G.
Let V be the FFG-module defined by these matrices. In our subsequent discussion, we
assume that V' has dimension at least 2.

We first decide whether or not G is absolutely irreducible by a call to the MEATAXE.
If G is not absolutely irreducible, then it can be written as a module of smaller di-
mension over a larger field — in fact, G is semilinear in this case, and we terminate the
primitivity algorithm.

We next seek to decide in general whether or not G is semilinear, by a call to



SMmAsH. Let G’ denote the derived group of G. If G is semilinear, then V' has a direct
sum decomposition as isomorphic irreducible F'G’-modules V;, and G’ does not act
absolutely irreducibly on the V;.

We first construct a normal generating set for G’ by initialising the set S to contain
all of the commutators of the generators of G.

If S does not consist entirely of scalars, we now call SMASH with input S. If G is
semilinear, then (S)¢ will not act absolutely irreducibly on the V;, and so SMASH will
either find a block system or conclude that G is semilinear.

If S consists entirely of scalars, we add a non-scalar generator of G to S. Note that
G must have a non-scalar generator — otherwise, it is reducible and will be eliminated
by the MEATAXE call. The addition of one non-scalar generator of G to S ensures
that (S) is a normal abelian subgroup of G, and so it cannot act absolutely irreducibly
on V. Further, V cannot decompose into a direct sum of isomorphic absolutely irre-
ducible F(S)-modules V;: since (S) is abelian, an irreducible F'(S)-module must be
1-dimensional, and, by Schur’s lemma, if two such are absolutely irreducible and iso-
morphic, (S) must be scalar. We call SMASH with input S, and, as before, SMASH will
either find a block system or conclude that G is semilinear.

If we find a block system or deduce that G is semilinear, we terminate the algorithm.
Otherwise, we conclude that G is not semilinear and proceed to the next test.

4 Investigating actions of cyclic subgroups

In this section, we describe those tests which use various cyclic subgroups of our sup-
plied group to find a block system, or rule out the existence of block systems having
particular block sizes.

4.1 Element orders

If G has a block system consisting of r blocks of size s, then G has an embedding in
GL(s,q)S;, where S, is the symmetric group on r points.

This observation facilitates the following test. Assume that g is a element of G,
having order o. Does o divide the exponent of GL(s,q)¢S,? If not, then we can rule
out r and s.

In practice, we first compute the exponent of GL(s,q) using the following obser-
vation. Let k be the smallest integer which satisfies the inequality p* > s; then the
exponent, e, is p* x lem(qg — 1,¢> — 1,...,¢° — 1).

We next select a random element, g, of G and compute its order, o. If G embeds
in GL(s,q) ! S;, then there is an element of S, having order o/ gcd(o,e). We now use
the following simple test: if S, has an element of order pi'py?...p.*, where the p; are
distinct primes and n; > 0, then pi* + p3> + ...+ pp* < 7.

The order test is inexpensive to apply and is also extremely effective in eliminating
values of s.



4.2 Characteristic polynomial structure

Assume that ¢ is an element of prime order p. As before, we assume that there exist
r blocks of size s, for some chosen values of » and s. Then g acts to permute the r
blocks, which are organised into cycles of length p or remain fixed.

Consider a single p-cycle of blocks of size s under the action of g. Then, with respect
to an appropriate basis, g acts on this p-cycle as s copies of a p X p permutation matrix
of order p. The characteristic polynomial, f, of g must have the form

f(@) = (2" = 1)™ x R(z) (1)

where u is the number of p-cycles and R(z) is the characteristic polynomial of the
restriction of g to its action on the blocks that it fixes.

If G has r blocks of size s, there is an embedding of G in GL(s,q) 1 S,. Hence, if
the order of g does not divide the order of GL(s, q), then g can act on the fixed blocks
only as the identity. In these cases, the characteristic polynomial of ¢ must have the
simpler structure

flx) = (@ = 1)* x (z - 1)* (2)

where c is the number of fixed blocks.

