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Abstract
We have proved that there are
3p? +39p + 344 + 24 gcd(p — 1,3) + 11 ged(p — 1,4) + 2ged(p — 1, 5)

isomorphism types of groups and nilpotent Lie rings with order p® for every
prime p > 5. We establish the result, and power-commutator presentations
for the groups, in various ways. The most novel method constructs product
presentations for nilpotent Lie rings with order p® and then uses the Baker-
Campbell-Hausdorff formula to construct power-commutator presentations for
the corresponding groups. Public access to the group presentations is provided
via a database distributed with computer algebra systems.

1 Introduction

The determination of the groups with a given order has a long history; for a detailed
account see Besche, Eick and O’Brien [6]. The central task is to provide a complete
and irredundant list of the groups with a given order. The primary difficulty is the
reduction to isomorphism types; it is comparatively easy to give a complete list.

The 5 groups with order p® are well-known, so are the 14 groups with order 16
and the 15 groups with order p* for p odd (see, for example, Burnside [10]). There
are 51 groups with order 25 (Miller [23]). The groups with order p® for p > 5, of
which there are 61 + 2p + 2ged(p — 1, 3) + ged(p — 1,4), were first determined and
tabulated by Bagnera [2]. The 67 groups with order 3% were finally listed by James
in 1980 [20].

Here we report on a new and independent determination of the groups with
order p® for primes p > 5. Our primary result is the following.

Theorem 1 There are
3p? +39p + 344 + 24 ged(p — 1,3) + 11 ged(p — 1,4) + 2 ged(p — 1, 5)
groups with order p® for p > 5.

Previous attempts to obtain such a result, and to list the groups, have been
flawed. There is a description of some of this work in Section 2.

The 267 groups with order 2% were first determined by P. Hall and Senior in the
late 1930s and their descriptions were published by M. Hall and Senior [16]; the 504
groups with order 3% were first described in James [20].
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Recall the Baker-Campbell-Hausdorff formula [18] and the Lazard correspon-
dence [8] establish an isomorphism between the category of nilpotent Lie rings with
order p™ and nilpotency class at most p— 1 and the category of finite p-groups with
order p™ and class at most p — 1; in particular this applies where p > n. As a novel
approach to proving Theorem 1, we first determine the nilpotent Lie rings with
order p® and then exploit this equivalence to obtain all of the p-groups with order
p® for p > 5, excluding the 5-groups of maximal class. The 5-groups with order 5°
and maximal class are well-known; see, for example, Blackburn [5].

In Section 5, we present an algorithm to determine the nilpotent Lie rings with
order p". It is an analogue of the p-group generation algorithm, which we now
briefly recall; for a detailed description see O’Brien [27]. Let P be a p-group. The
algorithm uses the lower p-central series, defined recursively by P;(P) = P and
Pit1(P) = [Pi(P), P]P;(P)P for i > 1. The p-class of P is the length of this
series. Each p-group P, apart from the elementary abelian ones, is an immediate
descendant of the quotient P/R where R is the last non-trivial term of the lower
p-central series of P. Thus all the groups with order p®, except the elementary
abelian one, are immediate descendants of groups with order p* for £ < 6. All
of the immediate descendants of a p-group () are quotients of a certain extension
of @; the isomorphism problem for these descendants is equivalent to the problem
of determining orbits of certain subgroups of this extension under an action of the
automorphism group of (). Not all p-groups have immediate descendants, those that
do are called capable. We observe that Lie ring calculations are usually significantly
easier for an arbitrary prime than those for the corresponding groups.

We used the Lie ring generation algorithm to determine all of the nilpotent Lie
rings with order p% for all p > 2, and to obtain product presentations (see [17]) for
them. We then applied the Baker-Campbell-Hausdorff formula to “translate” these
presentations into group presentations; this is discussed in Section 4. In this way
our Lie ring generation algorithm leads to a list of presentations for the groups with
order p% for p > 5.

In summary, for p > 3, there are 42 nilpotent Lie rings which have immediate
descendants with order p®. For p > 5 presentations for the corresponding groups
are given in Theorem 2. Table 1 gives the number of immediate descendants with
order p® for these 42 groups. Theorem 1 is now an immediate consequence.

An alternative proof of Theorem 1 uses P. Hall’s notion of isoclinism [15]; this
is the basis of the 1940 work of Easterfield [12] and the work of James [19, 20].
Recall that two groups G and H are called isoclinic if there are isomorphisms
¢:G/Z(G) — H/Z(H) and ¢ : G' —> H', such that for all g;,¢g2 € G

91 Z(G)p =mZ(H), g2Z(G)p=h2Z(H), [g1,92]% = [, ha] .

For p > 5 the groups with order p® are classified into 43 isoclinism families [12].
All of the groups in a family are quotients of certain “generating groups”. The
isomorphism problem for these quotients is equivalent to the problem of determining
orbits of certain subgroups under (a quotient of) the automorphism group of each
generating group. For a discussion of this approach, see Section 7.

