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Geometric and Combinatorial
Group Theory
Martin R. Bridson

1 What Are Combinatorial and
Geometric Group Theory?

Groups and geometry are ubiquitous in mathematics,
groups because the symmetries (or automorphisms (??))
of any mathematical object in any context form a group
and geometry because it allows one to think intuitively
about abstract problems and to organize families of objects
into spaces from which one may gain some global insight.

The purpose of this article is to introduce the reader to
the study of infinite, discrete groups. I shall discuss both
the combinatorial approach to the subject that held sway
for much of the twentieth century and the more geomet-
ric perspective that has led to an enormous flowering of
the subject in the last twenty years. I hope to convince the
reader that the study of groups is a concern for all of math-
ematics rather than something that belongs particularly to
the domain of algebra.

The principal focus of geometric group theory is
the interaction of geometry/topology and group theory,
through group actions and through suitable translations of
geometric concepts into group theory. One wants to develop
and exploit this interaction for the benefit of both geom-
etry/topology and group theory. And, in keeping with our
assertion that groups are important throughout mathemat-
ics, one hopes to illuminate and solve problems from else-
where in mathematics by encoding them as problems in
group theory.

Geometric group theory acquired a distinct identity in
the late 1980s but many of its principal ideas have their
roots in the end of the nineteenth century. At that time,
low-dimensional topology and combinatorial group theory
emerged entwined. Roughly speaking, combinatorial group
theory is the study of groups defined in terms of presen-
tations, that is, by means of generators and relations. In
order to follow the rest of this introduction the reader must
first understand what these terms mean. Since their defini-
tions would require an unacceptably long break in the flow
of our discussion, I will postpone them to the next section,
but I strongly advise the reader who is unfamiliar with the
meaning of the expression Γ = 〈a1, . . . , an | r1, . . . , rm〉
to pause and read that section before continuing with this
one.

The rough definition of combinatorial group theory just
given misses the point that, like many parts of mathemat-
ics, it is a subject defined more by its core problems and

its origins than by its fundamental definitions. The ini-
tial impetus for the subject came from the description of
discrete groups of hyperbolic isometries and, most partic-
ularly, the discovery of the fundamental group (??) of
a manifold (??) by poincaré (??) in 1895. The group-
theoretic issues that emerged were brought into sharp focus
by the work of Tietze and Dehn in the first decade of the
twentieth century and drove much of combinatorial group
theory for the remainder of the century.

Not all of the epoch-defining problems came from topol-
ogy: other areas of mathematics threw up fundamental
questions, typically of forms such as: Does there exist a
group of the following type? Which groups have the follow-
ing property? What are the subgroups of . . . ? Is the follow-
ing group infinite? When can one determine the structure
of a group from its finite quotients? In the sections that fol-
low I shall attempt to illustrate the mathematical culture
associated with questions of this kind, but let me imme-
diately mention some easily stated but difficult classical
problems. (1) Let G be a group that is finitely generated
and suppose that there is some positive integer n such that
xn = 1 for every x in G. Must G be finite? (2) Is there
a finitely presented group Γ and a surjective homomor-
phism φ : Γ → Γ such that φ(γ) = 1 for some γ �= 1?
(3) Does there exist a finitely presented, infinite, simple
group (??)? (4) Is every countable group isomorphic to a
subgroup of a finitely generated group, or even a finitely
presented group?

The first of these questions was asked by Burnside in
1902 and the second by Hopf in connection with his study
of degree-1 maps between manifolds. I shall present the
answers to all four questions (in 5) to illustrate an impor-
tant aspect of both combinatorial and geometric group
theory—one develops techniques that allow the construc-
tion of explicit groups with prescribed properties. Such con-
structions are of particular interest when they illustrate
the diversity of possible phenomena in other branches of
mathematics.

