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Abstract

The number of groups of a given order is a fascinating function. We report on

its known values, discuss some of its properties, and study some related functions.

1 Introduction

How many distinct abstract groups have a given finite order n? We shall call this
number the group number of n, and denote it by gnu(n). Given the long history of
group constructions, a study initiated by Cayley [4] in 1854, it is perhaps surprising
that only in this decade has a sizeable table of group numbers become available.

The table in the appendix, adapted and slightly extended from that which appeared
in [2], tabulates gnu(n) for 0 < n < 2048. The next value, gnu(2048), is still not
precisely known, but it strictly exceeds 1774274116992170, which is the exact number
of groups of order 2048 that have exponent-2 class 2, and can confidently be expected
to agree with that number in its first 3 digits.

In this paper we study some properties of the gnu function. We also introduce and
study a new and related function: moa(n) is the smallest of the numbers m for which
gnu(m) = n, provided any exist. (The name abbreviates minimal order attaining a
given group number, and also honours the country in which this paper was written.)

We refer the reader to the recent survey of [2] for a detailed account of the history
of the problem. Relying on this, we do not provide extensive references to the various
contributions, usually citing only those that are immediately relevant or very recent.

After this paper was written, we learned that the recent book [3, Chapter 21]
provides a more scholarly discussion of the group number function.

2 The gnu function and multiprimality

The first thing that influences gnu(n) is the number of primes (counting repetitions) of
which n is the product. This well-known function, Ω(n), which does not seem hitherto
to have received a standard name, we call the multiprimality of n, and describe n
as prime, biprime, triprime, etc., according as its multiprimality is 1, 2, 3, etc. We
let adjectives that usually apply to numbers also apply to groups; so for example a
square-free group is one of square-free order.
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We now display gnu(n) for n at most 100 according to the multiprimality m of n,
together with what we call the estimate, which is the mth Bell number, defined as the
number of equivalence relations on a set of m objects.

1. Primes (estimate 1): gnu = 1 for

2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97.

2. Biprimes (estimate 2): gnu = 2 for

4, 6, 9, 10, 14, 21, 22, 25, 26, 34, 38, 39, 46, 49, 55, 57, 58, 62, 74, 82, 86, 93, 94

but gnu = 1 for
15, 33, 35, 51, 65, 69, 77, 85, 87, 91, 95.

3. Triprimes: (estimate 5):

8 12 18 20 27 28 30 42 44 45 50 52 63 66 68 70 75 76 78 92 98 99

5 5 5 5 5 4 4 6 4 2 5 5 4 4 5 4 3 4 6 4 5 2

4. Quadruprimes (estimate 15):

16 24 36 40 54 56 60 81 84 88 90 100
14 15 14 14 15 13 13 15 15 12 10 16

5. Quinqueprimes (estimate 52):

32 48 72 80
51 52 50 52

6. Sextiprimes (estimate 203):
64 96

267 231

These values show that when n and its multiprimality m are both small, gnu(n) does
not differ much from the estimate. We think this remarkable approximation deserves
an explanation, even though for larger numbers it ceases to hold.

Many other oddities will be noticed among the values in the table in the Appendix.
For example, is it merely a coincidence that there are three numbers n with gnu(n) =
1387, and a fourth with gnu(n) = 1388?
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3 Powerful gnus

If n is a power up to the fourth of some prime, then indeed gnu(n) equals its estimate,
except that gnu(16) = 14 rather than 15. But from the fifth power onwards the
situation is very different. We summarise the known results. In addition to those cited
in [2], the new sources are [14] and [15].

Theorem 3.1.

1. There are
51 groups of order 25,

67 of order 35

and
61 + 2p + 2 gcd(p − 1, 3) + gcd(p − 1, 4)

of order p5 for prime p ≥ 5.

2. There are
267 groups of order 26,

504 of order 36

and

3p2 + 39p + 344 + 24 gcd(p − 1, 3) + 11 gcd(p − 1, 4) + 2 gcd(p − 1, 5)

of order p6 for prime p ≥ 5.

3. There are
2328 groups of order 27,

9310 groups of order 37,

34297 groups of order 57

and

3p5 + 12p4 + 44p3 + 170p2 + 707p + 2455

+(4p2 + 44p + 291) gcd(p − 1, 3) + (p2 + 19p + 135) gcd(p − 1, 4)

+(3p + 31) gcd(p − 1, 5) + 4 gcd(p − 1, 7) + 5 gcd(p − 1, 8) + gcd(p − 1, 9)

of order p7 for prime p ≥ 7.