We first consider the case where p differs from the characteristic of F'. Given a
non-scalar matrix g of order p, we compute its characteristic polynomial, f, and use it
to formulate the following test.

1. Find the largest power, ¢, of 2P — 1 which divides f. We call ¢ the free-rank of g.

2. Establish whether the remainder, R(z), is simply a power of (z — 1). If not, set
a variable, EXCESS, to true.

3. If p does not divide the order of GL(s,q), then f(z) must have the structure
outlined in Equation (2). But, if EXCESS is true, then the polynomial does not
have the required factorisation, and we can rule out s as a block size.

4. If p does divide the order of GL(s,q), then f(z) has the structure outlined in
Equation (1). Consider the case where, in addition, s > ¢. Since ¢t > su and u is
non-negative, v must be zero. If G' has r blocks of size s, then g acts to fix all of
the blocks. Therefore, g is in the kernel of the homomorphism from G to S,. We
may now apply SMASH to our element g.

If p, the order of g, is also the characteristic of F', then the characteristic polynomial
of g is always (x — 1)? and offers no new information. Hence, we formulate a different
test.

Let A be the matrix (g —1)P~Y. What can we say about the rank of A? As before,
with respect to an appropriate basis, g acts on a single p-cycle of blocks of size s as s
copies of a p X p permutation matrix of order p. If P is an arbitrary p X p permutation
matrix of order p, then the rank of (P — I,)P~Y is exactly one, where I, is the p x p
identity matrix. More generally, (P — I,)" has rank exactly p — h for 1 < h < p. For
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each p-cycle, there are s such permutation matrices and, hence, each p-cycle contributes
s to the rank of A. Hence, the rank of A is su + ¢, for some u,c > 0.
This observation permits us to formulate the following test.

1. Compute the rank, ¢, of (g — 1)P=1). We call ¢ the free-rank of g.

2. Find the smallest h where the rank of (g — 1)" is equal to t(p — h). Since the
equality holds for h = p — 1, such an h exists. We call h the power-rank of g.

3. First, consider the case where s > t. Since t > su, where u is non-negative, g
must fix all blocks and we may supply the element to SMASH.

4. Now, consider the case where s does not divide £. Since ¢t = su + ¢ where both u
and ¢ are non-negative, and s does not divide ¢, it must be the case that ¢ > 0.
Therefore, there is a contribution to the rank of A from the fixed blocks. The
action of g on the fixed blocks is represented by s X s submatrices. If y is an
s x s matrix of order p in GL(s, q), where ¢ = p®, then y is conjugate to an upper
triangular matrix and (y — 1)* has rank zero. If s < p, then clearly (y — 1)®~Y is
the zero matrix and can make no contribution to the rank of A. Hence if s < p,
then A must have rank su and we can rule out the existence of blocks of size s.

5. Finally, consider the case where s < h. By definition, A is the smallest integer
such that (y; — 1)" = 0 for all y;, where y; is an s X s matrix representing the
action of g on one of its fixed blocks. But (y; — 1)° is the zero matrix, giving a
contradiction if s < h. Hence, we can rule out the existence of blocks of size s.

We now describe a similar test for elements of prime-power order. Let g be an
element of order p” where n > 1. Let ¢ have projective order p™, where ¢?" is a scalar
matrix in the element k of F.

If p differs from the characteristic of F', we find the largest power, ¢, of 2P — k
which divides f; otherwise, we compute the rank, ¢, of the matrix (g — k)®"~. In
each case, we call ¢t the free-rank of g.

If s > t, then g cannot contain a cycle of length p™ in its action on blocks. Hence,
g?""" must fix all blocks and we may supply this element to SMASH.

In all cases, if SMASH does not find a system of imprimitivity, then we can rule out
the existence of all possible block sizes s > t, where ¢ is the free-rank of the supplied
element. Our call to SMASH in Section 3 precludes the possibility that we now discover

that G is semilinear.