Another kind of question that raises basic issues in com-
binatorial group theory takes the form: Does there exist an
algorithm to determine whether or not a group (or given
elements of a group) has such-and-such a property? For
example, does there exist an algorithm that can take any
finite presentation and decide in a finite number of steps
whether or not the group presented is trivial? Questions of
this type led to a profound and mutually beneficial inter-
action between group theory and logic, given full voice by
the Higman embedding theorem, which we shall discuss
in 6. Moreover, via the conduit of combinatorial group the-
ory, logic has influenced topology as well: one uses group-
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theoretic constructions to show, for example, that there is
no algorithm to determine which pairs of compact trian-
gulated manifolds are homeomorphic in dimensions 4 and
above. This shows that certain kinds of classification results
that have been obtained in two and three dimensions do
not have higher-dimensional analogues.

One might reasonably regard combinatorial group theory
as the attempt to develop algebraic techniques to solve
the types of questions described above, and in the course
of doing so to identify classes of groups that are worthy
of particular study. This last point, the question of which
groups deserve our attention, is tackled head-on in the final
section of this article.

Some of the triumphs of combinatorial group theory are
intrinsically combinatorial in nature, but many more have
had their true nature revealed by the introduction of geo-
metric techniques in the past twenty years. A fine example
of this is the way in which Gromov’s insights have con-
nected algorithmic problems in group theory to so-called
filling problems in Riemannian geometry. Moreover, the
power of geometric group theory is by no means confined
to improving the techniques of combinatorial group theory:
it naturally leads one to think about many other issues of
fundamental importance. For example, it provides a con-
text in which one can illuminate and vastly extend classical
rigidity theorems (??), such as that of Mostow. The key
to applications such as this is the idea that finitely gener-
ated groups can usefully be regarded as geometric objects
in their own right. This idea has its origins in the work
of cayley (??) (1878) and Dehn (1905) but its full force
was recognized and promoted by Gromov, starting in the
1980s. It is the key idea that underpins the later parts of
this article.

2 Presenting Groups

How should one describe a group? An example will illus-
trate the standard way of doing so and give some idea of
why it is often appropriate.

Consider the familiar tiling of the Euclidean plane by
equilateral triangles. How might you describe the full group
Γ∆ of symmetries of this tiling, i.e., the rigid motions of
the plane that send tiles to tiles? Let us focus on a single
tile T and a particular edge e of T , and use this to pick
out three symmetries. The first, which we shall call α, is
the reflection of the plane in the line that contains e and
the other two, β and γ, are the reflections in the lines that
join the endpoints of e to the midpoints of the opposite
edges in T . With some effort one can convince oneself that
every symmetry of the tiling can be obtained by performing

these three operations repeatedly in a suitable order. One
expresses this by saying that the set {α, β, γ} generates the
group Γ∆.

A further useful observation is that if one performs the
operation α twice, the tiling is returned to its original posi-
tion: that is, α2 = 1. Likewise, β2 = γ2 = 1. One can also
verify that (αβ)6 = (αγ)6 = (βγ)3 = 1.

It turns out that the group Γ∆ is completely determined
by these facts alone—a statement that we summarize by
the notation

Γ∆ = 〈α, β, γ | α2, β2, γ2, (αβ)6, (αγ)6, (βγ)3〉.
The aim of the rest of this section is to say in more detail
what this means.

To begin with, notice that from the facts we are given
we can deduce others: for example, bearing in mind that
β2 = γ2 = (βγ)3 = 1, we can show that

(γβ)3 = (γβ)3(βγ)3 = 1

as well (where the last equality follows after repeatedly
canceling pairs of the form ββ or γγ). We wish to convey
the idea that in Γ∆ there are no relationships between the
generators except those that follow from the facts above by
this kind of argument.

Now let us try to say this more formally. We define a set
of generators for a group Γ to be a subset S ⊂ Γ such that
every element of Γ is equal to some product of elements of
S and their inverses. That is, every element can be written
in the form sε11 sε22 · · · sεn

n , where each si is an element of S
and each εi is 1 or −1. We then call a product of this kind
a relation if it is equal to the identity in Γ .