4. For n ≥ 8,

gnu(256) = 56092, gnu(512) = 10494213, gnu(1024) = 49487365422.
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4 Great gnus

The greatest values of gnu are those just mentioned, namely its values at powers of 2,
which dominate the others in a quite surprising way. For example, if a group is selected
at random from all the groups of order < 2048, the odds are more than 100-to-1 that it
will have order 1024. The 423171191 groups of all the other orders < 2048 are swamped
by the 49487365422 of order 1024. The vast majority, 48803495722, of the latter have
exponent-2 class 2, and it is the fact that the number of groups of this special type can
be counted without explicit construction that has enabled gnu(1024) to be precisely
calculated; an algorithm to perform this calculation is described in [7].

The asymptotic estimates of Higman [10] and Sims [17] show that the number

of groups of order pn is p2n3/27+O(n8/3). M.F. Newman (private communication) and
C. Seeley have shown that the exponent 8/3 can be reduced to 5/2. Pyber [16] has
shown that

gnu(n) ≤ n(2/27+o(1))µ(n)2 ,

as µ(n), the largest exponent in the prime-power factorization of n, tends to infinity.

5 Powerless gnus

This title refers to the group numbers for square-free orders. The results for prime
and biprime numbers are in every beginning course on group theory. There is a unique
group of each prime order (agreeing with the estimate of 1 in that case); and either one
or two groups of order pq, the number being two (which is the estimate) if and only if
either p = q, or one of p and q is congruent to 1 modulo the other. The first group is
cyclic, and the second, supposing that q ≡ 1 mod p, has presentation

{A,B | 1 = Ap = Bq, A−1BA = Bk}

where k is some number having order p modulo q.
In such a case, we say that A acts on B, and call A the actor, and B the reactor.

Since replacing A by Aj (0 < j < p) replaces k by kj, which is another number having
order p (modulo q), all the possible choices for k yield the same group.

Hölder [11] generalized these results to all groups of square-free order. Namely
every such group has a presentation with a generator Ap for each prime divisor p of n,
while the generators for distinct primes p and q either commute or one (say Ap) acts
on the other (Aq) by replacing it by its kth power for some k not congruent to 1 mod q.
We shall say that “p (or Ap) acts as k on q (or Aq).”

There are some restrictions on these presentations. The same generator cannot be
both an actor and a reactor. Moreover, p can only act on q if q ≡ 1 mod p, which
condition we therefore call an opportunity (for action). Moreover, if p does act as k on
q, then k must be a number that has order p (modulo q), and as before we can replace
k by kj (0 < j < p) by replacing Aq by Aj

q. This entails that if Ap acts on several
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generators, then the value of k for one of them may be freely chosen, but then the rest
are determined (by the given group).

The groups of square-free order n = pqr . . . may therefore be specified by graphs
having a node for each of the primes p, q, r, . . ., there being an arrow (directed edge)
marked k from node p to node q just when Ap acts as k on Aq. If we replace Ap by its
jth power, then all the marks k on the arrows from node p are replaced by their jth
powers (modulo p), and so if there is only one arrow from node p, the mark on it is
unimportant, and may be omitted.

The number of possibilities for such graphs, taking the above restrictions and equiv-
alences into account, is therefore the number of groups of the given square-free order. It
is completely determined by specifying the opportunities for action among the primes
p, q, r, . . ., namely which of them are congruent to 1 modulo which others.

Hölder [11] summarized the results in an elegant (if somewhat opaque) formula.

Theorem 5.1.

gnu(n) =
∑

d|n

∏

p|d

(popp(p,e) − 1)

(p − 1)

where de = n and p|d and opp(p, e) is the number of opportunities for p to act on the
primes dividing e.

Murty & Murty [12] generalized this to count all the groups of any prescribed order
whose Sylow subgroups are all cyclic. Their result is the following.

Theorem 5.2. The number of groups of order n, all of whose Sylow subgroups are
cyclic, is:

∑

d|n

∏

pα|d

(

α
∑

j=1

(popp(pj ,e) − popp(pj−1,e)

p(j−1)(p − 1)

)

where α is the largest power of p dividing d, de = n, gcd(d, e) = 1, and p|d, and now

popp(pj ,e) =
∏

q|m

gcd(pj, q − 1)

where p and q denote primes and j is a positive integer.