Easterfield [12] tabulated parametrised presentations for the groups with order
p® for p > 5. We have, with the help of Robert McKibbin, checked this tabulation.
It was chosen initially because it seemed reasonably accurate and gave lots of detail
about the groups to help with checking. Easterfield’s tables are not completely error-
free. There are p—1 groups missing from isoclinism family ®;3 and the presentations
for one isoclinism family (®19) had sufficient problems that we replaced them by
the corresponding presentations of James [20]. There were also a small number of
typographical errors.

That the two proofs, via Lie ring generation and isoclinism, reach the same
conclusion significantly increases our confidence in Theorem 1.



We have created a database of parametrised presentations for the groups with
order p8 for p > 5, based on the corrected Easterfield list. The database is currently
designed for use with MAGMA [7]; the data can readily be incorporated into other
computer algebra systems. The construction from the database of the list for a
given prime is extremely fast. For example, on an 800 MHz processor, MAGMA
constructs power-commutator presentations [34] for the 860 groups with order 76 in
about 1 second, and for the 181 076 groups with order 239 in about 500 seconds.

We describe the construction, the content and the organisation of the database
in Section 8 and in Section 9 discuss steps taken to verify the results.

2 Background

The first attempt to list the groups with order p® was made by Potron [32] in his
Paris thesis of 1904. He followed Burnside [10] and de Séguier [11] in using the
structure of the upper central factors as the basis for his classification. Miller [24]
and Easterfield [12] have drawn attention to substantial problems with Potron’s list.
However, in retrospect, his list exhibits some significant aspects of the situation.
The list is partitioned into several hundred cases each of which is described by a
(usually parametrised) power-commutator presentation. This can be done so that
at most 2 parameters are used in addition to a prime parameter. The primes can be
partitioned into 11 parts; with 2, 3, 5 separate and the others classified according
to whether their remainders modulo 3, 4 and 5 are 1 or not.

Miller [24] used maximal abelian normal subgroups as the basis of an attempt
to determine the groups with order 64. This led to the work by Senior and his
collaboration with Hall. From 1935 Brahana determined certain groups with class
2 and exponent p mainly using projective geometric methods, see [9].

Easterfield in his 1939/1940 Cambridge dissertation [12] used isoclinism (which
he called isologism) as a basis for listing the regular (in the sense of Hall) groups.
This handles all primes greater than 5 and the prime 5 for nilpotency class less than
5. He also handled the 5-groups with class 5 and determined the isoclinism families
for the prime 3. James used a similar method in his PhD thesis [19], published (in
amended form) in 1980 [20]. That paper has a number of inaccuracies. Some of
these were pointed out by Pilyavskaya [29)].

Pilyavskaya (also transcribed Pylyavska) made a determination using maximal
abelian normal subgroups. Her approach is described in a document deposited in the
Viniti archive [30] and in her Candidate’s thesis [31]. Some errors were corrected in
an English version of her thesis which was circulated privately. Recently an exchange
of emails has resulted in other errors being corrected. This further supports the
enumeration stated in Theorem 1. There is agreement at the level of presentations
in the small number of isoclinism families that have been compared in detail.

Other contributions to the problem include work by Tordella [35], Kiipper [22],
and Baldwin [3].

3 The main result

For p > 5, there are 42 groups with order p* for ¥ < 6 which have immediate
descendants with order pb. These groups were determined directly using the Lie
ring generation algorithm. Of course, the result can also be deduced from the
published tabulations: Bagnera [2], de Séguier [11], Schreier [33], Bender [4] and
James [20].

In Theorem 2 we record a finite presentation for each such capable group (or
parent), and the number of its immediate descendants with order p®. The finite



presentation and the listed p-class can be used to construct a power-commutator
presentation. (For example it can be supplied with a specific prime p to the p-
quotient algorithm [26].)

Theorem 2 For p > 5, the groups with order dividing p® which have immediate
descendants with order p® are the following where w is a primitive root of unity mod

b:
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a,b| [b,a],class 2)
a,b| bP, class 2)
a,b | b[b,a] !, class 2)
a,b | class 2)
a,b| aP,b?, class 3)
a,b | aP[b,a,a]™", b class 3)
a,b | af[b,a,b] !, bP, class 3)
a,b| aP[b,a,b]™,bP, class 3)
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a,b| [b,a,a],[b,a,b],bP, class 3)

16. {a,b| [b,a,b],ap ,bP[b,a,a]™!, class 3)

17. {(a,b| [b,a,b],a”’ ,bP[b, a,a] ", class 3)
18. {(a,b | [b,a,aq], a?”,bP, class 3)
19. {a,b| [b,a,a],b?[b,a] !, class 3)
20. {a,b|[b,a],b?,class 4)
21. {a,b|[b,a,b],a?,b?, class 4)
22. {a,b | [b,a,b][b,a,a,a]"t,aP,bP, class 4)