There is an awkward ambiguity here. When we talk
about “the product” of some elements of Γ , it sounds as
though we are referring to another element of Γ , but we cer-
tainly did not mean this at the end of the last paragraph: a
relation is not the identity element of Γ but rather a string
of symbols such as ab−1a−1bc that yields the identity in Γ
when you interpret a, b, and c as generators in the set S. In
order to be clear about this, it is useful to define another
group, known as the free group F (S).

For concreteness we shall describe the free group with
three generators, taking our set S to be {a, b, c}. A typical
element is a “word” in the elements of S and their inverses,
such as the expression ab−1a−1bc considered in the previ-
ous paragraph. However, we sometimes regard two words
as the same: for instance, abcc−1ac and abab−1bc are the
same because they become identical when we cancel out the
inverse pairs cc−1 and b−1b. More formally, we define two
such words to be equivalent and say that the elements of
the free group are the equivalence classes (??). To multi-
ply words together, we just concatenate them: for instance,
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the product of ab−1 and bcca is ab−1bcca, which we can
shorten to acca. The identity is the “empty word.” This is
the free group on three generators a, b, c. It should be clear
how to generalize it to an arbitrary set S, though we shall
continue to discuss the set S = {a, b, c}.

A more abstract way of characterizing the free group on
a, b, and c is to say that it has the following universal
property: if G is any group and φ is any function from
S = {a, b, c} to G, then there is a unique homomorphism
Φ from F (S) to G that takes a to φ(a), b to φ(b), and c to
φ(c). Indeed, if we want Φ to have these properties, then
our definition is forced upon us: for example, Φ(ab−1ca)
will have to be φ(a)φ(b)−1φ(c)φ(a), by the definition of a
homomorphism. So the uniqueness is obvious. The rough
reason that this definition really does give rise to a well-
defined homomorphism is that the only equations that are
true in F (S) are ones that are true in all groups: in order for
Φ not to be a homomorphism, one would need a relation to
hold in F (S) that did not hold in G, but this is impossible.

Now let us return to our example Γ∆. We would like
to prove that it is (isomorphic to) the “freest” group with
generators α, β, and γ that satisfies the relations α2 =
β2 = γ2 = (αβ)6 = (αγ)6 = (βγ)3 = 1. But what exactly
is this “freest” group that we are claiming is isomorphic to
Γ∆?

To avoid confusion about the meaning of α, β, and γ

(are they elements of Γ∆ or of the group that we are trying
to construct that will turn out to be isomorphic to Γ∆?)
we shall use the letters a, b, and c when we answer this
question. Thus, we are trying to build the “freest” group
with generators a, b, and c that satisfies the relations a2 =
b2 = c2 = (ab)6 = (ac)6 = (bc)3 = 1, which we denote by
G = 〈a, b, c | a2, b2, c2, (ab)6, (ac)6, (bc)3〉.

There are two ways of going about this task. One is to
imitate the above discussion of the free group itself, except
that now we say that two words are equivalent if you can
get from one to the other by inserting or deleting not just
inverse pairs but also one of the words a2, b2, c2, (ab)6,
(ac)6, or (bc)3. For example, ab2c is equivalent to ac in this
group. G is then defined to be the set of equivalence classes
of words with the product coming from concatenation.

A neater way to obtain G is more conceptual and
exploits the universal property of the free group. As G

is to be generated by a, b, and c, the universal prop-
erty of the free group F (S) tells us that there will have
to be a unique homomorphism Φ from F (S) to G such
that Φ(a) = a, Φ(b) = b, and Φ(c) = c. Moreover, we
require that all of a2, b2, c2, (ab)6, (ac)6, and (bc)3 must
map to the identity element in G. It follows that the ker-
nel of Φ is a normal subgroup of F (S) that contains the

set R = {a2, b2, c2, (ab)6, (ac)6, (bc)3}. Let us write 〈〈R〉〉
for the smallest normal subgroup of F (S) that contains R
(or equivalently the intersection of all normal subgroups
of F (S) that contain R). Then there is a surjective homo-
morphism from the quotient (??) F (S)/〈〈R〉〉 to any group
that is generated by a, b, and c and satisfies the relations
a2 = b2 = c2 = (ab)6 = (ac)6 = (bc)3 = 1. This quotient
itself is the group we are looking for: it is the largest group
generated by a, b, and c that satisfies the relations in R.

