Local Representation Theory of Finite Groups and Cyclotomic Algebras

Michel Broué

Institut de Mathématiques de Jussieu

January 2010

Michel Broué Local Representation Theory of Finite Groups and Cyclotomic

Local Group Theory

• Feit-Thompson, 1963

If G is a non abelian simple finite group, then 2 | |G|.

• Cauchy (1789–1857) If $\ell \mid |G|$, there are non trivial ℓ -subgroups in G.

• Sylow, 1872

The maximal ℓ -subgroups of G are all conjugate under G.

Assume $P \subset S$ and $P \subset S'$. There is $g \in G$ such that $S' = S^g$ $(=g^{-1}Sg)$, hence

$$P \subset S$$
 and ${}^{g}P(=gPg^{-1}) \subset S$.

This is a fusion.

The Frobenius Category

 $\operatorname{Frob}_{\ell}(G)$:

- Objects : the ℓ -subgroups of G,
- Hom $(P, Q) := \{g \in G \mid ({}^g P \subset Q)\}/C_G(P).$

Note that $\operatorname{Aut}(P) = N_G(P)/C_G(P)$.

Alperin's fusion theorem (1967) says essentially that $\operatorname{Frob}_{\ell}(G)$ is known as soon as the automorphisms of some of its objects are known.

Main question of local group theory

How much is known about G from the knowledge (up to equivalence of categories) of $Frob_{\ell}(G)$?

Well, certainly not more than $G/O_{\ell'}(G)$!

(where $O_{\ell'}(G)$ denotes the largest normal subgroup of G of order not divisible by ℓ)

Indeed, $O_{\ell'}(G)$ disappears in the Frobenius category, since, for P an ℓ -subgroup,

 $O_{\ell'}(G) \cap N_G(P) \subseteq C_G(P)$.

But perhaps all of $G/O_{\ell'}(G)$?

Control subgroup

Let H be a subgroup of G. The following conditions are equivalent :

(i) The inclusion $H \hookrightarrow G$ induces an equivalence of categories

 $\operatorname{Frob}_{\ell}(H) \xrightarrow{\sim} \operatorname{Frob}_{\ell}(G)$,

(ii) *H* contains a Sylow ℓ -subgroup of *G*, and if *P* is a ℓ -subgroup of *H* and *g* is an element of *G* such that ${}^{g}P \subseteq H$, then there is $h \in H$ and $z \in C_{G}(P)$ such that g = hz.

If the preceding conditions are satisfied, we say that H controls ℓ -fusion in G, or that H is a control subgroup in G.

The first question may now be reformulated as follows :

If H controls ℓ -fusion in G, does the inclusion $H \hookrightarrow G$ induce an isomorphism

$$H/O_{\ell'}(H) \xrightarrow{\sim} G/O_{\ell'}(G)?$$

In other words, do we have

$$G = HO_{\ell'}(G)$$
?

• Frobenius theorem, 1905

If a Sylow ℓ -subgroup S of G controls ℓ -fusion in G, then the inclusion induces an isomorphism $S \simeq G/O_{\ell'}(G)$.

• *l*-solvable groups, ?

Assume that G is ℓ -solvable. If H controls ℓ -fusion in G, then the inclusion induces an isomorphism $H/O_{\ell'}(H) \simeq G/O_{\ell'}(G)$.

• Z_{ℓ}^* -theorem (Glauberman, 1966 for $\ell = 2$, Classification for other primes)

Assume that $H = C_G(P)$ where P is an ℓ -subgroup of G. If H controls ℓ -fusion in G, then the inclusion induces an isomorphism $H/O_{\ell'}(H) \simeq G/O_{\ell'}(G)$.

But

Burnside (1852-1927)

Assume that a Sylow ℓ -subgroup S of G is abelian. Set $H := N_G(S)$. Then H controls ℓ -fusion in G. Consider the Monster, a finite simple group of order

 $2^{46} \cdot 3^{20} \cdot 5^9 \cdot 7^6 \cdot 11^2 \cdot 13^3 \cdot 17 \cdot 19 \cdot 23 \cdot 29 \cdot 31 \cdot 41 \cdot 47 \cdot 59 \cdot 71 \simeq 8.10^{53} \, .$

(predicted in 1973 by Fischer and Griess, constructed in 1980 by Griess, proved to be unique by Thompson)

and the normalizer H of one of its Sylow 11–subgroups, a group of order 72600, isomorphic to $(C_{11} \times C_{11}) \rtimes (C_5 \times SL_2(5))$ (here we denote by C_m the cyclic group of order m).

Here we have $G \neq HO_{11'}(G)$ since G is simple.

Remark : one may think of more elementary examples...

Let *K* be a finite extension of the field of ℓ -adic numbers \mathbb{Q}_{ℓ} which contains the |G|-th roots of unity. Let \mathcal{O} be the ring of integers of *K* over \mathbb{Z}_{ℓ} , with maximal ideal \mathfrak{m} and residue field $k := \mathcal{O}/\mathfrak{m}$.

Block decomposition

$$\mathcal{O}G = \bigoplus B$$
 (indecomposable algebra)
 $\downarrow \qquad \qquad \downarrow$
 $kG = \bigoplus kB$ (indecomposable algebra)

The augmentation map $\mathcal{O}G \to \mathcal{O}$ factorizes through a unique block of $\mathcal{O}G$ called *the principal block* and denoted by $(\mathcal{O}G)_0$.