23. {a,b,c| class 1)

2.
25,

a,b,c| [e,al,[e,b],a?,b?, P, class 2)
a,b,c|[b,al,[c, al,[c,b], P, class 2)
26. {a,b,c| [c,a],[c,b], b", P, class 2)
27. {a,b,c| [c,a],[c,b],bP[b,a] 1, cP, class 2)

28. {a,b,c| [c,al,[c,b],bP, cP[b,a] ™1, class 2)



29.
30.
31.
32.
33.
34.
35.
36.
37.
38.
39.
40.
41.
42.

a,b,c| [c,al,[c,b],a?, bP, class 2)
a,b, c| [c,a],[c,b],aP[b,a] ™1, bP, class 2)
a,b,c|[c,b],a?,b?, P, class 2)

a,b,c| [c,b],aP[b,a],bP, cP, class 2)
a,b,c| [c,b],aP,bP[b,a]~1, cP, class 2)
a,b,c| [c,b],aP,bP[c,a]™1, P, class 2)

a,b,c| [c,b],aP[b,a]™,bP[c,a] 7, cP, class 2)

(

(

(

(

(

(

(

(a,b,c| [b,al],[c,al,[c,b],bP, cP, class 3)
(a,b,c| [b,a,bl,[ec,al,[c,b],a?,bP, cP, class 3)

{a,b,c| [b,a,b],[c,al,[c,b][b,a,a]~t,aP bP, cP, class 3)
(a,b,c,d | class 1)

(a,b,c,d | [b,al,[c,a],[d,a],[c,b],[d,b], [d,c],bP, cP, dP, class 2)
(a,b,¢,d | [c,al, [c,b],[d,a],[d,b],[d, c],aP,bP, cP, dP, class 2)

(

a,b,c,d, e | class 1)

The number of immediate descendants of each group is summarised in Table 1.

As presented, Theorem 2 concerns p-groups. We proved the theorem by using Lie
ring generation to construct the immediate descendants of each of the corresponding
42 nilpotent Lie rings; in Section 6 we illustrate some of the relevant calculations.
The theorem was also established using the corrected Easterfield list.



Parent Number of immediate descendants

1 1

2 2

3 p+15

4 1

5 p+8

6 5+ 3ged(p—1,3)

7 pt+eged(p—1,3)+1

8 1+ged(p—1,3) +ged(p —1,4)/2

9 1+ged(p—1,3)+ged(p—1,4)/2
10 p+1
11 p
12 2
13 1
14 4
15 2ged(p—1,3) +ged(p—1,4)+3
16 3(p+1)/2
17 3(p+1)/2
18 2ged(p—1,3) +ged(p—1,4)+ 3
19 2
20 2
21 3ged(p—1,4)+2ged(p—1,3) + 7
22 | 2p+2ged(p—1,3) +ged(p—1,4) + 2ged(p — 1, 5)
23 3p+ 27
24 3p° +13p+ 37+ ged(p — 1,3) + ged(p — 1, 4)
25 4
26 23
27 5
28 4
29 12
30 p+1
31 35
32 2p + 13
33 ip+8
34 2p+3ged(p—1,3) +ged(p —1,4) + 13
35 3
36 3
37 4ged(p—1,3) +2ged(p—1,4) + 11
38 2ged(p—1,3) +4
39 dp + 48
40 4
41 18
42 7

Table 1: Number of immediate descendants with order p® of the 42 parents



4 Baker-Campbell-Hausdorft

It has been known since the 1950s that the Baker-Campbell-Hausdorff formula gives
an isomorphism between the category of nilpotent Lie rings with order p™ and the
category of finite p-groups with order p™ provided p > n. However, we are not
aware that this connection has been systematically exploited to classify finite p-
groups until now.

Let A be the free associative algebra with unity over the rationals Q which is
freely generated by non-commuting indeterminates z,y. We extend A to the ring
A of formal power series consisting of the formal sums

oo
E Un,
n=0

where u,, is a homogeneous element of weight n in A. If a € A, and if the homoge-
neous component of a of weight 0 is 0, then we define

2 3

a
a _
e —1+a+a+§+...

in the usual way. The product e®*e¥ € A can be expressed in the form 1 + u for
some u € A with 0 as its homogeneous component of weight 0, and

ee¥ = ¢
where
o0 un
v = E (=11 —.
n=1 n

The Baker-Campbell-Hausdorff formula (see, for example, Jacobson [18]) enables
us to compute the homogeneous components of v. The first few components are
given by:
vV=T+yY-— %[y,.ﬁ[]] + %[y,l’,flf] - %[y;xay] + i[yamaxay] - 7§—0[Z/a37;37;37;$] +o..
It turns out that all the homogeneous components of v are Lie elements of A
(that is, elements in the Lie subalgebra of A generated by = and y with respect to
the Lie product [a,b] = ab—ba). A proof of this may be found in Vaughan-Lee [36].
A similar formula holds for commutators:

[e¥,e"] = €Y,

where

w = [y,2] + 5[y, 2, 2] + Ly, z,9] + §lv, 2, 2,2) + 3y, =, 2,9] + §ly, 20,91 + ... .
(Here [e¥,e”] is the group commutator e Ye *e¥e”, and w is an infinite sum of Lie
elements in A.)

