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Local Group Theory

Feit–Thompson, 1963

If G is a non abelian simple finite group,
then 2 | |G | .

Cauchy (1789–1857)

If ℓ | |G | , there are non trivial ℓ–subgroups
in G .

Sylow, 1872

The maximal ℓ–subgroups of G are all
conjugate under G .

Michel Broué Local Representation Theory of Finite Groups and Cyclotomic Algeb



Assume P ⊂ S and P ⊂ S ′. There is g ∈ G such that S ′ = Sg

(= g−1Sg), hence

P ⊂ S and gP (= gPg−1) ⊂ S .

This is a fusion.

The Frobenius Category

Frobℓ(G ) :

◮ Objects : the ℓ–subgroups of G ,

◮ Hom(P ,Q) := {g ∈ G | (gP ⊂ Q)}/CG (P) .

Note that Aut(P) = NG (P)/CG (P) .

Alperin’s fusion theorem (1967) says essentially that Frobℓ(G ) is
known as soon as the automorphisms of some of its objects are
known.
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Main question of local group theory

How much is known about G from the knowledge (up to equivalence
of categories) of Frobℓ(G ) ?

Well, certainly not more than G/Oℓ′(G ) !
(where Oℓ′(G ) denotes the largest normal subgroup of G of order not
divisible by ℓ)

Indeed, Oℓ′(G ) disappears in the Frobenius category, since, for P an
ℓ–subgroup,

Oℓ′(G ) ∩ NG (P) ⊆ CG (P) .

But perhaps all of G/Oℓ′(G ) ?
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Control subgroup

Let H be a subgroup of G . The following conditions are equivalent :

(i) The inclusion H →֒ G induces an equivalence of categories

Frobℓ(H)
∼→ Frobℓ(G ) ,

(ii) H contains a Sylow ℓ–subgroup of G , and if P is a ℓ–subgroup of H
and g is an element of G such that gP ⊆ H, then there is h ∈ H and
z ∈ CG (P) such that g = hz .

If the preceding conditions are satisfied, we say that H controls
ℓ–fusion in G , or that H is a control subgroup in G .
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The first question may now be reformulated as follows :

If H controls ℓ–fusion in G , does the inclusion H →֒ G induce an
isomorphism

H/Oℓ′(H)
∼→ G/Oℓ′(G ) ?

In other words, do we have

G = HOℓ′(G ) ?
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Frobenius theorem, 1905

If a Sylow ℓ–subgroup S of G controls ℓ–fusion in G , then the
inclusion induces an isomorphism S ≃ G/Oℓ′(G ).

ℓ–solvable groups, ?

Assume that G is ℓ–solvable. If H controls ℓ-fusion in G , then
the inclusion induces an isomorphism H/Oℓ′(H) ≃ G/Oℓ′(G ).

Z ∗
ℓ –theorem (Glauberman, 1966 for ℓ = 2, Classification for other

primes)

Assume that H = CG (P) where P is an ℓ–subgroup of G . If
H controls ℓ-fusion in G , then the inclusion induces an

isomorphism H/Oℓ′(H) ≃ G/Oℓ′(G ).
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But

Burnside (1852–1927)

Assume that a Sylow ℓ–subgroup S of G is abelian. Set
H := NG (S). Then H controls ℓ-fusion in G .
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Consider the Monster, a finite simple group of order

246 · 320 · 59 · 76 · 112 · 133 · 17 · 19 · 23 · 29 · 31 · 41 · 47 · 59 · 71 ≃ 8.1053 .

(predicted in 1973 by Fischer and Griess, constructed in 1980 by
Griess, proved to be unique by Thompson)

and the normalizer H of one of its Sylow 11–subgroups, a group of
order 72600, isomorphic to (C11 × C11)⋊ (C5 × SL2(5)) (here we
denote by Cm the cyclic group of order m).

Here we have G 6= HO11′(G ) since G is simple.

Remark : one may think of more elementary examples...
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Local Representation Theory

Let K be a finite extension of the field of ℓ–adic numbers Qℓ which
contains the |G |-th roots of unity. Let O be the ring of integers of K over
Zℓ, with maximal ideal m and residue field k := O/m.