Our assertion about Γ∆ is that it is isomorphic to the
group G = 〈a, b, c | a2, b2, c2, (ab)6, (ac)6, (bc)3〉 that we
have just described (in two ways). More precisely, the map
from F (S)/〈〈R〉〉 to Γ∆ that takes a to α, b to β, and c to
γ is an isomorphism.

The above construction is very general. If we are given a
group Γ , then a presentation of Γ is a set S that generates
Γ , together with a set R ⊂ F (S) of relations, such that Γ
is isomorphic to the quotient F (S)/〈〈R〉〉. If both S and R

are finite sets, one says that the presentation is finite. A
group is finitely presented if it has a finite presentation.

We can also define presentations in the abstract, without
mentioning a group Γ in advance: given any set S and any
subset R ⊂ F (S), we just define 〈S | R〉 to be the group
F (S)/〈〈R〉〉. This is the “freest” group generated by S that
satisfies the relations in R: the only relations that hold in
〈S | R〉 are the ones that can be deduced from the relations
R.

A psychological advantage of switching to this more
abstract setting is that, whereas previously we began with
a group Γ and asked how we might present it, we can now
write down group presentations at will, starting with any
set S and prescribing a set of words R in the symbols S±1.
This gives us a very flexible way of constructing a wide vari-
ety of groups. We might, for example, use a group presenta-
tion to encode a question from elsewhere in mathematics.
We could then ask about the properties of the group thus
defined, and see what they had to tell us about our original
problem.

3 Why Study Finitely Presented Groups?

Groups arise across the whole of mathematics as groups of
automorphisms. These are maps from an object to itself
that preserve all of the defining structure: two examples
are the invertible linear maps (??) from a vector space
(??) to itself, and the homeomorphisms from a topolog-
ical space (??) to itself. Groups encapsulate the essence
of symmetry and for this reason demand our attention.
We are driven to understand their general nature, iden-
tify groups that deserve particular attention, and develop
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techniques for constructing new groups (from old ones, or
from new ideas). And, reversing the process of abstraction,
when given a group, we want to find concrete instances of
it. For example, we might like to realize it as the group of
automorphisms of some interesting object, with the aim of
illuminating the nature of both the object and the group.
(See, for example, the article on representation theory
(??).)

3.1 Why Present Groups in Terms of Generators

and Relations?

The short answer is that this is the form in which groups
often “appear in nature.” This is particularly true in topol-
ogy. Before looking at a general result that illustrates this
point, let us examine a simple example. Consider the group
D of all isometries of R that are generated by the reflections
at the points 0, 1, and 2: that is, the group generated by the
three functions α0, α1, and α2, which take x to −x, 2 − x,
and 4 − x, respectively. You may recognize this group to
be the infinite dihedral group, and you may notice that the
generator α2 is superfluous, since it can be generated from
α0 and α1. But let us close our eyes to these observations
as we let a presentation emerge from the action.

To this end, we choose an open interval U with the prop-
erty that the images of U under the maps in D cover the
whole of the real line, say U = (− 1

2 ,
3
2 ). Now let us record

two pieces of data: the only elements of D (apart from the
identity) that fail to move U completely off itself are α0

and α1, and, among all products of length at most 3 in
those two letters, the only nontrivial ones that act as the
identity on R are α2

0 and α2
1. You may like to prove that

〈α0, α1 | α2
0, α

2
1〉 is a presentation of D.

This is in fact a special case of a general result, which
we now state. (The proof of it is somewhat involved.) Let
X be a topological space that is both path connected
(??) and simply connected (??), and let Γ be a group
of homeomorphisms from X to itself. Then any choice of
path-connected open subset U ⊂ X such that the images
of U cover all of X gives rise to a presentation Γ = 〈S | R〉,
where S = {γ ∈ Γ | γ(U) ∩ U �= ∅} and R consists of all
words w ∈ F (S) of length at most 3 such that w = 1 in Γ .
Thus, the identification of a suitable subset U provides one
with a presentation of Γ , and the task of a group theorist is
to determine the nature of the group from this information.