These formulae sometimes enable us to define a group structure on a Lie algebra.
Perhaps the simplest situation where this applies is when L is a nilpotent Lie algebra,
over Q. As described in [1], the Baker-Campbell-Hausdorff formula provides an
isomorphism (the Mal’cev correspondence) between the category of nilpotent Lie
algebras over Q and the category of torsion-free divisible nilpotent groups.

The Baker-Campbell-Hausdorff formula also provides a connection between fi-
nite p-groups and nilpotent Lie rings (over Z) with prime-power order, in the case
when the groups and Lie rings are nilpotent of class at most p — 1. We write the
element v above as

V=v1 +UV2+ ...,



where v; is a homogeneous Lie element of weight 4, for i = 1,2,..., and we consider
the truncated expression

v(z,y) =v1 +v2+...+vp_1.

Observe that the denominators of the coefficients that occur in ¥(z,y) are coprime
to p. If L is a Lie ring with order p” (so that L has characteristic p* for some k),
and if L is nilpotent of class at most p — 1, then we can define a group operation
“o” on L by setting

aob="1v(a,b) for a,b € L.

This turns L into a group with order p”, and every finite p-group of nilpotency class
at most p — 1 arises in this way from a finite Lie ring. This Lazard correspondence
appears as Exercise §7.4 in Chapter 2 of Bourbaki [8].

5 The Lie ring generation algorithm

Our method of classifying nilpotent Lie rings with order p™ closely follows the p-
group generation algorithm (see Newman [25] and O’Brien [27]). A Lie ring L is an
abelian group under + (addition) together with a bilinear product which satisfies

aa = Oforallae€elL,
(ab)e + (bc)a+ (ca)b = 0 forall a,b,c € L.

(We use ab to denote the Lie product of a and b, rather than the more familiar
[a,b].) Note that the axiom aa = 0 together with bilinearity implies that ba = —ab.
The identity (ab)c + (bc)a + (ca)b = 0 is the Jacobi identity.

Since the Lie product is not associative the bracketing of a product is significant.
We adopt the left-normed convention whereby

103 - .- ap = (... ((a102)a3) .. .an_1)ay.
For a Lie ring L we define the lower central series
L>I2>L[3>...>L°>...

by setting L? = (ab|a,b € L), and Lt = (ab|a € L¢, b € L) for ¢ > 1. It is easy
to show that a product of ¢ elements of L (with any choice of bracketing) lies in L°.
Further, L° consists of the set of all linear combinations of left-normed products
aias . ..a. of elements of L. We say that L is nilpotent of class ¢ if Lt = {0},
Le # {0}.

When calculating in finite nilpotent Lie rings with prime-power order, the lower
p-central series

L=L>Ly>L3>...>L.>...

is often more useful than the lower central series. This is defined for Lie rings in
an analogous way to groups. We set L; = L, Ly = L? + pL, and for ¢ > 1 we set
Leyy = L.L+pL.. (Here L.Lis (ab|a € L., b € L).) Note that we use superscripts
to denote terms of the lower central series, and subscripts to denote terms of the
lower p-central series. The ideal L. consists of all linear combinations of terms of
the form

2 c—1
a1az . ..0c, Pa14az -..0c—1, P a1G42 ...0¢c—2,..., P aj -

We say that L has p-class cif L.41 = {0}, L. # {0}.

If L is a nilpotent Lie ring with finite order p™ for some prime p, then L. will
equal {0} for some c. In fact if L is nilpotent of class k, and if the exponent of L
as a finite abelian group is p™ then L has p-class ¢ for some ¢ with k < ¢ < k+ m.



If L and M are two finite nilpotent Lie rings with prime-power order, then L is

a descendant of M if L/L="M for some ¢ > 2. If L/L="M and L has p-class
¢ (so that L. # {0}, L.y1 = {0}) then L is an immediate descendant of M. Note
that if L is a descendant of M then L/Ly &2 M/Ms, so that L and M have the same
generator number.