K

O
2 R

ddHHHH
// // k = O/m

Qℓ

� ?

OO

Zℓ

1 Q

ccGGG � ?

OO

// // Fℓ = Zℓ/ℓZℓ

� ?

OO
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Block decomposition

OG =
⊕

B (indecomposable algebra)
↓ ↓
kG =

⊕
kB (indecomposable algebra)

The augmentation map OG → O factorizes through a unique block
of OG called the principal block and denoted by (OG )0.

OG //

##HH
HH

HH
HH

HH
(OG )0

��
O
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Factorisation and principal block

If H is a subgroup of G , the following assertions are equivalent

(i) G = HOℓ′(G) .
(ii) The map ResGH induces an isomorphism from (OG)0 onto (OH)0 .

Let us re-examine the counterexamples to factorisation coming from
Burnside’s theorem.

Assume that a Sylow ℓ–subgroup S of G is abelian, let H := NG (S)
be its normalizer.

Even if G 6= H Oℓ′(G ), it appears that there is some connection
between the (representation theory of) (OG )0 and (OH)0.
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SOME NUMERICAL MIRACLES

Let us consider the case G = A5 and ℓ = 2. Then we have H ≃ A4.

Remark : on a larger screen, we might as well consider the above case
of the Monster and of the prime ℓ = 11.

Table: Character table of A5

(1) (2) (3) (5) (5’)

1 1 1 1 1 1

χ4 4 0 1 -1 -1

χ5 5 1 -1 0 0

χ3 3 -1 0 (1 +
√
5)/2 (1−

√
5)/2

χ′
3 3 -1 0 (1−

√
5)/2 (1 +

√
5)/2
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Table: Character table of (OA5)0

(1) (2) (5) (5’) (3)

1 1 1 1 1 1

χ5 5 1 0 0 -1

χ3 3 -1 (1 +
√
5)/2 (1−

√
5)/2 0

χ′
3 3 -1 (1−

√
5)/2 (1 +

√
5)/2 0

Table: Character table of (OA4)0

(1) (2) (3) (3’)

1 1 1 1 1

−α3 -3 1 0 0

−α1 -1 -1 (1 +
√
−3)/2 (1−

√
−3)/2

−α′
1 -1 -1 (1−

√
−3)/2 (1 +

√
−3)/2
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A kind of generic counterexample :

G = GLn(q)

B H

LLLLLLLLLLLLL

U

ooooooooo
T

OOOOOOOOO

~~~~

1

OOOOOOOOO

ooooooooo

|T | = (q − 1)n

H := NG (T ) , H/T = Sn

|U| = q(
n
2) , B = U ⋊ T

ℓ | q − 1 , ℓ > n ⇒ S = Tℓ

T = S × Tℓ′ , H = NG (S)

We certainly have
G 6= HOℓ′(G ) .
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Morita equivalences

Definition

A Morita equivalence between A and B is the following datum :

an object M of AModB and an object N of BModA,

two isomorphisms

M⊗B N
∼→ A in AModA and N⊗AM

∼→ B in BModB .

Given a Morita equivalence, the functors

M ⊗B
� and N ⊗A

�

are reciprocal equivalences of categories between AMod and BMod.
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Fundamental example

Whenever n ≥ 1 is an integer, Matn(A) and A are Morita equivalent.

Proof.

Consider the bimodules M and N defined as follows :

M is the set of n × 1 matrices with coefficients in A, on which
Matn(A) acts by left multiplication and A acts by (right)
multiplication,

N is the set of 1× n matrices with coefficients in A, on which
Matn(A) acts by right multiplication and A acts by (left)
multiplication.

Then the multiplication of matrices defines isomorphisms

M ⊗A N
∼→ Matn(A) and N ⊗Matn(A) M

∼→ A .
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Morita equivalences and local representations

Assume

K

O3
S

eeLLLLL
// // k

and that A and B are O–algebras.
Then a Morita equivalence between A and B induces Morita equivalences

KA ≡ KB and kA ≡ kB ,

via

KM

M
4 T

ggOOOOO
// // kM

and KN

N
4 T

ffNNNNN
// // kN
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On GLn(q) again

G = GLn(q)

B H

LLLLLLLLLLLLL

U

pppppppp
T

NNNNNNNN
~~~~

1

NNNNNNNN

pppppppp

The principal block algebras of G and H respectively are Morita equivalent.