To see how difficult this task is, you might like to consider
the groups

Gn = 〈a1, . . . , an | a−1
i ai+1aia

−2
i+1, i = 1, . . . , n〉,

where we interpret i + 1 as 1 when i = n. One of G3 and
G4 is trivial and the other is infinite. Can you decide which
is which?

To illustrate a more subtle point, let us consider a finitely
presented group that we perhaps feel we understand: the
group Γ∆ that we were discussing earlier. If we want to
describe this group to a blind friend unfamiliar with the
triangular tiling of the plane, what can we say to make
her understand the group, or at least convince her that we
understand the group?

Our friend might reasonably ask us to list the elements
of our group, so we begin to describe them as products
(words) in the given generators. But as we begin to do
so we hit a problem: we do not want to list any element
more than once and in order to avoid redundancy we have
to know which pairs of words w1, w2 represent the same
element of Γ∆; equivalently, we must be able to recognize
which words w−1

1 w2 are relations in the group. Determin-
ing which words are relations is called the word problem
for the group. Even in Γ∆ this takes some work, and in the
groups Gn we quickly find ourselves at a loss.

Note that as well as allowing one to list the elements
of the group effectively, a solution to the word problem
also allows one to determine the multiplication table, since
deciding whether w1w2 = w3 is the same as deciding
whether w1w2w

−1
3 = 1.

3.2 Why Finitely Presented Groups?

The packaging of infinite objects into finite amounts of
data arises throughout mathematics in the various guises of
compactness (??). Finite presentation is basically a com-
pactness condition: a group can be finitely presented if and
only if it is the fundamental group of a reasonable compact
space, as we shall see later.

Another reason for studying finitely presented groups
is that the Higman embedding theorem (to be discussed
later) allows us to encode questions about arbitrary Tur-
ing machines as questions about such groups and their
subgroups.

4 The Fundamental Decision Problems

In exploring the geometry and topology of low-dimensional
manifolds at the beginning of the twentieth century, Max
Dehn saw that many of the problems that he was wrestling
with could be “reduced” to questions about finitely pre-
sented groups. For example, he gave a simple formula for
associating with a knot diagram (??) a finite presenta-
tion of a group. There was one relation for each crossing in
the diagram and he argued that the resulting group would
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be isomorphic to Z if and only if the knot was the unknot:
that is, if and only if it could be continuously deformed into
a circle. It is extremely hard to tell by staring at a knot
diagram whether it is actually the unknot, so this seems
like a useful reduction until one realizes that it can be just
as hard to tell whether a finitely presented group is iso-
morphic to Z. For example, here is the presentation of Z

that Dehn’s recipe associates with one of smallest possible
pictures of the unknot, namely a diagram with just four
crossings:

〈a1, a2, a3, a4, a5 |
a−1
1 a3a

−1
4 , a2a

−1
3 a1, a3a

−1
4 a−1

2 , a4a
−1
5 a4a

−1
3 〉.

Thus Dehn’s investigations led him to understand how
difficult it is to extract information from a group presen-
tation. In particular, he was the first to identify the fun-
damental role of the word problem, which we alluded to
earlier, and he was one of the first to begin to understand
that there are fundamental problems associated with the
challenge of developing algorithms that extract knowledge
from well-defined objects such as group presentations. In
his famous article of 1912 Dehn writes:

The general discontinuous group is given by n genera-
tors and m relations between them. . . . Here there are
above all three fundamental problems whose solution
is very difficult and which will not be possible without
a penetrating study of the subject.
1. The identity [word] problem: An element of
the group is given as a product of generators. One is
required to give a method whereby it may be decided
in a finite number of steps whether this element is the
identity or not.
2. The transformation [conjugacy] problem:
Any two elements S and T of the group are given. A
method is sought for deciding the question whether S
and T can be transformed into each other, i.e. whether
there is an element U of the group satisfying the
relation

S = UTU−1.