The key idea for calculating nilpotent Lie rings L with order p™ is as follows. If
L has p-class 1 then L is the direct sum of n copies of Zp; call L elementary abelian.
If L has p-class greater than 1, then L is an immediate descendant of a nilpotent Lie
ring with order p™ for some m < n. The starting point for calculating the nilpotent
Lie rings with order p% is to calculate the nilpotent Lie rings with order p* for
1<k < 6. For each of these Lie rings we calculate the immediate descendants with
order p? as follows. Given a d- generator Lie ring M we construct its p-covering ring
M. This is a d-generator Lie ring M having a central elementary abelian ideal Z
such that M/Z = M and every immediate descendant of M is isomorphic to M /T
for some T < Z. However M /T is not an immediate descendant of M for every
subring T' < Z. If M has p-class ¢ (so that M.41 = {0}) then we define the nucleus
of M to be MC+1. Then M/T is an immediate descendant of M if and only if T is
a proper subring of Z such that T' supplements the nucleus MC+1. It can happen
that Mcy1 = {0}, in which case M has no immediate descendants and is terminal.

Hence we obtain a complete list of the immediate descendants of M by cal-
culating its p-covering ring M, and listing the proper subrings 7' < Z such that
T+M.11 = Z. (These are the allowable subringsof Z.) If M is a d-generator Lie ring
with order p™ then Z is elementary abelian of rank at most d(d—1)/2+d(n—d+1).
The elementary abelian Lie ring with order p® has p-covering ring with order p*°
this is the largest ring we construct in studying the nilpotent Lie rings with order
dividing p®.

We now have a list of the immediate descendants of M, and we can easily re-
strict to those with a specified order. This list will usually contain redundancies,
and we need to solve the isomorphism problem. This is done as follows. We com-
pute the automorphism group of M and we extend each automorphism « of M to
an automorphism a* of M. (If M is generated by aj,az,...,aq then we choose
preimages Z1,2,...,Zq in M for ai,as,...,aq, and preimages y1,92,...,yq in M
for a1, azq, . ..,aqc. Then x1,xs,...,2x4 generate M, and we define a* by set-
ting z;a* = y; for i = 1,2,...,d.) Then Zo* = Z, and the action of o* on Z is
uniquely determined by a. Two allowable subrings 77, 7% define isomorphic descen-
dants M /Ty, M /T» if and only if Tha* = T for some automorphism a of M. We
obtain a complete irredundant set of immediate descendants of M by choosing a
set of representatives for the orbits of the allowable subrings of Z under this action
of the automorphism group of M.

The p-covering ring is completely analogous to the p-covering group. We refer
the reader to the proofs of the corresponding results in Section 2 of O’Brien [27].

6 Lie ring examples

As an illustration of the Lie ring generation algorithm, we compute the descendants
with order p® of
A = (a,b| baa, p*a, pb, class 3).

A is a 2-generator Lie ring with order p® and p-class 3. If we apply the Baker-
Campbell-Hausdorff formula to its presentation then we obtain the following group
presentation:

{a,b|[b,a,q], a”g, bP, class 3}.



This group presentation has the same form as that of the Lie ring, although this is
not always the case. (This is group 18 from Theorem 2.)

It is easy to show that A/A, has order p? and is generated by a + A, b + As;
further A2/As has order p? and is generated by ba + A3, pa + As; the last term Az
has order p and is generated by bab. It is also easy to show that if a’,b’ are the
images of a,b under an automorphism of A then a’ = aa + vba + dpa + ebab and
b’ = Bb+ (ba + npa + Obab with «, 8 coprime to p. Further, if a’,b' are of this form
then there is an automorphism of A mapping a,b to a’,b'. Hence the automorphism
group of A has order (p —1)2pS.

Let L be a 2-generator Lie ring of p-class 4 such that L/Ly = A. Then L is
generated by a, b; further Ly is generated by ba, pa modulo L3 and L3 is generated
by bab modulo L4. Recall that L, is defined to be L3L + pL3. Since L3 is generated
modulo Ly by bab we see that L, is generated by baba, babb and p(bab). However
baa, p?a and pb are in Ly, and so baba = baab = 0 and p(bab) = (pb)ab = 0. Hence
L, is generated by babb and baa = Ababb, p*a = ubabb, pb = vbabb for some A, j1, v.
Since L4 has order p we can think of A, u,v as elements of Z,. It is easy to show
that all p® values of the triple A, i, v define a Lie ring L with order p® and p-class
4 which is a descendant of A. It remains to solve the isomorphism problem: when
do two triples A, u,v and X', p',v' define isomorphic Lie rings?

We solve this problem by letting the automorphism group of A act on the set of
possible presentations for L. In other words we consider a presentation

L = {a,b| baa — \babb, p*a — pubabb, pb — vbabb, class 4}

for a descendant of A with order p® and p-class 4, and we let

!

a = aa+ vyba+ dpa+ ebab,
b = b+ (ba+ npa + Gbab.