There exist M and N , respectively an OG–module–OH and an
OH–module–OG with the following properties :

M ⊗OH N ≃ (OG)0 as OG–module–OG

N ⊗OG M ≃ (OH)0 as OH–module–OH
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G = GLn(q)

B H

LLLLLLLLLLLLL

U

pppppppp
T

NNNNNNNN
~~~~

1

NNNNNNNN

pppppppp

O(G/U)

����

OH
� 	

OG OT

sssssssss

O(G/B)

� 	

OG OSn ≃ H(Sn, q)

Viewed as a OG–module–OS , we have M ≃ O(G/U) , i.e., the functor
M⊗OS ? is the Harish–Chandra induction.

M/T = O(G/B) whose commuting algebra is the Hecke algebra H(Sn, q).
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Rickard equivalences

Definition

A Rickard equivalence between A and B is the following datum :

an object M of Cb(AModB) and an object N of Cb(BModA),

two isomorphisms

M ⊗B N
∼→ A in Cb(AModA) and N ⊗A M

∼→ B in Cb(BModB) .

Given a Rickard equivalence, the functors

M ⊗B
� and N ⊗A

�

are reciprocal equivalences of suitable categories.
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Back to the principal 2–block of A5

View (OA5)0 as a OA5–module–OA4.

Let I be the kernel of the augmentation map : (OA5)0 → O.
Let P denote a projective cover of I and consider P

���� ##FF
FF

FF
FF

F

I // (OA5)0

We set
M := 0→ P → (OA5)0 → 0

◮ a complex of OA5–modules–OA4,
◮ (OA5)0 in degree 0 and C in degree −1.

and N := M∗ .

Proposition

The pair of complexes (M,N) induces a Rickard equivalence between
(OA5)0 and (OA4)0.
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Abelian Sylow Conjecture

Assume that a Sylow ℓ–subgroup S of G is abelian, let H := NG (S)
be its normalizer.

(ASC) :

The algebras (OG )0 and (OH)0 are Rickard equivalent.

(Strong ASC) :

They are Rickard equivalent in a way which is compatible with
the equivalence of Frobenius categories

Which means : There is a G–equivariant collection of derived
equivalences

{ E(P) : Db((OCG (P))0)
∼→ Db((OCH(P))0) }P⊆S

compatible with Brauer morphisms.
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Known to be true :
Sylow cyclic (Rickard), G ℓ–solvable, G = Sn (Chuang–Rouquier),
G = SL2(ℓ

n) (Okuyama), a bunch of sporadic simple groups (the
Japanese school),...

What about the nonabelian Sylow case ?

The fact that the derived category of (OG )0 is determined by
Frobℓ(G ) is definitely false :

There are groups G and a subgroup H such that

◮ the inclusion H ⊂ G induces an equivalence Frobℓ(H)
∼→ Frobℓ(G),

◮ and yet Db((OH)0) and Db((OG)0) are not equivalent.

But there seem to be lots of numerical similarities between (OH)0
and (OG )0.
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Case of finite reductive groups

G is a connected reductive algebraic group over Fq, with Weyl group W ,
endowed with a Frobenius–like endomorphism F . The group G := GF is a
finite reductive group.

Example

G = GLn(Fq) , F : (ai ,j) 7→ (aqi ,j) , G = GLn(q)

Polynomial order — There is a polynomial in Z[x ]

|G|(x) = xN
∏

d

Φd(x)
a(d)

such that |G|(q) = |G | .
Example

|GLn|(x) = x(
n
2)

d=n∏

d=1

(xd − 1) = x(
n
2)

d=n∏

d=1

Φd(x)
[n/d]
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Admissible subgroups — The tori of G are the subgroups of the shape
TF where T is an F–stable torus (i.e., isomorphic to some

F
× × · · · × F

×
in G).