Factorisation and principal block

If *H* is a subgroup of *G*, the following assertions are equivalent (i) $G = HO_{\ell'}(G)$. (ii) The map $\operatorname{Res}_{H}^{G}$ induces an isomorphism from $(\mathcal{O}G)_0$ onto $(\mathcal{O}H)_0$.

Let us re-examine the counterexamples to factorisation coming from Burnside's theorem.

Assume that a Sylow ℓ -subgroup S of G is abelian, let $H := N_G(S)$ be its normalizer.

Even if $G \neq H O_{\ell'}(G)$, it appears that there is some connection between the (representation theory of) $(\mathcal{O}G)_0$ and $(\mathcal{O}H)_0$.

SOME NUMERICAL MIRACLES

Let us consider the case $G = \mathfrak{A}_5$ and $\ell = 2$. Then we have $H \simeq \mathfrak{A}_4$.

Remark : on a larger screen, we might as well consider the above case of the Monster and of the prime $\ell = 11$.

	(1)	(2)	(3)	(5)	(5')
1	1	1	1	1	1
χ_4	4	0	1	-1	-1
χ_5	5	1	-1	0	0
<i>χ</i> з	3	-1	0	$(1 + \sqrt{5})/2$	$(1 - \sqrt{5})/2$
χ'_{3}	3	-1	0	$(1 - \sqrt{5})/2$	$(1+\sqrt{5})/2$

Table: Character table of \mathfrak{A}_5

Table: Character table of $(\mathcal{OA}_5)_0$

	(1)	(2)	(5)	(5')	(3)
1	1	1	1	1	1
χ_5	5	1	0	0	-1
<i>χ</i> з	3	-1	$(1 + \sqrt{5})/2$	$(1 - \sqrt{5})/2$	0
χ'_3	3	-1	$(1 - \sqrt{5})/2$	$(1+\sqrt{5})/2$	0

Table: Character table of $(\mathcal{O}\mathfrak{A}_4)_0$

	(1)	(2)	(3)	(3')
1	1	1	1	1
$-\alpha_3$	-3	1	0	0
$-\alpha_1$	-1	-1	$(1+\sqrt{-3})/2$	$(1 - \sqrt{-3})/2$
$-\alpha'_1$	-1	-1	$(1 - \sqrt{-3})/2$	$(1 + \sqrt{-3})/2$

A kind of generic counterexample :

$$|T| = (q - 1)^{n}$$
$$H := N_{G}(T), H/T = \mathfrak{S}_{n}$$
$$|U| = q^{\binom{n}{2}}, B = U \rtimes T$$
$$\ell \mid q - 1, \ell > n \Rightarrow S = T_{\ell}$$
$$T = S \times T_{\ell'}, H = N_{G}(S)$$

We certainly have

 $G \neq HO_{\ell'}(G)$.

Definition

A Morita equivalence between A and B is the following datum :

- an object M of _AMod_B and an object N of _BMod_A,
- two isomorphisms

 $M \otimes_B N \xrightarrow{\sim} A$ in ${}_A \mathbf{Mod}_A$ and $N \otimes_A M \xrightarrow{\sim} B$ in ${}_B \mathbf{Mod}_B$.

Given a Morita equivalence, the functors

 $M \otimes_B \bullet$ and $N \otimes_A \bullet$

are reciprocal equivalences of categories between $_A$ Mod and $_B$ Mod.

Fundamental example

Whenever $n \ge 1$ is an integer, $Mat_n(A)$ and A are Morita equivalent.

Proof.

Consider the bimodules M and N defined as follows :

- M is the set of n × 1 matrices with coefficients in A, on which Mat_n(A) acts by left multiplication and A acts by (right) multiplication,
- N is the set of 1 × n matrices with coefficients in A, on which Mat_n(A) acts by right multiplication and A acts by (left) multiplication.

Then the multiplication of matrices defines isomorphisms

$$M \otimes_A N \xrightarrow{\sim} Mat_n(A)$$
 and $N \otimes_{Mat_n(A)} M \xrightarrow{\sim} A$.

Morita equivalences and local representations

Assume

and that A and B are \mathcal{O} -algebras.

Then a Morita equivalence between A and B induces Morita equivalences

$$KA \equiv KB$$
 and $kA \equiv kB$,

via

On $GL_n(q)$ again

The principal block algebras of G and H respectively are Morita equivalent.

There exist M and N, respectively an OG-module-OH and an OH-module-OG with the following properties :

$$M \otimes_{\mathcal{O}H} N \simeq (\mathcal{O}G)_0$$
 as $\mathcal{O}G$ -module- $\mathcal{O}G$
 $N \otimes_{\mathcal{O}G} M \simeq (\mathcal{O}H)_0$ as $\mathcal{O}H$ -module- $\mathcal{O}H$

Viewed as a OG-module-OS, we have M ≃ O(G/U), *i.e.*, the functor M⊗_{OS}? is the Harish-Chandra induction.

• $M/T = \mathcal{O}(G/B)$ whose commuting algebra is the Hecke algebra $\mathcal{H}(\mathfrak{S}_n, q)$.

Definition

A Rickard equivalence between A and B is the following datum :

- an object M of $\mathcal{C}^{b}({}_{A}\mathbf{Mod}_{B})$ and an object N of $\mathcal{C}^{b}({}_{B}\mathbf{Mod}_{A})$,
- two isomorphisms

 $M \otimes_B N \xrightarrow{\sim} A$ in $\mathcal{C}^b({}_A\mathbf{Mod}_A)$ and $N \otimes_A M \xrightarrow{\sim} B$ in $\mathcal{C}^b({}_B\mathbf{Mod}_B)$.