6 All triprime groups

It is well-known that gnu(p3) = 5, the estimate. For square-free triprimes pqr, where
we may assume p < q < r, the results are:

No opportunity 1 group
Just one opportunity 2 groups
Two consecutive opportunities 3 groups
Two inward opportunities 4 groups
Two outward opportunities p + 2 groups
Three opportunities p + 4 groups
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To interpret and explain these results, it suffices to draw the possible opportunity
graphs, having an arrow from p to q when p has the opportunity to act on q, and then
to indicate the different ways for some of these opportunities to be seized. Such graphs
also appear in [13]. The opportunity graphs for groups of order pqr appear in Figure 1.

For the remaining triprimes n = pq2, Hölder found that gnu(n) is:

2 if we have none of p|q − 1, p|q + 1, q|p − 1;
3 if both p, q > 2 and p|q + 1;
4 if p > 3, q|p − 1, but not q2|p − 1;
5 if p = 2 < q or p = 3, q = 2 or q2|p − 1; and finally

(p + 9)/2 if p is odd and divides q − 1.

7 The baby gnus

It is not hard to prove the following theorems, which together find all the numbers n
for which gnu(n) ≤ 4.

We list first the form of n where letters represent distinct primes and any repeated
prime is explicitly shown. Thus “form pqr . . .” means square-free. Recall that if primes
p and q both divide n, we call the condition p|(q − 1) an opportunity, in which p is the
actor and q the reactor; if p2 also divides n, then p2|(q− 1) is a double-opportunity and
q|(p2 − 1) a half-opportunity.

Theorem 7.1. gnu(n) = 1 if and only if n is a square-free number with no opportunity.

This condition is equivalent to the coprimality of n with its Euler function φ(n).

Theorem 7.2. gnu(n) = 2 if and only if n has:

• form pqr . . . with just one opportunity;

• form p2qr . . . with no opportunity or half-opportunity.

Theorem 7.3. gnu(n) = 3 if and only if n has:

• form pqr . . . and just two consecutive opportunities;

• form p2qr . . . with one half-opportunity but no opportunity.

Theorem 7.4. gnu(n) = 4 if and only if n has:

• form pqr . . . with just two opportunities, that are either inward, disjoint, or both
have 2 as the actor;

• form p2qr . . . with no double or half-opportunity, and just one opportunity, whose
reactor is distinct from p;

• form p2q2r . . . with no opportunity or half-opportunity.

These results make it easy to compute the number of n below any reasonable bound
for which gnu(n) is at most 4. The densities of 1, 2, 3, 4 for 1 ≤ n ≤ 108 are respectively
0.285, 0.132, 0.003, 0.093. Table 1 records the number of occurrences of 1 ≤ j ≤ 10 for
n ≤ 2048.
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(i) No opportunities: 1 group

b

b

b b

b

b

1

(ii) One opportunity: 2 groups

b

b

b b

b

b b

b

b

1 1

(iii) Two consecutive opportunities: 3 groups

b

b

b b

b

b b

b

b b

b

b

1 1 1

(iv) Two inward opportunities: 4 groups

b

b

b b

b

b b

b

b b

b

b b

b

b

1 1 1 1

(v) Two outward opportunities: p + 2 groups

b

b

b b

b

b b

b

b b

b

b b

b

b

1 1 1 p − 1

(vi) Three opportunities: p + 4 groups

b

b

b b

b

b b

b

b b

b

b b

b

b b

b

b b

b

b

1 1 1 1 1 p − 1

Figure 1: Opportunity graphs for groups of order pqr
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j Number

1 656
2 393
3 11
4 232
5 102
6 62
7 4
8 14
9 12

10 39

Table 1: Occurrences of small values for n ≤ 2048

8 Hunting gnus and moas

We now formulate the gnu-hunting conjecture.

Conjecture 8.1. Every positive integer is a group number.

For the history of this conjecture see [3, §21.6]. It seems very likely that every
number is a value of gnu(n) for some square-free n, as has been conjectured by R.
Keith Dennis [6]. He has established this for all numbers up to 10000000.

What is the next term in the sequence 1, 4, 75, 28, 8, 42? This is, of course, the moa
sequence: there is 1 group of order 1, 2 of order 4, 3 of order 75, 4 of order 28, and
so on. The required answer is therefore 375, since that is the smallest order for which
there are exactly 7 groups.