The Levi subgroups of G are the subgroups of the shape LF where L

is a centralizer of an F–stable torus in G.

Examples

The split maximal torus T1 = (F×
q )

n
of order (q − 1)n

The Coxeter maximal torus Tc = GL1(Fqn) of order q
n − 1

Levi subgroups have shape GLn1(q
a1)× · · · × GLns (q

as )

Cauchy theorem — The (polynomial) order of an admissible subgroup
divides the (polynomial) order of the group.
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The generic Sylow theorems

For Φd (x) a cyclotomic polynomial, a Φd(x)–group is a finite reductive
group whose (polynomial) order is a power of Φd (x). Hence such a group
is a torus.

Sylow theorems

1 Maximal Φd(x)–subgroups (“Sylow Φd(x)–subgroups”) of G have as
(polynomial) order the contribution of Φd(x) to the (polynomial)
order of G :

|Sd | = |SF
d | = Φd (q)

a(d) .

Notation : Set Ld := CG(Sd ) and Nd := NG(Sd ) = NG(Ld )

2 Sylow Φd (x)–subgroups are all conjugate by G .

3 The (polynomial) index |G : Nd | is congruent to 1 modulo Φd(x).

4 Wd := Nd/Ld is a true finite group, a complex reflection group in its
action on C⊗ Y (Sd ). = This is the d–cyclotomic Weyl group of the
finite reductive group G .
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Example

Recall that

|GLn(q)| = q(
n
2)

d=n∏

d=1

Φd (q)
[n/d]

For each d (1 ≤ d ≤ n), GLn(q) contains
a subtorus of (polynomial) order Φd (x)

[ n
d
]

Assume n = md + r with r < d . Then

Ld = GL1(q
d )m × GLr (q)

Wd = µd ≀Sm

Michel Broué Local Representation Theory of Finite Groups and Cyclotomic Algeb



Generic and ordinary Sylow subgroups

Let ℓ be a prime number which does not divide |W |.
If ℓ divides |G , there is a unique integer d such that ℓ divides Φd (q).

Then the Sylow ℓ–subgroups of G are nothing but the Sylow
ℓ–subgroups Sℓ of Sd = SF

d (Sd a Sylow Φd (x)–subgroup of G).

We have
NG (Sℓ) = Nd and CG (Sℓ) = Ld .

hence
NG (Sℓ)/CG (Sℓ) = Wd .

Michel Broué Local Representation Theory of Finite Groups and Cyclotomic Algeb



G = GLn(q)

B H = N1

RRRRRRRRRRRRRRRR

U

qqqqqqqq
T = S1

QQQQQQQQ
pppppp

1

NNNNNNNN

mmmmmmmmm

|S1| = (q − 1)n

W1 = Sn

ℓ | q − 1 , ℓ > n ⇒ S = Tℓ

T = S × Tℓ′ , H = NG (S)

G = GLn(q)

Nd

LLLLLLLLLLLLL

Ld

NNNNNNNNN

||||

1

LLLLLLLLL

pppppppp

|Sd | = Φd(q)
a(d)

Ld/Cd = Wd

ℓ | Φd (q) , ℓ > n ⇒ S = (Sd )ℓ

Sd = (Sd )ℓ × (Sd )ℓ′
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Complex reflection groups

A finite reflection group (abbreviated frg) on K is a finite subgroup of
GLK (V ) (V a finite dimensional K–vector space) generated by
reflections, i.e., linear maps represented by








ζ 0 · · · 0
0 1 · · · 0
...

...
. . .

...
0 0 · · · 1








A finite reflection group on R is called a Coxeter group.

A finite reflection group on Q is called a Weyl group.
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Main characterisation

Theorem (Shephard–Todd, Chevalley–Serre)

Let G be a finite subgroup of GL(V ) (V an r–dimensional vector space
over a characteristic zero field K ). Let S denote the symmetric algebra of
V , isomorphic to the polynomial ring K [v1, v2, . . . , vr ].
The following assertions are equivalent.

1 G is generated by reflections.

2 The ring R := SG of G–fixed polynomials is a polynomial ring