Given a Rickard equivalence, the functors

 $M \otimes_B \bullet$ and $N \otimes_A \bullet$

are reciprocal equivalences of suitable categories.

Back to the principal 2–block of \mathfrak{A}_5

- View $(\mathcal{O}\mathfrak{A}_5)_0$ as a $\mathcal{O}\mathfrak{A}_5$ -module- $\mathcal{O}\mathfrak{A}_4$.
- Let I be the kernel of the augmentation map : $(\mathcal{OA}_5)_0 \to \mathcal{O}$.
- Let *P* denote a projective cover of *I* and consider

We set

$$M:=0\to P\to (\mathcal{OA}_5)_0\to 0$$

- a complex of $\mathcal{O}\mathfrak{A}_5$ -modules- $\mathcal{O}\mathfrak{A}_4$,
- $(\mathcal{O}\mathfrak{A}_5)_0$ in degree 0 and C in degree -1.
- and $N := M^*$.

Proposition

The pair of complexes (M, N) induces a Rickard equivalence between $(\mathcal{OA}_5)_0$ and $(\mathcal{OA}_4)_0$.

Assume that a Sylow ℓ -subgroup S of G is abelian, let $H := N_G(S)$ be its normalizer.

• (ASC) :

The algebras $(\mathcal{O}G)_0$ and $(\mathcal{O}H)_0$ are Rickard equivalent.

• (Strong ASC) :

They are Rickard equivalent in a way which is compatible with the equivalence of Frobenius categories

Which means : There is a G-equivariant collection of derived equivalences

$$\{\mathcal{E}(P) : \mathcal{D}^{b}((\mathcal{O}C_{G}(P))_{0}) \xrightarrow{\sim} \mathcal{D}^{b}((\mathcal{O}C_{H}(P))_{0})\}_{P \subseteq S}$$

compatible with Brauer morphisms.

Known to be true :

Sylow cyclic (Rickard), $G \ell$ -solvable, $G = \mathfrak{S}_n$ (Chuang-Rouquier), $G = SL_2(\ell^n)$ (Okuyama), a bunch of sporadic simple groups (the Japanese school),...

What about the nonabelian Sylow case ?

The fact that the derived category of $(\mathcal{O}G)_0$ is determined by $Frob_{\ell}(G)$ is definitely false :

There are groups G and a subgroup H such that

- ▶ the inclusion $H \subset G$ induces an equivalence $\operatorname{Frob}_{\ell}(H) \xrightarrow{\sim} \operatorname{Frob}_{\ell}(G)$,
- and yet $\mathcal{D}^b((\mathcal{O}H)_0)$ and $\mathcal{D}^b((\mathcal{O}G)_0)$ are not equivalent.

But there seem to be lots of numerical similarities between $(\mathcal{O}H)_0$ and $(\mathcal{O}G)_0$.

Case of finite reductive groups

G is a connected reductive algebraic group over $\overline{\mathbb{F}}_q$, with Weyl group W, endowed with a Frobenius–like endomorphism F. The group $G := \mathbf{G}^F$ is a finite reductive group.

Example $\mathbf{G} = \operatorname{GL}_n(\overline{\mathbb{F}}_q) , F : (a_{i,j}) \mapsto (a_{i,j}^q) , G = \operatorname{GL}_n(q)$ • Polynomial order — There is a polynomial in $\mathbb{Z}[x]$ $|\mathbb{G}|(x) = x^N \prod_d \Phi_d(x)^{a(d)}$ such that $|\mathbb{G}|(q) = |G|$.

Example

$$|\mathsf{GL}_n|(x) = x^{\binom{n}{2}} \prod_{d=1}^{d=n} (x^d - 1) = x^{\binom{n}{2}} \prod_{d=1}^{d=n} \Phi_d(x)^{[n/d]}$$

Michel Broué

Local Representation Theory of Finite Groups and Cyclotomic

• Admissible subgroups — The tori of *G* are the subgroups of the shape \mathbf{T}^{F} where \mathbf{T} is an *F*-stable torus (*i.e.*, isomorphic to some $\overline{\mathbb{F}}^{\times} \times \cdots \times \overline{\mathbb{F}}^{\times}$ in **G**).

The Levi subgroups of G are the subgroups of the shape L^F where L is a centralizer of an F-stable torus in **G**.

Examples

The split maximal torus $T_1 = (\mathbb{F}_q^{\times})^n$ of order $(q-1)^n$ The Coxeter maximal torus $T_c = \operatorname{GL}_1(\mathbb{F}_{q^n})$ of order $q^n - 1$ Levi subgroups have shape $\operatorname{GL}_{n_1}(q^{a_1}) \times \cdots \times \operatorname{GL}_{n_s}(q^{a_s})$

• Cauchy theorem — The (polynomial) order of an admissible subgroup divides the (polynomial) order of the group.

The generic Sylow theorems

For $\Phi_d(x)$ a cyclotomic polynomial, a $\Phi_d(x)$ -group is a finite reductive group whose (polynomial) order is a power of $\Phi_d(x)$. Hence such a group is a torus.

Sylow theorems

 Maximal Φ_d(x)-subgroups ("Sylow Φ_d(x)-subgroups") of G have as (polynomial) order the contribution of Φ_d(x) to the (polynomial) order of G :

$$|S_d| = |\mathbf{S}_d^{\mathsf{F}}| = \Phi_d(q)^{\mathsf{a}(d)} \,.$$

Notation : Set $L_d := C_G(S_d)$ and $N_d := N_G(S_d) = N_G(L_d)$

- Sylow $\Phi_d(x)$ -subgroups are all conjugate by *G*.
- **③** The (polynomial) index $|G: N_d|$ is congruent to 1 modulo $\Phi_d(x)$.
- W_d := N_d/L_d is a true finite group, a complex reflection group in its action on C ⊗ Y(S_d). = This is the *d*-cyclotomic Weyl group of the finite reductive group G.