4.3 Elements of composite order

Let g be an element of projective order o, whose prime factorisation involves distinct
primes pi, P2, - - -, Pk, Where k > 1.

Can o be the order of an element of S,.7 If not, then (g) cannot act faithfully on r
blocks. Let p run over the distinct primes which divide o; then one of ¢(°/?) must fix
all blocks. We supply each of these elements to SMASH in turn.
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In practice, we choose the element of projective order o which fails the membership
test for the largest possible r.

In our earlier tests, we applied a stronger version of this test to elements of prime-
power projective order.

5 The block-stabiliser strategy

There are examples where none of our existing tests is capable of deciding primitivity.
In addition, SMASH can only find blocks of imprimitivity when there is some non-scalar
matrix which fixes all of the blocks. We now describe a test which can find a block
system when G acts faithfully as a permutation group on the blocks.

One deficiency of the tests in Section 4 is that they only consider the action of cyclic
subgroups. The primary problem with this approach is that there exist primitive matrix
groups in which every cyclic subgroup has a system of imprimitivity of the same block
size, and also imprimitive groups in which every cyclic subgroup has so many systems
of imprimitivity of the appropriate size that we need more information to find the block
System.

The strategy described in this section uses subgroups of G' that may be generated
by more than one element. Unfortunately, it is rather slow. When it runs smoothly,
it runs in time O(d®), but we are not able to prove conclusively that it will work in
polynomial time in all cases. We have yet to encounter an example in which it fails
completely, however.

The strategy is applied separately to each divisor s of d that has not been ruled out
already. The remaining possible block sizes are processed in order of decreasing size.
Hence, we may assume that the permutation action of G on the block system that we
are seeking is primitive — otherwise, there would be another action with larger block
size, which we would have already found.

5.1 Theory and outline of the strategy

Suppose that G acts imprimitively on V with blocks of size s, and let H be the stabiliser
of one such block, W. Our strategy attempts to find H and W, or to establish that
the assumption is false. If W exists, then V is isomorphic to the induced module W¢,
where W is regarded as an F'H-module. Thus, W must be irreducible as an F'H-
module, since otherwise V' would not be irreducible as an F'G-module. From Huppert
([8], Chapter V, Satz 16.6), we have Hompg (W%, V) = Hompy (W, V). (This module-
theoretic generalisation by Nakayama of the Frobenius Reciprocity Theorem is valid
over all fields F'.) Since we are assuming throughout that V' is an absolutely irreducible
FG-module, Hompg(W¢, V) has dimension 1 over F. It follows that the only F'H-
submodule of V' that is isomorphic to W is W itself. (We are grateful to L.G. Kovécs
for a helpful discussion on this argument.)

This suggests that we try to construct the stabiliser, H, of a fixed but unknown
block, W, of size s. If we succeed in constructing H, then we can find W by first
applying the MEATAXE algorithm to the action of H on V, and then, for each F H-
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composition factor V; of dimension s, calculating Hompg (V;, V). If Hompg(V;, V) has
dimension one, then W is the unique image in V' of every nonzero homomorphism, and
we can find the block system by applying MINBLOCKS to this image.

Since we assume that the permutation action of G' on the blocks is primitive, H
must be a maximal subgroup of G of index r. We try to construct H by working up a
chain of subgroups, starting with a cyclic subgroup and then adjoining new generators.
At some point in our construction, we may be able to decide that no such H exists,
and thereby conclude that G does not preserve a block system with block size s.