It is now easy to compute that

Va'a = o?Bbaa = a?BAbabb = af 2\ a'b'V,
p’a’ = ap’a = apbabb = F3ub'a'b'Y,
pb' = Bpb+np’a = (Bv +nu)babb = o~ 73 (Bv + nu)b'a'b'y'.

Hence the triples A, u, v and a2\, 373 u, a1 73 (Bv + nu) determine isomorphic
algebras.

It follows easily that we get a complete set of pairwise non-isomorphic descen-
dants of A with order p® by taking triples A, u, v satisfying the following properties:

e A=0orl,

e y=0o0r 1, or (when p =1 mod 3) w or w? where w is a primitive element in
Z

P

e v=0when p#0,v=00r 1 when A =y =0, and when A =1, u = 0 then
v=0,1o0r w, or (when p =1 mod 4) w? or w® where w is a primitive element
in Zp,.

Hence the number of descendants of (a,b|baa,p?a,pd, class 3) with order pb
depends on the value of p mod 12, and is 2 ged(p — 1,3) + ged(p — 1,4) + 3.

We now apply the Baker-Campbell-Hausdorff formula to the Lie ring presenta-
tions described above to obtain a complete and irredundant list of (group) presen-
tations for the immediate descendants of the group having presentation

{a,b|[b,a,aq], a”2, bP, class 3}.
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The Baker-Campbell-Hausdorff formula applied to the Lie ring presentation
{a,b| baa — \babb, p*a — pbabb, pb — vbabb, class 4}
gives the group presentation
{a,b|[b,a,ad][b,a,b,b] ", a?’ [b,a,b,b]*, bP[b,a,b,b] ™", class 4}.

Again, the group presentations have the same form as the Lie ring presentations,
with the same ranges for the parameters.

We sometimes obtain group presentations which differ significantly from the
corresponding Lie ring presentations. For example, when computing the immediate
descendants with order p® of

{a,b| bab, p*a, pb — baa, class 3)
we obtain presentations
{a,b| bab, p*a, pb — baa — \baaa, class 4}

with 0 < A < p. (There are other descendants.) If we replace a by —a in this
presentation then we obtain

{a,b| bab, p*a, pb — baa + baaa, class 4},

and so it is clear that the parameters A and —A give isomorphic Lie rings. If
we let A take the values 0,1,...,(p — 1)/2 then we get (p + 1)/2 pairwise non-
isomorphic descendants. Applying the Baker-Campbell-Hausdorff formula to these
presentations, we obtain the group presentations

{a,b| [b,a,b], a® , b[b,a,a]"[b,a,a,a] ">, class 4}.

Note that A and —\ must give isomorphic groups since the corresponding Lie rings
are isomorphic, and the groups obtained by letting A = 0,1,...,(p — 1)/2 are
pairwise non-isomorphic. In the group context it might seem more natural to
parametrise these groups with a parameter u replacing the exponent 1 — A. In
these terms the isomorphism question is less transparent: p and u' give isomorphic
groups if p—1==+(p' —1).

As another example, we consider the 4-generator Lie rings with order p® and
p-class 2. Let L = {a,b,¢,d) be a Lie ring of this form. As a first step we divide
the problem up into three cases: L is abelian, L? has order p and L? has order p?.
(Recall that L? is the derived ring (zy|z,y € L).)

Just as for groups, there is only one abelian 4-generator Lie ring with order p®
and p-class 2. It has additive structure Z, ® Z, ® Zp2 © Zp2.

If L? has order p then the map

(x + La,y + L2) = xy

defines an alternating bilinear map from L/L; x L/Ly — L%. (Here we are viewing
L/L, as a 4-dimensional vector space over Z,, and we are viewing L? as a 1-
dimensional vector space over Z,) We may assume that L? is generated by ba.
Hence

ca=da=cb=db=dc=0,

or
ca =da=cb=db=0, dc = ba.
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In other words, if L? has order p then we may assume that L satisfies one of these
two sets of commutator relations. A Lie ring satisfying the first set of relations
cannot be isomorphic to a Lie ring satisfying the second set. If L? has order p? then
(up to isomorphism) L has 4 possible commutator structures.

We examine in detail the situation when L? has order p and is generated by ba,
and when ca = da = ¢b = db = dc = 0. The centre of L has order p* and equals
(¢,d) + Lo, so {¢,d) + Lo is a characteristic subring. Hence it is easy to see that if
a', b, d generate L, and if

da' =dd =V =dv =dc =0,

then (modulo L)

a = aa+pb+ec+(d,
b = ~ya+6b+nc+6d,
d = e+ pd,
d = vc+é&d

for some a,B,...,& € Zp with ad — B and A{ — pv coprime to p. (Further, if
a', b, d are elements of this form, then they generate L and satisfy the same
commutator relations as a, b, c,d.) It is convenient to think of L, as a vector space
of dimension 2 over Z,. Since (c¢,d) + L is a characteristic subring, we can now
divide the current situation up into three subcases: pc, pd are linearly independent;
pe, pd span a space of dimension 1; and pc = pd = 0.