It is distinctly harder to hunt moas than gnus, since to show that moa(n) = m
one must not only verify that there are exactly m groups of order n, but show that no
order smaller than n has exactly this number of groups. Table 2 lists the moa values
we know up to moa(100) = 3822, together with our guesses about the rest.

The known answers, say moa(g) = m, when not less than 2048, were found by
computing, for each number n < m, either the exact value of gnu(n) or showing that
it exceeds g. We used four methods to find (lower bounds for) gnu(n).

1. If gnu(d) is known for each divisor d of some number n, then, by the inclusion-
exclusion method, the number of indecomposable groups for each such divisor can
also be computed, and one lower bound for gnu(n) is obtained by multiplying
such numbers over various factorizations of n. (Recall that a decomposable group
is one that can be expressed as a non-trivial direct product.)

2. The formula of [12] for the number of groups of given order that have cyclic
Sylow subgroups can be supplemented by estimates for those that don’t; thence
we obtain another useful bound.
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+0 +1 +2 +3 +4 +5 +6 +7 +8 +9

0 1 4 75 28 8 42 375 510 308

10 90 140 88 56 16 24 100 675 156 1029

20 820 1875 6321 294 546 2450 2550 1210 2156 1380

30 270 ?11774 630 ?163293 450 616 612 180 1372 264

40 280 420 176 112 392 108 252 120 2730 300

50 72 32 48 656 272 162 500 168 4650 6875

60 378 312 702 3630 1596 ?59150 588 243 882 1215

70 4100 3660 1638 ?9139263 ?26010 2420 2964 1092 ?51772 3612

80 6050 6820 ?126945 ?16807 2394 ?35322 ?18620 ?34914 2028 4140

90 ?13300 ?12324 ?24990 ?23460 ?28308 ?85484 6930 6498 4950 1188

100 3822

Table 2: Values and guesses for the moa function

3. If the number is cubefree, we use the group construction package CubeFree of
Dietrich & Eick [5] to count explicitly the number of groups of this order.

4. Otherwise, the groups of order n can be explicitly enumerated by the GrpConst

package of Besche & Eick [1] until all (or enough to establish a sufficient lower
bound) are found.

The last two options can be expensive and are only practical for limited ranges: for
those cubefree numbers n ∈ {2048, . . . , 163293} that gave lower bounds at most 30, we
successfully calculated gnu(n) using the CubeFree package in GAP [8].

The guesses in Table 2 are prefixed by “?”. For 83, the guess is 75; for 73, it is
the smallest square-free integer having this value of gnu; all our other guesses are the
smallest cubefree possibilities.

9 Good gnus and bad gnus

Is there any hope of proving the gnu-hunting conjecture? We address Dennis’ stronger
form that every number arises as gnu(n) for some square-free n.

Hölder’s formula for the group number of a square-free number pqr . . . is a sum of
products of powers of the primes p, q, r, . . ., of which it is composed. For example, as
we saw in Section 6, when p < q < r, the value of gnu(pqr) is 1, 2, 3, 4, p + 2 or p + 4
according to the number and nature of the opportunities among p, q, r.

A reason one can still hope to prove the conjecture is that as well as the bad forms
(like p + 2 and p + 4 above) that involve unknown primes, there are good ones (like
1, 2, 3, 4 above) that don’t. It seems likely that the latter type already suffice to prove
the conjecture.

Let n = pqr . . . be the prime factorization of a square-free number, for which we
are given only the opportunities for action among the primes p, q, r, . . ..

We say that gnu is good at pqr . . ., or loosely that the expression gnu(pqr . . .) is
a good gnu, if its value is a constant that does not depend on the particular primes
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involved. The bad gnus are those expressions gnu(pqr . . .) for which some prime, p say,
has a number k > 1 of opportunities to act, since then the number of cases in which it
seizes those opportunities involves the factor (p − 1)k−1.

The opportunity graph for a good gnu, having at most one arrow leading from any
node, must therefore be a forest based on the primes involved – we call it the primeval
forest – consisting of rooted trees (the roots corresponding to the primes that have
no opportunities for action). We define the uprooted forest to be the smaller forest
obtained from the primeval one by removing the roots of all these trees, along with
the edges that led to them, and then also removing the arrowheads on any edges that
remain.

The following surprising result is remarkably easy to prove.