Example

Recall that

$$|\mathsf{GL}_n(q)| = q^{\binom{n}{2}} \prod_{d=1}^{d=n} \Phi_d(q)^{[n/d]}$$

For each d $(1 \le d \le n)$, $GL_n(q)$ contains a subtorus of (polynomial) order $\Phi_d(x)^{\left[\frac{n}{d}\right]}$

Assume n = md + r with r < d. Then

 $L_d = \operatorname{GL}_1(q^d)^m \times \operatorname{GL}_r(q)$

$$W_d = \mu_d \wr \mathfrak{S}_m$$

Michel Broué Local Representation Theory of Finite Groups and Cyclotomic

Let ℓ be a prime number which does not divide |W|.

- If ℓ divides |G|, there is a unique integer d such that ℓ divides $\Phi_d(q)$.
- Then the Sylow ℓ -subgroups of G are nothing but the Sylow ℓ -subgroups S_{ℓ} of $S_d = \mathbf{S}_d^F$ (\mathbf{S}_d a Sylow $\Phi_d(x)$ -subgroup of \mathbf{G}).

We have

$$N_G(S_\ell) = N_d$$
 and $C_G(S_\ell) = L_d$.

hence

$$N_G(S_\ell)/C_G(S_\ell) = W_d$$
.

- $ert S_1 ert = (q-1)^n$ $W_1 = \mathfrak{S}_n$ $\ell ert q - 1, \ell > n \Rightarrow S = T_\ell$ $T = S imes T_{\ell'}, H = N_G(S)$
- $L_d/C_d = W_d$ $\ell \mid \Phi_d(q), \ell > n \Rightarrow S = (S_d)_\ell$ $S_d = (S_d)_\ell \times (S_d)_{\ell'}$

 $|S_d| = \Phi_d(q)^{a(d)}$

A finite reflection group (abbreviated frg) on K is a finite subgroup of $GL_K(V)$ (V a finite dimensional K-vector space) generated by *reflections*, *i.e.*, linear maps represented by

$$\begin{pmatrix} \zeta & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 \end{pmatrix}$$

- A finite reflection group on \mathbb{R} is called a Coxeter group.
- \bullet A finite reflection group on $\mathbb Q$ is called a Weyl group.

Main characterisation

Theorem (Shephard–Todd, Chevalley–Serre)

Let G be a finite subgroup of GL(V) (V an r-dimensional vector space over a characteristic zero field K). Let S denote the symmetric algebra of V, isomorphic to the polynomial ring $K[v_1, v_2, ..., v_r]$. The following assertions are equivalent.

- G is generated by reflections.
- The ring R := S^G of G-fixed polynomials is a polynomial ring K[u₁, u₂,..., u_r] in r homogeneous algebraically independant elements.
- S is a free *R*-module.

Then

- If d_i := deg(u_i), the family (d₁,..., d_r) is called the family of invariant degrees of G,
- and we have

$$|G|=d_1d_2\cdots d_r$$
 .

Examples

• For $G = \mathfrak{S}_r$, which acts naturally on $V = \mathbb{C}^r = \bigoplus \mathbb{C}v_i$, one may choose

$$\begin{cases} u_{1} = v_{1} + \dots + v_{r} \\ u_{2} = v_{1}v_{2} + v_{1}v_{3} + \dots + v_{r-1}v_{r} \\ \vdots & \vdots \\ u_{r} = v_{1}v_{2} \cdots v_{r} \end{cases}$$

• For $G = \langle e^{2\pi i/d} \rangle$, cyclic group of order d acting by multiplication on $V = \mathbb{C}$, we have

$$S = K[x]$$
 and $R = K[x^d]$.

Consider again the action of 𝔅_r on V = ℂ^r = ⊕ ℂv_i. Fix d ≥ 2. For each coordinate consider the reflection v_i → ζ_dv_i. We obtain the wreath product C_d ≥ 𝔅_r, generated by reflections. This group is called G(d, 1, r). For each divisor e of d, there is a normal reflection subgroup G(d, e, r) of G(d, 1, r) of index e.

- Let G ≤ SL₂(C) be finite and g ∈ G. Let ζ be an eigenvalue of g. Then ζ⁻¹g is a reflection.
 - So, if $G = \langle g_1, \ldots, g_r \rangle$, the group $\langle \zeta_1^{-1} g_1, \ldots, \zeta_r^{-1} g_r \rangle$ is an frg.
 - ▶ Note that for *G* irreducible, we have $G/Z(G) \in \{D_n, \mathfrak{A}_4, \mathfrak{S}_4, \mathfrak{A}_5\}$.
 - For example, the group

$$G := \left\langle \begin{pmatrix} 1 & 0 \\ 0 & \zeta_3 \end{pmatrix}, \frac{\sqrt{-3}}{3} \begin{pmatrix} -\zeta_3 & \zeta_3^2 \\ 2\zeta_3^2 & 1 \end{pmatrix} \right\rangle \leq \mathsf{GL}_2(\mathbb{Q}(\zeta_3)),$$

with $\zeta_3 := \exp(2\pi i/3)$, is a frg of order 72, denoted G_5 , isomorphic to $SL_2(3) \times C_3$.