More precisely, the algorithm iterates over a main loop. At the beginning of each
iteration, we have a sequence S of subgroups of G, which are candidates for being
subgroups of H. We start with S = {(w)}, where w is an element that must fix
some block W of size s, if such a block system exists. The principal step is to find
a collection {y;} of elements of G with the property that at least one of the y, must
fix the same block W. We then apply the MEATAXE to each of the subgroups (K, y;),
for all K € §. Usually, many of these subgroups will act irreducibly on V' and can
be discarded immediately. For those that act reducibly, we carry out more precise
tests, during which we either find a block system, or we try to prove that the subgroup
cannot lie in H. If there are subgroups (K, ;) remaining for which we do not succeed
in either of these aims, then we replace & by the sequence of such subgroups and begin
a new iteration of the main loop. Otherwise we terminate.

In the following three subsections, we discuss how we choose both the initial element
w and the collection {y;}, and describe the tests we apply to the reducible subgroups
(K,y;). In the final subsection, we comment on the complexity of the whole process.
We assume throughout that we have chosen particular values of the block size s and
the number of blocks r, where rs = d.

5.2 The choice of w

Our first problem is how to choose the initial element w, which must be guaranteed to
fix at least one block. For this, we make use of the powers of the random elements of
G that we have accumulated during the earlier tests.

If there is an element g of prime-power projective order p®, and p® does not divide
r for some 1 < b < a, then we can clearly choose w to be g”a_bH. For example, if
r = 12 and g has projective order 9, then ¢ must fix a block. We choose p~**! to be
as large as possible, because we want the chain of subgroups to be as short as possible.
In less obvious cases, we may be able to deduce that some power of g fixes a block
by considering the characteristic polynomial of g, as described in Section 4.2. More
precisely, assume ¢ has prime-power projective order p® and ¢?* is the scalar matrix
kI, for some k € F; if the characteristic polynomial of g is not a power of 27" — k, then
g cannot act on blocks with all of its orbits of length p?, and so ¢?"~ must fix a block.
We can therefore choose w to be g7 .

If no suitable element can be found among our existing collection, then we compute
the commutators of some pairs of the existing elements and test whether one of these
commutators or a power of one fixes a block; this has worked in several examples,
particularly when H is soluble.
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If none of these attempts succeeds, we have no option but to put w equal to the
identity; in practice, we have never known this to happen.

5.3 The choice of the elements y;

The next task is to choose the collection {y;}. For this, we first find an element z of
prime projective order p, where p is as large as possible.

We must first exclude the possibility that z fixes all of the r blocks: if p divides r,
we do this by applying SMASH to z. If we conclude that z does not fix all r blocks, we
know that z has between 1 and r/p cycles of length p in its action on the blocks. Let
t = Int(r/p) + 1, and choose random elements hy,...,h; of G. Assume first that, in
our putative block system, W is mapped to a block in a p-cycle of z by each element
h;. Then there exist h;, and h;,, with ¢; # 79, which map W into the same p-cycle of z.
Thus, at least one of the elements hizkhj_l, for0<k<pandl<i<j<t mustfix
W. On the other hand, if some h; maps W to a fixed point of z on blocks, then h;zh;*
must fix W. We therefore choose {y;} to be the set of all of these elements, hiz’“hj_1
and h;zh;'. Note that there are pt(t — 1)/2+ ¢ < (r + 2)(r + p)/2p such elements,
and so the larger p is, the smaller the number of y;. In some situations, for example,
when r = p, or when p divides r and does not divide the order of GL(s,q) and the
characteristic polynomial of z is a power of (2P — 1), we can easily deduce that z must
act fixed-point-freely on the blocks, and so we need not include the conjugates h;zh; .

In practice, we do not choose all of the h; at once. Assuming that hy,..., hyu_1
have already been chosen for some u < ¢, we choose a random element h,, and then
calculate those elements g; that have the form h,-zkh; for 1 <4 < u and h,zh;'. We
then process the subgroups (K, ;) for K € S and for these y;. If too many subgroups
remain unresolved, we immediately choose a new element h,. We do this also if we are
unable to distinguish (in terms of composition factors or minimal submodules) between
V as an FK-module and V' as an F(K, y;)-module for some y;, because this could imply
that ¢, € K, which is clearly undesirable.