Theorem 9.1. The value of a good gnu expression gnu(pqr . . .) depends only on the
shape of the uprooted forest. In particular, it is independent of the number and ar-
rangement of the roots, and of the directions of the arrows on any of the remaining
edges.

Proof. Since each prime has at most one opportunity for action, the groups correspond
in a one-to-one manner to the possible sets of acting primes, and these sets are just the
independent subsets of the uprooted forest, whose definition doesn’t need the directions
of its edges. (An independent subset of the vertices of a graph is a set that does not
contain both endpoints of any edge.)

For gnu-hunters, this theorem is an unfortunate one, since it forces many different
numbers to yield just one value of gnu. It implies, for instance, that the four primeval
trees of Figure 2 all give the same gnu value of 14.

Figure 2: Primeval forests

The theorem has an interesting corollary.

Corollary 9.2. The set of values of good gnus (of square-free numbers) is closed under
multiplication.

Proof. The number of independent sets in a forest is the product of those numbers for
its component trees. Any forest can be realised since Dirichlet’s Theorem [9, p. 13]
implies that any shape of tree can be realised by a square-free number with arbitrarily
large prime divisors.
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Now the number of independent sets for a tree with e edges varies in the range from
fe+3 (the (e + 3)-rd Fibonacci number) to 2e + 1. The numbers in the first few cases
are the following.

0 edges: 2
1 edge: 3
2 edges: 5
3 edges: 8, 9
4 edges: 13, 14, 17
5 edges: 21, 22, 23, 24, 26, 33
6 edges: 34, 35, 36, 37, 38, 40, 41, 43, 44, 50, 65
7 edges: 55, 57 − 62, 64 − 66, 68 − 70, 76, 77, 80, 83, 84, 98, 129
8 edges: 89, 92 − 102, 104 − 110, 112 − 114, 116, 118, 120 − 122,

124, 126, 128, 133, 134, 145, 148, 149, 152, 163, 164, 194, 257

These results imply that any product of the displayed numbers is the value of gnu(n)
for infinitely many square-free numbers n. However, the observant reader will notice
that the numbers 7, 11, 19, 29, 31, . . . are missing. These do not arise as “good gnus” of
any square-free numbers.

This might not matter. Dennis (see [3, §21.6]) lists 508 numbers that he conjectures
are the only ones missing from the continued form of the above table, and he has verified
that each of these is the (bad) gnu of some square-free number. All that remains is to
prove that this list is complete!

We have already mentioned that the first 10 million integers are values of gnu; it is
not hard to prove that every number whose prime factors are all smaller than 140 is of
the form gnu(n) for infinitely many numbers n.

10 Galloping gnus

Recall that a number n is traditionally called perfect, abundant, or deficient according
as the sum of its proper divisors equals, exceeds, or falls short of n. We mirror this
by calling a number n group-perfect, group-abundant, or group-deficient according as
gnu(n) = n, gnu(n) > n, or gnu(n) < n.

Murty & Murty [12] prove that gnu(n) ≤ φ(n) for square-free n, and so all square-
free numbers greater than 1 are group-deficient. We do not know if there is any
group-perfect number other than 1, but there are plenty of group-abundant ones, for
instance all numbers of the form 1024n below 49487365422. However, it seems that
the proportion of group-abundant numbers gradually falls to zero.

Again, we do not know if there is any group-amicable pair of numbers (that is,
m > n with gnu(m) = n and gnu(n) = m). A negative answer would follow from the
galloping gnus conjecture which we now formulate:

Conjecture 10.1. For every positive integer n, the sequence

n 7−→ gnu(n) 7−→ gnu2(n) = gnu(gnu(n)) 7−→ gnu3(n) 7−→ . . .
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consists ultimately of 1s.

To check this for all starting numbers n < 2048 it suffices to follow the 47 group-
abundant numbers among them. We do this in Table 3 in descending order of gnu2 ex-
cept that we have omitted two more numbers 48, 448 with gnu2 = 5; also 160, 432, 832,
1408, 1458, 1920, 2016 with gnu2 = 4; also 96, 288, 1088, 1296 with gnu2 = 2; and finally
17 further numbers with gnu2 = 1. In fact every number less than 2048 reaches 1 after
at most 5 steps.