We may choose

$$u_1 := v_1^6 + 20v_1^3v_2^3 - 8v_2^6\,, \quad u_2 := 3v_1^3v_2^9 + 3v_1^6v_2^6 + v_1^9v_2^3 + v_2^{12}\,,$$

with degrees $d_1 = 6$, $d_2 = 12$ (note that $d_1d_2 = 72 = |G|$).

• If $g \in SL_3(\mathbb{C})$ is an involution, then -g is a reflection. Note that \mathfrak{A}_5 , $PSL_2(7)$ and $3.\mathfrak{A}_6$ have faithful 3-dimensional representations and are generated by involutions.

Classification

- The finite reflection groups on C have been classified by Coxeter, Shephard and Todd.
 - There is one infinite series G(de, e, r) (d, e and r integers),
 - ...and 34 exceptional groups G_4 , G_5 , ..., G_{37} .
- The group G(de, e, r) (d, e and r integers) consists of all r × r monomial matrices with entries in μ_{de} such that the product of entries belongs to μ_d.
- We have

$$\begin{array}{l} G(d,1,r) \simeq C_d \wr \mathfrak{S}_r \\ G(e,e,2) = D_{2e} \quad (\text{dihedral group of order } 2e) \\ G(2,2,r) = W(\mathsf{D}_r) \\ G_{23} = H_3 \ , \ G_{28} = F_4 \ , \ G_{30} = H_4 \\ G_{35,36,37} = E_{6,7,8} \ . \end{array}$$

Let \mathcal{A} be the arrangement of reflecting hyperplanes for the crg \mathcal{G} . Set

$$V^{\operatorname{reg}} := V - \bigcup_{H \in \mathcal{A}} H.$$

The covering $V^{\text{reg}} \longrightarrow V^{\text{reg}}/G$ is Galois, hence induces a short exact sequence

Braid reflections

Let γ be a path in V^{reg} from x_0 to x_H .

We define : $\sigma_{H,\gamma} := s_H(\gamma^{-1}) \cdot \mathbf{s}_{H,x_H} \cdot \gamma$

Definition

We call *braid reflections* the elements $\mathbf{s}_{H,\gamma} \in B$ defined by the paths $\sigma_{H,\gamma}$.

The following properties are immediate.

- $\mathbf{s}_{H,\gamma}$ and $\mathbf{s}_{H,\gamma'}$ are conjugate in P.
- $\mathbf{s}_{H,\gamma}^{e_H}$ is a loop in V^{reg} :

The variety V (resp. V/G) is connected, the hyperplanes are irreducible divisors (irreducible closed subvarieties of codimension one), and the braid reflections are "generators of the monodromy" around the irreducible divisors. Then

Theorem

- The braid group B_G is generated by the braid reflections (s_{H,γ}) (for all H and all γ).
- **2** The pure braid group P_G is generated by the elements $(\mathbf{s}_{H,\gamma}^{\mathbf{e}_H})$

Artin-like presentations

An Artin-like presentation is

$$\langle \mathbf{s} \in \mathbf{S} \mid \{\mathbf{v}_i = \mathbf{w}_i\}_{i \in I} \rangle$$

where

- S is a finite set of distinguished braid reflections,
- I is a finite set of relations which are multi-homogeneous,
 - i.e., such that (for each i) \mathbf{v}_i and \mathbf{w}_i are positive words in elements of \mathbf{S}

Theorem (Bessis)

Let $G \subset GL(V)$ be a complex reflection group. Let $d_1 \leq d_2 \leq \cdots \leq d_r$ be the family of its invariant degrees.

- The following integers are equal (denoted by Γ_G) :
 - The minimal number of reflections needed to generate G
 - The minimal number of braid reflections needed to generate B_G
 - $\left[(N_r + N_h)/d_r \right]$ ($N_r :=$ number of reflections, $N_h :=$ number of hyperplanes)

2 Either $\Gamma_G = r$ or $\Gamma_G = r + 1$, and the group B_G has an Artin–like presentation by Γ_G braid reflections.

The braid diagrams

We denote by \mathcal{D}_{br} and call braid diagram the diagram which represents the relations

Note that

have same braid diagram.

е

s

For each irreducible complex irreducible group G, there is a diagram \mathcal{D} , whose set of nodes $\mathcal{N}(\mathcal{D})$ is identified with a set of distinguished reflections in G,

such that

Theorem

For each $s \in \mathcal{N}(\mathcal{D})$, there exists a braid reflection $\mathbf{s} \in B_G$ above s such that the set $\{\mathbf{s}\}_{s \in \mathcal{N}(\mathcal{D})}$, together with the braid relations of \mathcal{D}_{br} , is a presentation of B_G .

• The groups G_n for n = 4, 5, 8, 16, 20, as well as the dihedral groups, have diagrams of type $\underbrace{\bigcirc_s - \bigoplus_t^e}_{t}$, corresponding to the presentation

$$s^d = t^d = 1$$
 and $\underbrace{ststs\cdots}_{e \text{ factors}} = \underbrace{tstst\cdots}_{e \text{ factors}}$

• The group G_{18} has diagram $(5) = 3 \\ s \\ t$ corresponding to the presentation

$$s^5 = t^3 = 1$$
 and $stst = tsts$.