5.4 Processing the subgroups (K, y;)

Finally, we describe in more detail how we process the subgroups (K, y;). Let L be
one of these subgroups. Suppose that, after applying the MEATAXE, we find that,
as an F'L-module, V has a; composition factors of dimension d;, where a; and d; are
positive integers for 1 < ¢ < n, for some n, and d; < dy < ... < d,. If L fixes a block
W of dimension s, then W is an F'L-submodule of V', and so there must be integers
by for 1 < k < n with 0 < by < ay for all k, such that b;d; + ... + b,d,, = s. So
we first find all solutions by, ..., b, to this equation, and if there are none, we reject
L immediately. Otherwise, we consider each such solution in turn. We have devised
three simple and efficient tests, each of which might apply to a particular solution. If
at least one of the tests applies, then we either find a block system (in which case we
can terminate the whole process immediately), or we rule out that solution. If we do
not find a block system, and none of these tests applies to some solution, then we have
failed to resolve this subgroup L. When this happens, we apply a final “desperate”
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test, which is theoretically conclusive, to this subgroup. However, in practice, this test
is very expensive and we sometimes choose not to resolve L using it.

The first two tests use the feature described in Section 2.3. Let U be a composition
factor of V' as an F'L-module. Then we can find some F'L-submodule V;; of V' that has
U as a composition factor with positive multiplicity m, say, and no proper submodule
of Vy has U as a composition factor with the same multiplicity m. The first test
applies when b, = a; for some k. In this case, the block W (if it exists) must contain
all F'L-composition factors of V' of dimension di, and so it must contain Vi for every
composition factor U of dimension d;. We can test this immediately, by applying
MINBLOCKS to V. The second test applies when there is a £ with b, > 0 such that
all F'L-composition factors U of V' of dimension d; have multiplicity 1. As we saw in
Section 2.3, Vi is unique for all such U in this case, and so W must contain V; for at
least one composition factor U of dimension d;. We therefore apply MINBLOCKS to
each such V. For either test, if we do not find a block system, then we can rule out
the relevant solution.

The third test applies only when dp = s and b, = 1 for some k. For each
FL-composition factor U of V' having dimension s, we compute Homp (U, V). If
Hompr (U, V) has dimension 1, then V has a unique minimal F'L-submodule isomor-
phic to U (which we compute as the image of an element in Homp(U,V)), and we
apply MINBLOCKS to this submodule. We have included this test because, if there
is a block system and L is the full stabiliser of the block, then, as we saw in Section
5.1, a call to MINBLOCKS will succeed in finding the system. If no block system is
found, and Hompy (U, V) has dimension greater than 1 for some composition factor U
of dimension s, then the test is inconclusive.

For the final “desperate” test, we consider the set of those degrees, di, which have
positive coefficient, by, in some remaining solution. We now compute Homp (U, V)
for all F'L-composition factors U of V having dimension di. The idea is that we then
compute all minimal submodules of V' that are isomorphic to some such U of dimension
dy and apply MINBLOCKS to each of them. In principle, this test either finds a block
system, or it conclusively rules out the subgroup L. However, the number of such sub-
modules can sometimes be impracticably large. Hence, we choose some positive integer
MAX and compute at most MAX minimal submodules isomorphic to a particular U.
The value of MAX can be increased with each iteration of the main algorithm. If the
upper limit is exceeded for U, it does not always imply that the test fails. For example,
if there is just one remaining solution, which involves composition factors of different
degrees, then it is only necessary to compute the minimal submodules for one of these
degrees. More generally, suppose that we can find a subset D of the dj with the prop-
erty that each unresolved solution involves at least one factor of dimension ¢ for some
¢ € D. Then it suffices to compute all minimal submodules for all composition factors
of V' of dimension ¢, for all ¢ € D. There may be more than one choice of the subset
D. If so, we choose that subset which minimises the number of minimal submodules
that have to be calculated. This number can be predicted in advance by calculating
the dimensions of Hompp (U, V).