If pc, pd are linearly independent then we can choose

a = a+ec+(d,
b = b+nc+6d

so that pa’ = pb' = 0. Then we can choose ¢’,d’ so that pc' = b'a’, and so L is
generated by b'a’, pd'. Hence we have the presentation

{a,b,c,d| ca,da,cb,db,dc, pa, pb, pc — ba, class 2}.

Next suppose that pc, pd span a space of dimension at most 1. Then we may
assume that pd = 0, so that

L = {a,b,c) ® (d).

The subring {(a, b, c) must have order p° and derived ring with order p, and from
the list of nilpotent Lie rings with order p® we see that (a, b, ¢) is isomorphic to one
of the following:

(a,b,c|ca, cb, pb, pe, class 2),
(a,b,c| ca, cb, pb— ba, pc, class 2),
(a,b,c|ca, cb, pb, pc — ba, class 2),
(a,b,c|ca, cb, pa, pb, class 2),

(a,b,c|ca, cb, pa — ba, pb, class 2).

These examples are fairly simple, but they illustrate the main ideas used. Some-
times the relevant automorphism groups are hard to compute. Once an automor-
phism group has been computed, then we calculate its action on the set of pre-
sentations under consideration. In these cases it was easy to compute a set of
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representatives for the orbits of the presentations under the action of the automor-
phism group, but this is sometimes a much harder problem. The methods used
here parallel one possible group theoretic approach. In the p-class two example the
group calculation is identical to the Lie ring calculation. But in the p-class 4 exam-
ple the linearity of Lie rings means that it is much easier to compute the action of
the automorphism group of A on the set of presentations for L than it would be in
groups.

7 Isoclinism families

We use the determination (and linear ordering) of the isoclinism families provided
by Easterfield [12]. While it would technically be possible to verify his division into
isoclinism families using the algorithm of James, Newman, and O’Brien [21], we see
little merit in doing this: the completeness of the list is established using Theorem
2, and hence its organisation into isoclinism families does not impact on its overall
accuracy. In Table 2 we record the corrected number of groups in each family.

As one example of the computations involved, we consider ®15; our results agree
with Easterfield [12] and Pilyavskaya [29], but differ from James [20].

Each group in this family is a 4-generator group with p-class 2. Its central
quotient is the elementary abelian group with order p* which has p-covering group
P with order p'*. The defining generators of P are labelled ay, ...,as. We choose
the defining commutator relations for the family to be a5 = [az, a1] = [a4,a3],a6 =
[as, a1], a§ = [a4, az] with all other commutators trivial; w is a primitive root mod
p. Each member of this family is a quotient of

(a1,...,a10 | a5 =[az,a1] = [a4,a3], ag = [a3,a1], ag = [as,az],
a7 = a¥,ag = ab, a9 = af,a19 = df)).

For this group the relevant quotient of its automorphism group has order 2(p* —
D(p* - p?).

If G is a group in this family, then G? has rank 0, 1 or 2 and we use the rank of
this subgroup to help classify the individual groups in the family. For each group,
al = ag’ a'g", i =1,...,4, and we refer to the 2 x 4 matrix of these values as the
exponent matriz. The individual groups in this family are determined by the orbits
of A on the exponent matrices.

Power relations for the p + 3 groups together with other relevant information
is summarised in Table 3. The column ‘Stabiliser Order’ records the order of the

subgroup of GL(4, p) which stabilises the subgroup factored from P.

Group Defining Relations Stabiliser Order Rank of GP
al | ab | af | af
1 9 R 2(p* - 1)(p* - p?) 0
2 as | o | 0 | ¢ 2p°(p—1) 1
3 as ag 19 0] 2 2
4 as g | ¢ | ag 2(p* — p?) 2
5 as o | ¢ | az” | 200 - p?) 2
6..p+3 | asag | o | 0o |af | 202(0—1) 2

Table 3: Presentations and other information for ®q5

In the last row « and 8 are solutions of the equations

wa? —w? =2 =kBfork=0,....p—1, k#+2w.
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Family Number of groups

1 11
2 31
3 32
4 3p + 32
5 7
6 2p + 21

7 21
8 p+5
9 3ged(p—1,3)+7
10 3ged(p—1,4) +3ged(p—1,3) +4
11 2p+10
12 p+13
13 p+10
14 3
15 p+3
16 p+ged(p—1,3) +12
17 ged(p—1,3) +4p+30
18 3p+gedip—1,3) +ged(p—1,4) +9
19 (3p* +10p+21)/2
20 5p+ged(p—1,3) + ged(p — 1,4) + 13
21 (3p® +4p +5)/2
22 7
23 p+4ged(p—1,3) +ged(p—1,4)+5
24 ged(p—1,3) +3
25 (p+3)/2
26 (p+3)/2
27 ged(p —1,3) + ged(p —1,4) + 3
28 p
29 p
30 2gcd(p—1,3) +4
31 7
32 5
33 6
34 3
35 ged(p—1,4) +2
36 ged(p—1,4) + ged(p—1,6) + 1
37 ged(p—1,4) +4
38 ged(p—1,4) + ged(p—1,5) +p
39 p+ged(p—1,5) +ged(p—1,6)
40 ged(p—1,3) +2
41 ged(p—1,3)+1
42 p+1
43 p