2

s

u

corresponding to the

• The group G₃₁ has diagram presentation

$$s^{2} = t^{2} = u^{2} = v^{2} = w^{2} = 1,$$

$$uv = vu, sw = ws, vw = wv, \quad sut = uts = tsu,$$

$$svs = vsv, tvt = vtv, twt = wtw, wuw = uwu.$$

Back to finite reductive groups : the Sylow ℓ -subgroups and their normalizers

ℓ a prime number, prime to q, ℓ | |G|, ℓ ∤ |W|
⇒ There exists one d (a(d) > 0) such that ℓ | Φ_d(q), and the Sylow ℓ-subgroup S_ℓ of S_d is a Sylow of G.
L_d = C_G(S_ℓ) and N_d = N_ℓ = N_G(S_ℓ) : N_ℓ

|} W_d
L_d
1

Since the "local" block is

$$(\mathbb{Z}_{\ell}N_{\ell})_0 \simeq \mathbb{Z}_{\ell}[S_{\ell} \rtimes W_d]$$

our conjecture reduces to

Conjecture

$$\mathcal{D}^b((\mathbb{Z}_\ell G)_0) \simeq \mathcal{D}^b(\mathbb{Z}_\ell[S_\ell \rtimes W_d])$$

Michel Broué

Local Representation Theory of Finite Groups and Cyclotomic

Role of Deligne–Lusztig varieties

• Let **P** be a parabolic subgroup with Levi subgroup **L**_d, and with unipotent radical **U**.

Note that **P** is never rational if $d \neq 1$.

• The Deligne–Lusztig variety is

$$\mathcal{V}_{\mathsf{P}} := {}_{\mathsf{G}} \circ \{ g\mathsf{U} \in \mathsf{G}/\mathsf{U} \mid g\mathsf{U} \cap F(g\mathsf{U}) \neq \emptyset \} \circ {}_{\mathsf{L}_{\mathsf{d}}}$$

hence defines an object

 $\mathsf{R}\Gamma_c(\mathcal{V}_{\mathbf{P}},\mathbb{Z}_\ell)\in\mathcal{D}^b(_{\mathbb{Z}_\ell G}\,\text{mod}_{\,\mathbb{Z}_\ell L_d})\ \, \text{hence}\ \, \mathsf{R}\Gamma_c(\mathcal{V}_{\mathbf{P}},\mathbb{Z}_\ell)_0\in\mathcal{D}^b(_{\mathbb{Z}_\ell G}\,\text{mod}_{\,\mathbb{Z}_\ell S_\ell})$

Conjecture

There is a choice of ${f U}$ such that

RΓ_c(V_P, Z_ℓ)₀ is a Rickard complex between (Z_ℓG)₀ and its commuting algebra C(U).

 $\ 2 \ \ \mathcal{C}(U) \simeq (\mathbb{Z}_{\ell} N_{\ell})_0$

If d = 1,

•
$$\mathbf{S}_d = \mathbf{T} = \mathbf{L}_d$$
 and $W_d = W$
• $\mathcal{V}_{\mathbf{B}} = G/U$ and $\mathsf{R}\Gamma_c(\mathcal{V}_{\mathbf{P}}, \mathbb{Z}_\ell) = \mathbb{Z}_\ell(G/U)$
•

$$\mathbb{Z}_{\ell}G^{\circ}\mathbb{Z}_{\ell}(G/U)^{\circ}\mathcal{C}(U)$$

If *H*(*W*, *q*) denotes the usual Hecke algebra of the Weyl group *W* (an algebra over ℤ[*q*, *q*⁻¹]), we have

$$C(U) \simeq \mathbb{Z}_{\ell} T.\mathbb{Z}_{\ell} \mathcal{H}(W,q)$$

d-cyclotomic Hecke algebras

- A *d*-cyclotomic Hecke algebra for W_d is in particular
 - an image of the group algebra of the braid group B_{W_d} ,
 - a deformation in one parameter q of the group algebra of W_d ,
 - which specializes to that group algebra when q becomes $e^{2\pi i/d}$
- Examples :
 - The ordinary Hecke algebra $\mathcal{H}(W)$ is 1-cyclotomic,
 - Case where $G = GL_6$, d = 3:

$$W_3 = B_2(3) = \mu_3 \wr \mathfrak{S}_2 \quad \longleftrightarrow \quad \mathfrak{Z}_s \stackrel{\texttt{O}}{=} \mathfrak{Z}_t$$

$$\mathcal{H}(W_3) = \left\langle S, T; \begin{cases} STST = TSTS \\ (S-1)(S-q)(S-q^2) = 0 \\ (T-q^3)(T+1) = 0 \end{cases} \right\rangle$$

For
$$G = O_8(q)$$
, $W = D_4$, $d = 4$,
 $W_4 = G(4, 2, 2) \quad \longleftrightarrow \quad s \textcircled{O}_2^{(2)t}$
 $\mathcal{H}(W_4) = \left\langle S, T, U; \left\{ \begin{array}{l} STU = TUS = UST\\ (S - q^2)(S - 1) = 0 \end{array} \right\} \right\rangle$

The unipotent part

- Extend the scalars to $\overline{\mathbb{Q}}_{\ell} =: K \Rightarrow$ Get into a semisimple situation
 - $\mathsf{R}\Gamma_c(\mathcal{V}(\mathbf{U}),\mathbb{Z}_\ell)$ becomes

$$H^{\bullet}_{c}(\mathcal{V}(\mathbf{U}), K) := \bigoplus_{i} H^{i}_{c}(\mathcal{V}(\mathbf{U}), K)$$

• Replace $\mathcal{V}(\mathbf{U})$ by $\mathcal{V}(\mathbf{U})^{un} := \mathcal{V}(\mathbf{U})/L_d \Rightarrow$ Only unipotent characters of G are involved

Semisimplified unipotent

• The different $H_c^i(\mathcal{V}(\mathbf{U})^{\mathrm{un}}, K)$ are disjoint as *KG*-modules,

Again the particular case $d = 1 \dots$

and

 $\mathcal{V}^{\mathrm{un}}(\mathbf{U})=G/B\,,$

so

$$\mathcal{H}(\mathbf{U}) = \mathcal{KH}(\mathcal{W}, q)$$
, hence $\mathcal{H}(\mathbf{U}) \simeq \mathcal{KW}$.