In practice, the block-stabiliser test will not succeed in the following situation: G
is primitive, but one of the subgroups L has the property that we cannot resolve it
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by applying one of our three fast tests to it, the “desperate” strategy is too slow, and
whenever we augment L to produce the subgroups (L, y;), one of these is L again.

5.5 Some remarks on complexity

As we saw in Section 5.3, each of the collections {y;} has about r%/2p = d*/2ps®
elements, where p is the order of the element z. We have to apply the MEATAXE,
which runs in time O(d?), to each of the subgroups (K, ;). Thus, provided that we
do not have to iterate the principal loop too many times, and the sequences & do not
grow too large, the whole process runs in time O(d®). While this is slower than we
would wish, it is tolerable for dimensions up to about 100. In a typical straightforward
application, we might have to go through two cycles with S of size one in the first and
of size at most 10 in the second, and so this estimate is quite an accurate guideline in
many cases.

We are not able to prove complexity results formally, however, and we have encoun-
tered isolated examples which behaved badly using our earlier implementations. We
have tried to identify the situations where things might go wrong, and then attempted
to find remedies. One danger is that the chain of subgroups going up to H could
turn out to be very long (possibly of order d). Fortunately, this does not seem to be
common. Our simpler tests primarily fail for examples which seem to be fairly close
to being simple groups, and their maximal subgroups usually have a small number of
generators.

A more serious danger, and one that we have encountered, is that there is a “rogue”
subgroup of G' which is not the stabiliser of a block, but which acts reducibly on V' in
such a way that we cannot prove that it is not contained in the stabiliser of a block.
Then the iteration process can get stuck inside this subgroup. We have observed, in
practice, that by being careful in our choice of the random elements h;, as we described
in Section 5.3, we can prevent the ascending chain of subgroups becoming constant.
Since we also steadily increase the limit MAX defined in Section 5.4, we can hope to
rule out these cases eventually. These two measures have sufficed in all of the examples
considered so far.

6 Implementing the algorithm

Implementations of the algorithm are available in GAP and MAGMA. They take as
input a generating set for a matrix group and report one of the possible outcomes of
the algorithm. Here, we discuss some of the practical considerations which arose in
developing an implementation.

A detailed discussion of the algorithm used to select random elements is provided in
Celler, Leedham-Green, Murray, Niemeyer & O’Brien [3]. Essentially, a certain amount
of preprocessing is first carried out; this allows the selection of a new random element
for the cost of one matrix multiplication.

Most matrix operations carried out, including the characteristic polynomial cal-
culation, cost O(d®). Both the order and projective order of an individual matrix
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can be found in O(d?loggq) in practice, following an algorithm devised by Celler and
Leedham-Green.

In the characteristic polynomial test for elements of prime order, we decide whether
p divides the order of GL(s, q) by computing the smallest integer m such that ¢™ — 1
is divisible by p and then checking whether s < m.

Since the order test described in Section 4.1 is not expensive and is frequently highly
effective, about 20 random elements are first selected and their orders computed. Each
random element and its order is stored. The elements of prime-power order used in
the tests of Section 4.2 are constructed by taking powers of these elements.

In practice, SMASH is an expensive part of the computation. Hence, we seek to
minimise the number of applications of this procedure. As a consequence, all potential
elements of the kernel of the homomorphism from G to S, found in the tests of Section
4.2 are stored in a SMASH queue, together with the values of their free-ranks. When
these tests have been applied to all of the elements of prime-power order generated
as powers of the random elements selected, we then choose the element of smallest
free-rank, ¢, from the SMASH queue and supply this element as input to SMASH. Now,
either we find a block system for G’ and hence terminate the test, or we can rule out
all s > t.