Table 2: Numbers for isoclinism families
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8 The database

The groups with order 64 and 729 are already available in electronic form in the
SMALLGROUPS library described in Besche et al. [6]. They can be accessed through
the computer algebra systems GAP [14] and MAGMA [T7].

Recently a database for the groups with order dividing p® for p > 5 has been
prepared by Eick and Girnat.

Both proofs of Theorem 1 provide parameterised presentations for the groups
with order p8, for p > 7. However, the presentations obtained by applying the
Baker-Campbell-Hausdorff formula to the product presentations are sometimes
more complicated. Further, in some families certain congruences have been solved
explicitly by Easterfield [12].

Hence, the database is based on a corrected version of Easterfield’s list, and the
linear ordering employed is very close to his. It differs only in the addition of groups
in @;3, in using the James presentations for the groups in ®19, and a small number
of typographical amendments.

Each group with order p° is described by a power-commutator presentation on 6
generators and 21 relations: 15 are commutator relations and 6 are power relations.
Each presentation has the prime p as a parameter. The additional (at most two)

parameters run though a small number of subsets of [0, ...,p — 1]; the number can
be made independent of p. Examples include [1,w] where w is a (fixed) primitive
root and transversals of cubes in the multiplicative group of [1,...,p — 1] mod p.

There are also some more subtle invariants corresponding to ovals in the affine plane
over the field of p elements. Sometimes the parameter range depends on the residue
of the prime modulo 4.

For example, the parameterised presentation

{ai,...,a6 | [a2,01] = a4,[a3,a1] = af, [a3,a2] = a5, [a4,a1] = as,

[a47a2] = a67a11) = a’gaa’g = agaG}:

where £ is arbitrary and n € {1,...,(p—1)/2} describes p(p — 1)/2 different groups
with order p®. A more complex example is the following;:

{a1,.-.,a6 | [a2,a1] = as3,[a3,a1] = a4, [as, a2] = as,[as,a1] = ag,

[w +1 p _ —£+1
, 0y = Qalg "},

[a57a2] = a(;l 70}1} = ag}aﬁ?n
where ¢2 —w™n?2 =i fori=1,...,p— 1. (All relations whose right-hand sides are
trivial are not shown.)

The database contains about 500 parametrised presentations, most of these have
p as the only parameter. The precise number is not significant as it depends on
decisions about the fine structure of the underlying classification. The database also
has functions for accessing subsets of the corresponding groups. In particular, we
provide a function which given a prime p > 5 produces a complete and irredundant
list of presentations for the groups with order p®. Further, the groups in a particular

isoclinism family or having a particular parent can be listed.

9 Accuracy of results

We now comment on some of the steps taken to ensure that the enumeration and
the resulting database are accurate.

Observe that the primes can be partitioned according to the values of the residues
which occur in the formula of Theorem 1. The ged(p — 1, 5) factor enters only from
the count of maximal class groups with order p%; these groups were independently
classified by Blackburn [5]. Hence, for the remaining groups with order p%, the
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primes can be classified according to the residue classes of p — 1 modulo 3 and 4:
representative primes are 5,7,11,13.

The p-group generation algorithm is implemented both as a stand-alone program
and in GAP and MAGMA. This allowed us to determine presentations for all the
groups with order p® explicitly for primes p up to 13. We used it in conjunction
with the enumeration algorithm of Eick & O’Brien [13] to verify Theorem 1 for all
primes up to 23.

We also computed invariants, such as the structure of lower central series, for
each group. With a moderate set of invariants, the groups can be divided into a
large number of bins; the groups in each bin are very similar in structure and we now
decide isomorphism among the remaining groups. Influenced by our observation on
representative primes, we used invariant calculations and the isomorphism algorithm
of O’Brien [28] to demonstrate that the database list is complete and irredundant
for p < 13.

A useful check is to compare different determinations. Easterfield compared
many of his results against those of Potron; the one serious error occurs in an
isoclinism family (®;3) which Potron missed. Pilyavskaya compared her work with
that of James. We have compared our results with those of earlier workers and
those from our different approaches. In particular, we established a correspondence
for primes at most 13 between the corrected version of Easterfield’s list and the list
obtained from the application of the Baker-Campbell-Hausdorff technique to the
product presentations for nilpotent Lie rings.
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