K [u1, u2, . . . , ur ] in r homogeneous algebraically independant
elements.

3 S is a free R–module.

Then

If di := deg(ui ), the family (d1, . . . , dr ) is called the family of
invariant degrees of G ,
and we have

|G | = d1d2 · · · dr .
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Examples

For G = Sr , which acts naturally on V = Cr =
⊕

Cvi , one may
choose 





u1 = v1 + · · ·+ vr

u2 = v1v2 + v1v3 + · · · + vr−1vr

...
...

ur = v1v2 · · · vr
For G = 〈e2πi/d〉, cyclic group of order d acting by multiplication on
V = C, we have

S = K [x ] and R = K [xd ] .

Consider again the action of Sr on V = Cr =
⊕

Cvi . Fix d ≥ 2. For
each coordinate consider the reflection vi 7→ ζdvi . We obtain the
wreath product Cd ≀Sr , generated by reflections.
This group is called G (d , 1, r).
For each divisor e of d , there is a normal reflection subgroup
G (d , e, r) of G (d , 1, r) of index e.
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Let G ≤ SL2(C) be finite and g ∈ G . Let ζ be an eigenvalue of g .

Then ζ−1g is a reflection.

◮ So, if G = 〈g1, . . . , gr 〉, the group 〈ζ−1
1 g1, . . . , ζ

−1
r gr 〉 is an frg.

◮ Note that for G irreducible, we have G/Z (G) ∈ {Dn,A4,S4,A5}.
◮ For example, the group

G :=

〈(
1 0
0 ζ3

)

,

√
−3
3

(
−ζ3 ζ23
2ζ23 1

)〉

≤ GL2(Q(ζ3)) ,

with ζ3 := exp(2πi/3), is a frg of order 72, denoted G5, isomorphic to
SL2(3)× C3.

◮ We may choose

u1 := v6
1 + 20v3

1 v
3
2 − 8v6

2 , u2 := 3v3
1 v

9
2 + 3v6

1 v
6
2 + v9

1 v
3
2 + v12

2 ,

with degrees d1 = 6, d2 = 12 (note that d1d2 = 72 = |G |).
If g ∈ SL3(C) is an involution, then −g is a reflection.
Note that A5, PSL2(7) and 3.A6 have faithful 3-dimensional
representations and are generated by involutions.
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Classification

1 The finite reflection groups on C have been classified by Coxeter,
Shephard and Todd.

◮ There is one infinite series G(de, e, r) (d ,e and r integers),
◮ ...and 34 exceptional groups G4 , G5 , . . . , G37.

2 The group G (de, e, r) (d ,e and r integers) consists of all r × r

monomial matrices with entries in µde such that the product of
entries belongs to µd .

3 We have

G (d , 1, r) ≃ Cd ≀Sr

G (e, e, 2) = D2e (dihedral group of order 2e)

G (2, 2, r) = W (Dr )

G23 = H3 , G28 = F4 , G30 = H4

G35,36,37 = E6,7,8 .
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Braid groups

Let A be the arrangement of reflecting hyperplanes for the crg G .
Set

V reg := V −⋃

H∈A H .

The covering V reg // // V reg/G is Galois, hence induces a short exact
sequence

1 Π1(V
reg, x0) Π1(V

reg/G , x0) G 1- - - -

PG BG

(Pure braid group) (Braid group)
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Braid reflections

Let γ be a path in V reg from x0 to xH .

We define : σH,γ := sH(γ
−1) · sH,xH · γ

• x0

•H

•xH
BB • sH(xH)
PP

• sH(x0)

γ

sH(γ
−1)

• ·<< ·bb
γ

x0

Definition

We call braid reflections the elements sH,γ ∈ B defined by the paths σH,γ .
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The following properties are immediate.

sH,γ and sH,γ′ are conjugate in P .

s
eH
H,γ is a loop in V reg : • ·<< ·bb

γ
x0

The variety V (resp. V /G ) is connected, the hyperplanes are irreducible
divisors (irreducible closed subvarieties of codimension one), and the braid