672 7−→ 1280 7−→ 1116461 7−→ 1
1024 7−→ 49487365422 7−→ 240 7−→ 208 7−→ 51 7−→ 1
720 7−→ 840 7−→ 186 7−→ 6 7−→ 2 7−→ 1
320 7−→ 1640 7−→ 68 7−→ 5 7−→ 1
384 7−→ 20169 7−→ 67 7−→ 1
128 7−→ 2328 7−→ 64 7−→ 267 7−→ 1
960 7−→ 11394 7−→ 60 7−→ 13 7−→ 1
864 7−→ 4725 7−→ 51 7−→ 1
1344 7−→ 11720 7−→ 49 7−→ 2 7−→ 1
1440 7−→ 5958 7−→ 16 7−→ 14 7−→ 2 7−→ 1
1248 7−→ 1460 7−→ 15 7−→ 1
256 7−→ 56092 7−→ 11 7−→ 1
1728 7−→ 47937 7−→ 6 7−→ 2 7−→ 1
512 7−→ 10494213 7−→ 5 7−→ 1
1536 7−→ 408641062 7−→ 4 7−→ 2 7−→ 1
1664 7−→ 21507 7−→ 2 7−→ 1
1280 7−→ 1116461 7−→ 1

Table 3: Verifying the galloping gnu conjecture
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A The number of groups for each order < 2048

+0 +1 +2 +3 +4 +5 +6 +7 +8 + 9

0 1 1 1 2 1 2 1 5 2

10 2 1 5 1 2 1 14 1 5 1

20 5 2 2 1 15 2 2 5 4 1

30 4 1 51 1 2 1 14 1 2 2

40 14 1 6 1 4 2 2 1 52 2

50 5 1 5 1 15 2 13 2 2 1

60 13 1 2 4 267 1 4 1 5 1

70 4 1 50 1 2 3 4 1 6 1

80 52 15 2 1 15 1 2 1 12 1

90 10 1 4 2 2 1 231 1 5 2

100 16 1 4 1 14 2 2 1 45 1

110 6 2 43 1 6 1 5 4 2 1

120 47 2 2 1 4 5 16 1 2328 2

130 4 1 10 1 2 5 15 1 4 1

140 11 1 2 1 197 1 2 6 5 1

150 13 1 12 2 4 2 18 1 2 1

160 238 1 55 1 5 2 2 1 57 2

170 4 5 4 1 4 2 42 1 2 1

180 37 1 4 2 12 1 6 1 4 13

190 4 1 1543 1 2 2 12 1 10 1

200 52 2 2 2 12 2 2 2 51 1

210 12 1 5 1 2 1 177 1 2 2

220 15 1 6 1 197 6 2 1 15 1

230 4 2 14 1 16 1 4 2 4 1

240 208 1 5 67 5 2 4 1 12 1

250 15 1 46 2 2 1 56092 1 6 1

260 15 2 2 1 39 1 4 1 4 1

270 30 1 54 5 2 4 10 1 2 4

280 40 1 4 1 4 2 4 1 1045 2

290 4 2 5 1 23 1 14 5 2 1

300 49 2 2 1 42 2 10 1 9 2

310 6 1 61 1 2 4 4 1 4 1

320 1640 1 4 1 176 2 2 2 15 1

330 12 1 4 5 2 1 228 1 5 1

340 15 1 18 5 12 1 2 1 12 1

350 10 14 195 1 4 2 5 2 2 1

360 162 2 2 3 11 1 6 1 42 2

370 4 1 15 1 4 7 12 1 60 1

380 11 2 2 1 20169 2 2 4 5 1

390 12 1 44 1 2 1 30 1 2 5

400 221 1 6 1 5 16 6 1 46 1

410 6 1 4 1 10 1 235 2 4 1

420 41 1 2 2 14 2 4 1 4 2

430 4 1 775 1 4 1 5 1 6 1

440 51 13 4 1 18 1 2 1 1396 1

450 34 1 5 2 2 1 54 1 2 5

460 11 1 12 1 51 4 2 1 55 1

470 4 2 12 1 6 2 11 2 2 1

480 1213 1 2 2 12 1 261 1 14 2

490 10 1 12 1 4 4 42 2 4 1
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+0 +1 +2 +3 +4 +5 +6 +7 +8 + 9