Recall, from Section 5.2, that we try to find a non-trivial element, w, which fixes at
least one block: if our initial collection of random elements does not provide a suitable
candidate, we select about 10 new random elements; if we do not find a suitable
element among the powers of these, we then compute about 10 commutators of pairs
of elements; we iterate both of these steps at most three times before abandoning our
search and choosing w to be the identity.

7 Some sample applications

Below we report in some detail on the application of our algorithm to a range of test
cases. These demonstrate that every one of our tests is used in order to settle existing
examples conclusively. We use the notation of the Atlas [5] to identify each group.

e A 20-dimensional representation of A; over the field of 2 elements. Here the
potential block sizes are 1,2,4,5,10. Elements of order 3 and 7 which do not
have characteristic polynomials of the form described in Equation (2) eliminate
1 and 2 respectively. The element of order 7 has free-rank 2; it is supplied to
SMASH and this call eliminates the remaining possible block sizes.

e A 24-dimensional representation of 2C'0; over the field of 3 elements. Here the
potential block sizes are 1,2,3,4,6,12. One element of order 3 and power-rank
2, and another of order 3 and free-rank 5, eliminate 1 and 2, respectively. An
element of order 9 has free-rank 1; its cube is supplied to SMASH and this call
eliminates the remainder.

e A 25-dimensional representation of As x As over the field of 7 elements. Here
the potential block sizes are 1 and 5. An element of order 10 in the composite
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order test generates a call to SMASH which finds a tensor product decomposition,
where each factor has dimension 5. A recursive application of the primitivity
algorithm finds blocks of size 5.

e A 28-dimensional representation of Ag over the field of 11 elements. Here the
potential block sizes are 1,2,4,7,14. The block-stabiliser test is used to eliminate
each of 1 and 2: w has order 3, z has order 7, no conjugates of the y;s are needed,
but the “desperate” test is called. Another call to the block-stabiliser test — this
time, with an element w of order 4 — eliminates 4. But w has free-rank 4; its
square is supplied to SMASH and this call eliminates the remainder.

e A 30-dimensional representation of Uy(2) over the field of 49 elements. Here the
potential block sizes are 1,2, 3,5,6,10,15. One element of order 9 and free-rank
3 eliminates all values which are at least 5. Invocations of the block-stabiliser
test, with w of order 4 and 9, z of order 5, and one call to the “desperate” test
eliminates each of 2 and 3, respectively. Another invocation of the block-stabiliser
test, this time with w of order 3 and z of order 5, requires a second pass with a
sequence S of length 4 before a call to the “desperate” test eliminates 1.

e A 32-dimensional representation of Ly(31) over the field of 16 elements. Here the
potential block sizes are 1, 2,4,8,16. The order test with an element of order 31
eliminates 2 and 4. Since this element has free-rank 1, it eliminates all possible
block sizes except 1. The block-stabiliser test, with each of w and z having order
31, finds two block systems.

e A 50-dimensional representation of He2 over the field of 7 elements. Here the
potential block sizes are 1,2, 5,10, 25. The free-rank, 6, and power-rank, 5, of an
element of order 7 eliminates 1, 2, and 5; the element is supplied to SMASH and
this call eliminates the remainder.

e A 55-dimensional representation of Mi; ? M;; over the field of 7 elements. Here
the potential block sizes are 1,5,11. An element of order 8 has free-rank 0; its
fourth power is supplied to SMASH which finds 11 blocks of size 5.

e A 90-dimensional representation of 30’ N2 over the field of 7 elements. The call
to SMASH which seeks to decide whether the group is semilinear finds a block
system containing two blocks of size 45.

e A 111-dimensional representation of Ly over the field of 5 elements. Here the
potential block sizes are 1,3,37. An element of order 5, which does not have a
characteristic polynomial of the form described in Equation (2), eliminates both
1 and 3. The element has free-rank 15, and a call to SMASH eliminates 37.

Recall that the algorithm may report that a group is semilinear and consequently
it is not able to decide whether or not the group is imprimitive. We now present a
simple example to illustrate this possible outcome.