reflections are “generators of the monodromy” around the irreducible
divisors. Then

Theorem
1 The braid group BG is generated by the braid reflections (sH,γ) (for

all H and all γ).

2 The pure braid group PG is generated by the elements (seHH,γ)
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Artin–like presentations

An Artin–like presentation is

〈s ∈ S | {vi = wi}i∈I 〉
where

S is a finite set of distinguished braid reflections,

I is a finite set of relations which are multi–homogeneous,
i.e., such that (for each i) vi and wi are positive words in elements of S

Theorem (Bessis)

Let G ⊂ GL(V ) be a complex reflection group. Let d1 ≤ d2 ≤ · · · ≤ dr be
the family of its invariant degrees.

1 The following integers are equal (denoted by ΓG ) :
◮ The minimal number of reflections needed to generate G
◮ The minimal number of braid reflections needed to generate BG

◮ ⌈(Nr + Nh)/dr⌉ (Nr := number of reflections, Nh := number of hyperplanes)

2 Either ΓG = r or ΓG = r + 1, and the group BG has an Artin–like
presentation by ΓG braid reflections.
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The braid diagrams

Let D be a diagram like s©a ne ©b t

©c u

D represents the relations

stustu · · ·
︸ ︷︷ ︸

e factors

= tustus · · ·
︸ ︷︷ ︸

e factors

= ustust · · ·
︸ ︷︷ ︸

e factors

and sa = tb = uc = 1

We denote by Dbr and call braid diagram the diagram s© ne ©t

©u

which represents the relations

stustu · · ·
︸ ︷︷ ︸

e factors

= tustus · · ·
︸ ︷︷ ︸

e factors

= ustust · · ·
︸ ︷︷ ︸

e factors

Note that

G7 : s©2 n©3 t

©3 u

G11 : s©2 n©3 t

©4 u

G19 : s©2 n©3 t

©5 u

have same braid diagram.
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For each irreducible complex irreducible group G ,

there is a diagram D,
whose set of nodes N (D) is identified with a set of distinguished
reflections in G ,

such that

Theorem

For each s ∈ N (D), there exists a braid reflection s ∈ BG above s such
that the set {s}s∈N (D), together with the braid relations of Dbr, is a
presentation of BG .

The groups Gn for n = 4, 5, 8, 16, 20, as well as the dihedral groups,
have diagrams of type ©

s
d

e ©
t
d , corresponding to the

presentation

sd = td = 1 and ststs · · ·
︸ ︷︷ ︸

e factors

= tstst · · ·
︸ ︷︷ ︸

e factors
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The group G18 has diagram ©
s
5 ©

t
3 corresponding to the

presentation
s5 = t3 = 1 and stst = tsts .

The group G31 has diagram ©
v
2
�
©
s
2

©
t
2

n
©
w
2

©
u
2
�

corresponding to the

presentation

s2 = t2 = u2 = v2 = w2 = 1 ,

uv = vu , sw = ws , vw = wv , sut = uts = tsu ,

svs = vsv , tvt = vtv , twt = wtw ,wuw = uwu .
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Back to finite reductive groups : the Sylow ℓ–subgroups
and their normalizers

ℓ a prime number, prime to q, ℓ | |G |, ℓ ∤ |W |
=⇒ There exists one d (a(d) > 0) such that ℓ | Φd(q), and

the Sylow ℓ–subgroup Sℓ of Sd is a Sylow of G .
Ld = CG (Sℓ) and Nd = Nℓ = NG (Sℓ) : Nℓ}

Wd

Ld

1

Since the “local” block is

(ZℓNℓ)0 ≃ Zℓ[Sℓ ⋊Wd ]

our conjecture reduces to

Conjecture

Db((ZℓG )0) ≃ Db(Zℓ[Sℓ ⋊Wd ])
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Role of Deligne–Lusztig varieties

Let P be a parabolic subgroup with Levi subgroup Ld , and with
unipotent radical U.