... suggests what happens in general :

Conjecture

The commuting algebra $\mathcal{H}(\mathbf{U}) := \operatorname{End}_{KG} H^{\bullet}_{c}(\mathcal{V}(\mathbf{U})^{\operatorname{un}}, K)$ is a kind of "Hecke algebra" for the reflection group W_{d} .

d-cyclotomic Hecke algebras

- A *d*-cyclotomic Hecke algebra for W_d is in particular
 - an image of the group algebra of the braid group B_{W_d} ,
 - a deformation in one parameter q of the group algebra of W_d ,
 - which specializes to that group algebra when q becomes $e^{2\pi i/d}$
- Examples :
 - The ordinary Hecke algebra $\mathcal{H}(W)$ is 1-cyclotomic,
 - Case where $G = GL_6$, d = 3:

$$W_3 = B_2(3) = \mu_3 \wr \mathfrak{S}_2 \quad \longleftrightarrow \quad \mathfrak{Z}_s \stackrel{\texttt{O}}{=} \mathfrak{Z}_t$$

$$\mathcal{H}(W_3) = \left\langle S, T; \begin{cases} STST = TSTS \\ (S-1)(S-q)(S-q^2) = 0 \\ (T-q^3)(T+1) = 0 \end{cases} \right\rangle$$

For
$$G = O_8(q)$$
, $W = D_4$, $d = 4$,
 $W_4 = G(4, 2, 2) \quad \longleftrightarrow \quad s \textcircled{O}_2^{(2)t}$
 $\mathcal{H}(W_4) = \left\langle S, T, U; \left\{ \begin{array}{l} STU = TUS = UST\\ (S - q^2)(S - 1) = 0 \end{array} \right\} \right\rangle$

- L_d is a torus $\iff d$ is a regular number for W
- The set of tori L_d is a single orbit of rational maximal tori under G, hence corresponds to a conjugacy class of W.
- For w in that class, we have $W_d \simeq C_W(w)$.
- The choice of **U** corresponds to the choice of an element *w* in that class.
- We then have

$$\mathcal{V}(\mathbf{U}_w)^{\mathrm{un}} = \mathbf{X}_w := \{\mathbf{B} \in \mathcal{B} \ | \ \mathbf{B} \stackrel{w}{\rightarrow} \mathcal{F}(\mathbf{B})\}$$

- $\blacktriangleright~{\cal B}$ is the variety of all Borel subgroups of ${\bf G}$
- ► The orbits of G on B × B are canonically in bijection with W and we write B^w→B' if the orbit of (B, B') corresponds to w.

Relevance of the braid groups

Notation

•
$$V := \mathbb{C} \otimes Y(\mathbf{T})$$
 acted on by W ,
 $\mathcal{A} :=$ set of reflecting hyperplanes of W
• $V^{\text{reg}} := V - \bigcup_{H \in \mathcal{A}} H$
• $B_W := \Pi_1(V^{\text{reg}}/W, x_0)$
• If
 $W = \langle S \mid \underbrace{\text{ststs}...}_{m_{s,t} \text{ factors}} = \underbrace{\text{tstst}...}_{m_{s,t} \text{ factors}}, s^2 = t^2 = 1 > then$
then
 $B_W = \langle \mathbf{S} \mid \underbrace{\text{ststs}...}_{m_{s,t} \text{ factors}} = \underbrace{\text{tstst}...}_{m_{s,t} \text{ factors}} > then$

 $m_{s,t}$ factors $m_{s,t}$ factors

• $\pi := t \mapsto e^{2i\pi t} x_0 \implies \pi \in ZB_W$ $\pi = \mathbf{w}_0^2 = \mathbf{c}^h$ (c Coxeter element, *h* Coxeter number).

A theorem of Deligne

•
$$\mathcal{O}(w) := \{ (\mathbf{B}, \mathbf{B}') \mid \mathbf{B} \xrightarrow{w} \mathbf{B}' \}$$

• If l(ww') = l(w) + l(w'), then $\mathcal{O}(ww') = \mathcal{O}(w) \times_{\mathcal{B}} \mathcal{O}(w')$

Theorem (Deligne)

Whenever $b \in B_W^+$ there is a well defined scheme $\mathcal{O}(b)$ over $\mathcal{B} \times \mathcal{B}$ such that $\mathcal{O}(w) = \mathcal{O}(w)$ and

$$\mathcal{O}(bb') = \mathcal{O}(b) imes_{\mathcal{B}} \mathcal{O}(b')$$

We set
$$\mathbf{X}_b := \mathcal{O}(b) \cap \operatorname{Graph}(F)$$
, thus

For $b = \mathbf{w}_1 \mathbf{w}_2 \cdots \mathbf{w}_n$ we have

$$\mathbf{X}_{b}^{(F)} = \{ (\mathbf{B}_{0}, \mathbf{B}_{1}, \dots, \mathbf{B}_{n}) \mid \mathbf{B}_{0} \stackrel{w_{1}}{\rightarrow} \mathbf{B}_{1} \stackrel{w_{2}}{\rightarrow} \cdots \stackrel{w_{n}}{\rightarrow} \mathbf{B}_{n} \text{ and } \mathbf{B}_{n} = F(\mathbf{B}_{0}) \}$$