500 56 1 2 1 202 2 6 6 4 1

510 8 1 10494213 15 2 1 15 1 4 1

520 49 1 10 1 4 6 2 1 170 2

530 4 2 9 1 4 1 12 1 2 2

540 119 1 2 2 246 1 24 1 5 4

550 16 1 39 1 2 2 4 1 16 1

560 180 1 2 1 10 1 2 49 12 1

570 12 1 11 1 4 2 8681 1 5 2

580 15 1 6 1 15 4 2 1 66 1

590 4 1 51 1 30 1 5 2 4 1

600 205 1 6 4 4 7 4 1 195 3

610 6 1 36 1 2 2 35 1 6 1

620 15 5 2 1 260 15 2 2 5 1

630 32 1 12 2 2 1 12 2 4 2

640 21541 1 4 1 9 2 4 1 757 1

650 10 5 4 1 6 2 53 5 4 1

660 40 1 2 2 12 1 18 1 4 2

670 4 1 1280 1 2 17 16 1 4 1

680 53 1 4 1 51 1 15 2 42 2

690 8 1 5 4 2 1 44 1 2 1

700 36 1 62 1 1387 1 2 1 10 1

710 6 4 15 1 12 2 4 1 2 1

720 840 1 5 2 5 2 13 1 40 504

730 4 1 18 1 2 6 195 2 10 1

740 15 5 4 1 54 1 2 2 11 1

750 39 1 42 1 4 2 189 1 2 2

760 39 1 6 1 4 2 2 1 1090235 1

770 12 1 5 1 16 4 15 5 2 1

780 53 1 4 5 172 1 4 1 5 1

790 4 2 137 1 2 1 4 1 24 1

800 1211 2 2 1 15 1 4 1 14 1

810 113 1 16 2 4 1 205 1 2 11

820 20 1 4 1 12 5 4 1 30 1

830 4 2 1630 2 6 1 9 13 2 1

840 186 2 2 1 4 2 10 2 51 2

850 10 1 10 1 4 5 12 1 12 1

860 11 2 2 1 4725 1 2 3 9 1

870 8 1 14 4 4 5 18 1 2 1

880 221 1 68 1 15 1 2 1 61 2

890 4 15 4 1 4 1 19349 2 2 1

900 150 1 4 7 15 2 6 1 4 2

910 8 1 222 1 2 4 5 1 30 1

920 39 2 2 1 34 2 2 4 235 1

930 18 2 5 1 2 2 222 1 4 2

940 11 1 6 1 42 13 4 1 15 1

950 10 1 42 1 10 2 4 1 2 1

960 11394 2 4 2 5 1 12 1 42 2

970 4 1 900 1 2 6 51 1 6 2

980 34 5 2 1 46 1 4 2 11 1

990 30 1 196 2 6 1 10 1 2 15
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+0 +1 +2 +3 +4 +5 +6 +7 +8 + 9