Note that P is never rational if d 6= 1.

The Deligne–Lusztig variety is

VP :=
G �
{gU ∈ G/U | gU ∩ F (gU) 6= ∅}�Ld

hence defines an object

RΓc(VP,Zℓ) ∈ Db(ZℓG mod ZℓLd
) hence RΓc(VP,Zℓ)0 ∈ Db(ZℓG mod ZℓSℓ

)

Conjecture

There is a choice of U such that

1 RΓc (VP,Zℓ)0 is a Rickard complex between (ZℓG )0 and its
commuting algebra C(U).

2 C(U) ≃ (ZℓNℓ)0
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The case where d = 1

If d = 1,

Sd = T = Ld and Wd = W

VB = G/U and RΓc (VP,Zℓ) = Zℓ(G/U)

ZℓG
� Zℓ(G/U)�C(U)

If H(W , q) denotes the usual Hecke algebra of the Weyl group W (an
algebra over Z[q, q−1]), we have

1 C(U) ≃ ZℓT .ZℓH(W , q)

2 QℓH(W , q) ≃ QℓW
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d–cyclotomic Hecke algebras

A d–cyclotomic Hecke algebra for Wd is in particular

◮ an image of the group algebra of the braid group BWd
,

◮ a deformation in one parameter q of the group algebra of Wd ,

◮ which specializes to that group algebra when q becomes e2πi/d

Examples :

◮ The ordinary Hecke algebra H(W ) is 1–cyclotomic,

◮ Case where G = GL6, d = 3 :

W3 = B2(3) = µ3 ≀S2 ←→ ©
s
3 ©

t
2

H(W3) =

〈

S ,T ;







STST = TSTS

(S − 1)(S − q)(S − q2) = 0

(T − q3)(T + 1) = 0







〉
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◮ For G = O8(q), W = D4, d = 4,

W4 = G(4, 2, 2) ←→ s©2 n©2 t

©2 u

H(W4) =

〈

S ,T ,U ;

{

STU = TUS = UST

(S − q2)(S − 1) = 0

} 〉
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The unipotent part

Extend the scalars to Qℓ =: K ⇒ Get into a semisimple situation

◮ RΓc(V(U),Zℓ) becomes

H•

c (V(U),K ) :=
⊕

i

H i
c(V(U),K )

Replace V(U) by V(U)un := V(U)/Ld ⇒
Only unipotent characters of G are involved

Semisimplified unipotent

1 The different H i
c(V(U)un,K ) are disjoint as KG–modules,

2 H(U) := EndKG H•
c (V(U)un,K ) ≃ KWd
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Again the particular case d = 1 ... G

B H

GGGGGGG

U

~~

T

AA }}

1

AAA }}}

and
Vun(U) = G/B ,

so
H(U) = KH(W , q) , hence H(U) ≃ KW .

... suggests what happens in general :

Conjecture

The commuting algebra H(U) := EndKG H•
c (V(U)un,K ) is a kind of

“Hecke algebra” for the reflection group Wd .
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d–cyclotomic Hecke algebras

A d–cyclotomic Hecke algebra for Wd is in particular

◮ an image of the group algebra of the braid group BWd
,

◮ a deformation in one parameter q of the group algebra of Wd ,

◮ which specializes to that group algebra when q becomes e2πi/d

Examples :

◮ The ordinary Hecke algebra H(W ) is 1–cyclotomic,

◮ Case where G = GL6, d = 3 :

W3 = B2(3) = µ3 ≀S2 ←→ ©
s
3 ©

t
2

H(W3) =

〈

S ,T ;







STST = TSTS

(S − 1)(S − q)(S − q2) = 0

(T − q3)(T + 1) = 0







〉
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◮ For G = O8(q), W = D4, d = 4,

W4 = G(4, 2, 2) ←→ s©2 n©2 t

©2 u

H(W4) =

〈

S ,T ,U ;

{

STU = TUS = UST

(S − q2)(S − 1) = 0

} 〉
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Case where d is regular

Ld is a torus ⇐⇒ d is a regular number for W

The set of tori Ld is a single orbit of rational maximal tori under G ,
hence corresponds to a conjugacy class of W .

For w in that class, we have Wd ≃ CW (w).

The choice of U corresponds to the choice of an element w in that