The variety X_{π}

$$\begin{aligned} \mathbf{X}_{\pi} &= \{ \left(\mathbf{B}_{0}, \mathbf{B}_{1}, \mathbf{B}_{2} \right) \mid \mathbf{B}_{0} \stackrel{w_{0}}{\rightarrow} \mathbf{B}_{1} \stackrel{w_{0}}{\rightarrow} \mathbf{B}_{2} \text{ and } \mathbf{B}_{2} = F(\mathbf{B}_{0}) \\ &= \{ \left(\mathbf{B}_{0}, \mathbf{B}_{1}, \dots, \mathbf{B}_{h} \right) \mid \mathbf{B}_{0} \stackrel{c}{\rightarrow} \mathbf{B}_{1} \stackrel{c}{\rightarrow} \dots \stackrel{c}{\rightarrow} \mathbf{B}_{h} \text{ and } \mathbf{B}_{h} = F(\mathbf{B}_{0}) \} \end{aligned}$$

The (opposite) monoid B^+_W acts on X_{π} : For $\mathbf{w} \in B^{\text{red}}_W$, we have

$$\pi = \mathbf{w}b = b\mathbf{w} \quad \text{where} \quad b = \mathbf{w}_1 \cdots \mathbf{w}_n$$
$$D_{\mathbf{w}} : (\mathbf{B}, \mathbf{B}_0, \dots, \mathbf{B}_n = F(\mathbf{B})) \mapsto (\mathbf{B}_0, \dots, \mathbf{B}_n = F(\mathbf{B}), F(\mathbf{B}_0))$$
$$(\mathbf{B}, \mathbf{B}_0, \dots, \mathbf{B}_n = F(\mathbf{B}), F(\mathbf{B}_0))$$

Hence B_W acts on $H_c^{\bullet}(\mathbf{X}_{\pi})$

Proposition : The action of B_W on H[•]_c(X_π) factorizes through the (ordinary) Hecke algebra H(W).

• Conjecture :

$$\operatorname{End}_{KG} H^{\bullet}_{c}(\mathbf{X}_{\pi}) = \mathcal{H}(W)$$

Relevance of roots of π

Proposition

$$d$$
 regular for $W \iff$ there exists $\mathbf{w} \in B^+_W$ such that $\mathbf{w}^d = \pi$.

Application

()
$$\mathbf{X}_{\mathbf{w}}^{(F)}$$
 embeds into $\mathbf{X}_{\pi}^{(F^d)}$:

$$\mathbf{X}_{\mathbf{w}}^{(F)} \hookrightarrow \mathbf{X}_{\pi}^{(F^d)}$$

 $\mathbf{B} \mapsto (\mathbf{B}, F(\mathbf{B}), \dots, F^d(\mathbf{B}))$

$$\{\mathbf{x} \in \mathbf{X}_{\pi}^{(F^d)} \mid D_{\mathbf{w}}(\mathbf{x}) = F(\mathbf{x})\}$$

3
$$C_{B_W^+}(\mathbf{w})$$
 acts on $\mathbf{X}_{\mathbf{w}}^{(F)}$

Belief

A good choice for \mathbf{U}_w is : **w** a *d*-th root of π .

Theorem (David Bessis)

There is a natural isomorphism

$$B_{C_W(w)} \stackrel{\sim}{
ightarrow} C_{B_W}(w)$$

From which follow :

Theorem

The braid group $B_{C_W(w)}$ of the complex reflections group $C_W(w)$ acts on $H_c^{\bullet}(\mathbf{X}_w)$.

Conjecture

The braid group $B_{C_W(w)}$ acts on $H_c^{\bullet}(\mathbf{X}_w)$ through a *d*-cyclotomic Hecke algebra $\mathcal{H}_W(w)$.

Let us summarize

- **1** $\ell \rightsquigarrow d$, d regular, *i.e.*, $L_d = T_w$, $\mathbf{w}^d = \pi$, $\mathcal{V}(\mathbf{U}_w)/L_d = \mathbf{X}_w$
- 2 End_{KG} $H_c^{\bullet}(\mathbf{X}_w) \simeq \mathcal{H}_W(w)$
- End_{Z_{\ell}G} RΓ_c($\mathcal{V}(\mathbf{U}_w), \mathbb{Z}_\ell$) $\simeq \mathbb{Z}_\ell(T_w)_\ell \cdot \text{End}_{\mathbb{Z}_\ell G}$ RΓ_c($\mathbf{X}_w, \mathbb{Z}_\ell$) $\simeq (\mathbb{Z}_\ell N_\ell)_0$

What is really proven today

- Everything
 - ▶ if d = 1 (Puig),
 - ▶ for $G = GL_2(q)$ (Rouquier), $SL_2(q)$ (cf. a book by Bonnafé to appear)
 - for $G = GL_n(q)$ and d = n (Bonnafé-Rouquier)
- About : $\operatorname{End}_{KG} H^{\bullet}_{c}(\mathbf{X}_{w}) \simeq \mathcal{H}_{W}(w)$?
 - All $\mathcal{H}_W(w)$ are known, all cases (Malle)
 - Assertion $\operatorname{End}_{KG} H^{\bullet}_{c}(\mathbf{X}_{w}) \simeq \mathcal{H}_{W}(w)$ known for
 - * d = h (Lusztig),
 - * d = 2 (Lusztig, Digne–Michel),
 - ★ small rank GL,
 - * d = 4 for $D_4(q)$ (Digne-Michel).