Consider a 2-dimensional representation of the cyclic group of order 3 over GF(2).
Take the wreath product of this group with S3 to get a 6-dimensional imprimitive
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representation, which is not absolutely irreducible. Adjoin a generator of order 2
which fixes all 3 blocks and inverts all of the 3-elements in the base group of the
wreath product. The group clearly remains imprimitive, and the involution makes it
both absolutely irreducible and semilinear. The reduction test of Section 3 discovers
that the group is semilinear and the algorithm terminates.

8 Implementation performance

Here, we present a range of examples to provide a guide to the performance of our
GAP implementation of the algorithm. Where possible, we report tests for a range of
representations of the same group — of different dimensions over the same field, and of
the same dimension over different fields — to give some indication of the sensitivity of
the algorithm to changes in dimension and field.

All computations were carried out using GAP Version 3.2 on a SPARC Station
10/51, and all CPU times are given in seconds. Twenty random elements of each
group were selected for the order test. In Tables 1 and 2, for each group, we list
its Atlas name, report its dimension, the finite field it is defined over, whether it is
imprimitive or not, and the CPU time taken. We indicate that a group is primitive or
imprimitive by listing “P” or “I”, respectively, in the Status column of each table.

Since the algorithm has a random component, the times listed should be viewed
only as a general guideline. In an attempt to provide a realistic guide to performance,
we report the CPU time averaged over three consecutive executions.

Short [13] determined the primitive soluble permutation groups of degree less than
256 and hence constructed a list of soluble subgroups of small dimensional general
linear groups. The application of our implementation to each of these groups took at
most one second of CPU time.
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Group Dimension | Field | Status | Time
As 5 7 I 5

As x As 25 7 I 62
Az 20 2 P 14

Ag 20 11 P 15

Ag 28 11 P 552

Ag 64 11 P 3293

Ag 28 49 P 360
24, 55 5 P 107
2Co0; 24 3 P 15
Cos 22 3 P 13
Fy(2) 26 2 P 18
Figg 253 3 P 10291
He2 50 7 P 80
He2 102 2 I 169
Ji 7 11 P 3

J1 14 11 P 13

Ji 27 11 P 12

Jo 36 3 P 130

Jo 42 3 P 1571

2J5 12 3 P 7
3J3 18 2 P 11
3J3 36 2 P 36
3J3 80 2 P 218

Jy 112 2 P 318
L,(13) 14 7 I 18
Ly (17) 18 41 I 35
L,(31) 32 16 I 116
L,(81) 82 41 I 1706
L3(3) 26 2 I 46
L3(4) 63 I 613
L3(4) 63 11 I 739
L3(5) 124 2 I 1975
L3(5) 124 3 I 1305
L;3(5) 124 31 I 2064
Ly 111 5 P 304
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Group Dimension | Field | Status | Time
My, 24 3 P 10

My, 44 2 P 162

M1 44 7 P 224

My, 55 7 I 344
Myt My 55 3 I 93
Mo 55 7 P 2903

Mo 120 17 I 1062

Moy 21 7 P 10

Moo 30 2 P 15

Mo 34 2 P 27

Mo 54 7 P 60

Moo 154 7 P 10128
3M>sq 12 2 P 6
3McL 21 5 P 8
3McL 90 5 P 302

(3% :4 x Ag) -2 18 7 P 93
(3%2:4 x Ag) -2 27 7 P 28
30'N2 90 7 I 86
Ru 28 2 P 20

Ru 28 5 P 14

Ru 28 17 P 41

Suz 12 3 P 5

Suz 12 4 P 4
Sz(8) 65 29 I 731

Th 248 2 P 48265

Us(2) 14 2 | P 4
Us(2) 30 49 P 3907

Uy (2) 58 P 94
Ua(2) 64 2 | P 649
Us(2) 81 11 I 905

Table 2: Performance of implementation for a sample of groups
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