1000 199 1 4 1 4 2 2 1 954 1

1010 6 2 13 1 23 2 12 2 2 1

1020 37 1 4 2 49487365422 4 66 2 5 19

1030 4 1 54 1 4 2 11 1 4 1

1040 231 1 2 1 36 2 2 2 12 1

1050 40 1 4 51 4 2 1028 1 5 1

1060 15 1 10 1 35 2 4 1 12 1

1070 4 4 42 1 4 2 5 1 10 1

1080 583 2 2 6 4 2 6 1 1681 6

1090 4 1 77 1 2 2 15 1 16 1

1100 51 2 4 1 170 1 4 5 5 1

1110 12 1 12 2 2 1 46 1 4 2

1120 1092 1 8 1 5 14 2 2 39 1

1130 4 2 4 1 254 1 42 2 2 1

1140 41 1 2 5 39 1 4 1 11 1

1150 10 1 157877 1 2 4 16 1 6 1

1160 49 13 4 1 18 1 4 1 53 1

1170 32 1 5 1 2 2 279 1 4 2

1180 11 1 4 3 235 2 2 1 99 1

1190 8 2 14 1 6 1 11 14 2 1

1200 1040 1 2 1 13 2 16 1 12 5

1210 27 1 12 1 2 69 1387 1 16 1

1220 20 2 4 1 164 4 2 2 4 1

1230 12 1 153 2 2 1 15 1 2 2

1240 51 1 30 1 4 1 4 1 1460 1

1250 55 4 5 1 12 2 14 1 4 1

1260 131 1 2 2 42 3 6 1 5 5

1270 4 1 44 1 10 3 11 1 10 1

1280 1116461 5 2 1 10 1 2 4 35 1

1290 12 1 11 1 2 1 3609 1 4 2

1300 50 1 24 1 12 2 2 1 18 1

1310 6 2 244 1 18 1 9 2 2 1

1320 181 1 2 51 4 2 12 1 42 1

1330 8 5 61 1 4 1 12 1 6 1

1340 11 2 4 1 11720 1 2 1 5 1

1350 112 1 52 1 2 2 12 1 4 4

1360 245 1 4 1 9 5 2 1 211 2

1370 4 2 38 1 6 15 195 15 6 2

1380 29 1 2 1 14 1 32 1 4 2

1390 4 1 198 1 4 8 5 1 4 1

1400 153 1 2 1 227 2 4 5 19324 1

1410 8 1 5 4 4 1 39 1 2 2

1420 15 4 16 1 53 6 4 1 40 1

1430 12 5 12 1 4 2 4 1 2 1

1440 5958 1 4 5 12 2 6 1 14 4

1450 10 1 40 1 2 2 179 1 1798 1

1460 15 2 4 1 61 1 2 5 4 1

1470 46 1 1387 1 6 2 36 2 2 1

1480 49 1 24 1 11 10 2 1 222 1

1490 4 3 5 1 10 1 41 2 4 1
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+0 +1 +2 +3 +4 +5 +6 +7 +8 + 9

1500 174 1 2 2 195 2 4 1 15 1

1510 6 1 889 1 2 2 4 1 12 2

1520 178 13 2 1 15 4 4 1 12 1

1530 20 1 4 5 4 1 408641062 1 2 60

1540 36 1 4 1 15 2 2 1 46 1

1550 16 1 54 1 24 2 5 2 4 1

1560 221 1 4 1 11 1 30 1 928 2

1570 4 1 10 2 2 13 14 1 4 1

1580 11 2 6 1 697 1 4 3 5 1

1590 8 1 12 5 2 2 64 1 4 2

1600 10281 1 10 1 5 1 4 1 54 1

1610 8 2 11 1 4 1 51 6 2 1

1620 477 1 2 2 56 5 6 1 11 5

1630 4 1 1213 1 4 2 5 1 72 1

1640 68 2 2 1 12 1 2 13 42 1

1650 38 1 9 2 2 2 137 1 2 5

1660 11 1 6 1 21507 5 10 1 15 1

1670 4 1 34 2 60 2 4 5 2 1

1680 1005 2 5 2 5 1 4 1 12 1

1690 10 1 30 1 10 1 235 1 6 1

1700 50 309 4 2 39 7 2 1 11 1

1710 36 2 42 2 2 5 40 1 2 2

1720 39 1 12 1 4 3 2 1 47937 1

1730 4 2 5 1 13 1 35 4 4 1

1740 37 1 4 2 51 1 16 1 9 1

1750 30 2 64 1 2 14 4 1 4 1

1760 1285 1 2 1 228 1 2 5 53 1

1770 8 2 4 2 2 4 260 1 6 1

1780 15 1 110 1 12 2 4 1 12 1

1790 4 5 1083553 1 12 1 5 1 4 1

1800 749 1 4 2 11 3 30 1 54 13

1810 6 1 15 2 2 9 12 1 10 1

1820 35 2 2 1 1264 2 4 6 5 1

1830 18 1 14 2 4 1 117 1 2 2

1840 178 1 6 1 5 4 4 1 162 2

1850 10 1 4 1 16 1 1630 2 2 2

1860 56 1 10 15 15 1 4 1 4 2

1870 12 1 1096 1 2 21 9 1 6 1

1880 39 5 2 1 18 1 4 2 195 1

1890 120 1 9 2 2 1 54 1 4 4

1900 36 1 4 1 186 2 2 1 36 1

1910 6 15 12 1 8 1 4 5 4 1

1920 241004 1 5 1 15 4 10 1 15 2

1930 4 1 34 1 2 4 167 1 12 1

1940 15 1 2 1 3973 1 4 1 4 1

1950 40 1 235 11 2 1 15 1 6 1

1960 144 1 18 1 4 2 2 2 203 1

1970 4 15 15 1 12 2 39 1 4 1

1980 120 1 2 2 1388 1 6 1 13 4

1990 4 1 39 1 2 5 4 1 66 1
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+0 +1 +2 +3 +4 +5 +6 +7 +8 + 9

2000 963 1 8 1 10 2 4 4 12 2

2010 12 1 4 2 4 2 6538 1 2 2

2020 20 1 6 2 46 63 2 1 88 1

2030 12 1 42 1 10 2 5 5 2 1

2040 175 2 2 2 11 1 12 1
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