class.

We then have

V(Uw )
un = Xw := {B ∈ B | B w→F (B)}

◮ B is the variety of all Borel subgroups of G

◮ The orbits of G on B × B are canonically in bijection with W

and we write B
w→B′ if the orbit of (B,B′) corresponds to w .
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Relevance of the braid groups

Notation

V := C⊗ Y (T) acted on by W ,
A := set of reflecting hyperplanes of W

V reg := V −⋃

H∈AH

BW := Π1(V
reg/W , x0)

If
W =< S | ststs . . .

︸ ︷︷ ︸

ms,t factors

= tstst . . .
︸ ︷︷ ︸

ms,t factors

, s2 = t2 = 1 >

then
BW =< S | ststs . . .

︸ ︷︷ ︸

ms,t factors

= tstst . . .
︸ ︷︷ ︸

ms,t factors

>

π := t 7→ e2iπtx0 =⇒ π ∈ ZBW

π = w2
0 = ch

(c Coxeter element, h Coxeter number).
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A theorem of Deligne

O(w) := {(B,B′) | B w→B′}
ttiiiiiiii

**UUUUUUUU

B B
If l(ww ′) = l(w) + l(w ′), then O(ww ′) = O(w)×B O(w ′)

Theorem (Deligne)

Whenever b ∈ B+
W there is a well defined scheme O(b) over B × B such

that O(w) = O(w) and

O(bb′) = O(b)×B O(b′)

We set Xb := O(b) ∩ Graph(F ) , thus

For b = w1w2 · · ·wn we have

X
(F )
b = { (B0,B1, . . . ,Bn) | B0

w1→B1
w2→· · · wn→Bn and Bn = F (B0) }
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The variety Xπ

Xπ = { (B0,B1,B2) | B0
w0→B1

w0→B2 and B2 = F (B0 }
= { (B0,B1, . . . ,Bh) | B0

c→B1
c→· · · c→Bh and Bh = F (B0) }

The (opposite) monoid B+
W acts on Xπ : For w ∈ B red

W , we have

π = wb = bw where b = w1 · · ·wn

Dw : (B,B0, . . . ,Bn = F (B)) 7→ (B0, . . . ,Bn = F (B),F (B0))

(B,B0, . . . ,Bn = F (B),F (B0))

Hence BW acts on H•
c (Xπ)

Proposition : The action of BW on H•
c (Xπ) factorizes through the

(ordinary) Hecke algebra H(W ).

Conjecture :
EndKG H•

c (Xπ) = H(W )
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Relevance of roots of π

Proposition

d regular for W ⇐⇒ there exists w ∈ B+
W such that wd = π.

Application

1 X
(F )
w embeds into X

(F d )
π :

X
(F )
w →֒ X

(F d )
π

B 7→ (B,F (B), . . . ,F d (B))

2 Its image is

{ x ∈ X
(F d )
π | Dw(x) = F (x) }

3 CB+
W
(w) acts on X

(F )
w .
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Belief

A good choice for Uw is : w a d–th root of π.

Theorem (David Bessis)

There is a natural isomorphism

BCW (w)
∼→ CBW

(w)

From which follow :

Theorem

The braid group BCW (w) of the complex reflections group CW (w) acts on
H•
c (Xw).

Conjecture

The braid group BCW (w) acts on H•
c (Xw) through a d–cyclotomic Hecke

algebra HW (w).
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Let us summarize

1 ℓ  d , d regular, i.e., Ld = Tw , w
d = π, V(Uw )/Ld = Xw

2 EndKG H•
c (Xw ) ≃ HW (w)

3 ZℓHW (w)
∼→ ZℓCW (w)

4 EndZℓG RΓc(V(Uw ),Zℓ) ≃ Zℓ(Tw )ℓ · EndZℓG RΓc(Xw ,Zℓ) ≃ (ZℓNℓ)0
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What is really proven today

Everything

◮ if d = 1 (Puig),

◮ for G = GL2(q) (Rouquier), SL2(q) (cf. a book by Bonnafé to appear)

◮ for G = GLn(q) and d = n (Bonnafé–Rouquier)

About : EndKG H•
c (Xw ) ≃ HW (w) ?

◮ All HW (w) are known, all cases (Malle)

◮ Assertion EndKGH
•
c (Xw ) ≃ HW (w) known for

⋆ d = h (Lusztig),

⋆ d = 2 (Lusztig, Digne–Michel),

⋆ small rank GL,

⋆ d = 4 for D4(q) (Digne–Michel).
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