3. The isomorphism problem: Given two groups,
one is to decide whether they are isomorphic or not
(and further, whether a given correspondence between
the generators of one group and elements of the other
is an isomorphism or not).

We shall take these problems as the starting point for
three lines of enquiry. First, we shall work toward an outline
of the proof that all of these problems are, in a strict sense,
unsolvable for general finitely presented groups.

The second use that we shall make of Dehn’s problems
is to hold them up as fundamental measures of complex-
ity for each of the classes of groups that we subsequently

encounter. If we can prove, for example, that the isomor-
phism problem is solvable in one class of groups but not
in another, then we will have given genuine substance to
previously vague assertions to the effect that the second
class is “harder.”

Finally, I want to make the point that geometry lies at
the heart of the fundamental issues in combinatorial group
theory: it may not be immediately obvious, but its implicit
presence is nonetheless a fundamental trait of group theory
and not something imposed for reasons of taste. To illus-
trate this point I shall explain how the study of the large-
scale geometry of least-area disks in Riemannian manifolds
is intimately connected with the study of the complexity
of word problems in arbitrary finitely presented groups.

5 New Groups from Old

Suppose that you have two groups, G1 and G2, and want
to combine them to form a new group. The first method
that is taught in a typical course on group theory is to take
the Cartesian product G1 ×G2: a typical element has the
form (g, h) with g ∈ G1 and h ∈ G2, and the product of
(g, h) with (g′, h′) is defined to be (gg′, hh′). The set of
elements of the form (g, e) (where e is the identity of G2)
is a copy of G1 inside G1 × G2, and similarly the set of
elements of the form (e, h) is a copy of G2.

These copies have nontrivial relations between their ele-
ments: for example, (e, h)(g, e) = (g, e)(e, h). We would
now like to take two groups Γ1 and Γ2 and combine them
in a different way to form a group called the free product
Γ1∗Γ2, which contains copies of Γ1 and Γ2 and as few addi-
tional relations as possible. That is, we would like there to
be embeddings ij : Γj ↪→ Γ1 ∗Γ2 so that i1(Γ1) and i2(Γ2)
generate Γ1 ∗ Γ2 but they are not intertwined in any way.
This requirement is neatly encapsulated by the following
universal property: given any group G and any two homo-
morphisms φ1 : Γ1 → G and φ2 : Γ2 → G, there should
be a unique homomorphism Φ : Γ1 ∗ Γ2 → G such that
Φ ◦ ij = φj for j = 1, 2. (Less formally, Φ behaves like φ1

on the copy of Γ1 and behaves like φ2 on the copy of Γ2.)
It is easy to check that this property characterizes Γ1∗Γ2

up to isomorphism, but it leaves open the question of
whether Γ1 ∗ Γ2 actually exists. (These are the standard
pros and cons of defining an object by means of a uni-
versal property.) In the present setting, existence is easily
established using presentations: let 〈A1 | R1〉 be a presen-
tation of Γ1 and let 〈A2 | R2〉 be a presentation of Γ2,
with A1 and A2 disjoint, and then define Γ1 ∗ Γ2 to be
〈A1 � A2 | R1 � R2〉 (where � denotes a union of disjoint
sets).
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More intuitively, one can define Γ1 ∗ Γ2 to be the set of
alternating sequences a1b1 · · · anbn with each ai belong-
ing to Γ1 and each bj belonging to Γ2, with the extra
condition that none of the ai and bj equals the identity,
except possibly a1 or bn. The group operations in Γ1 and
Γ2 extend to this set in an obvious way: for example,
(a1b1a2)(a′

1b
′
1) = a1b1a′

2b
′
1, where a′

2 = a2a′
1, except that

if a2a′
1 = 1 then the product cancels down to a1b′2, where

b′2 = b1b′1.
Free products occur naturally in topology: if one has

topological spaces X1, X2 with marked points p1 ∈ X1,
p2 ∈ X2, then the fundamental group of the space X1 ∨X2

obtained from X1 �X2 by making the identification p1 =
p2 is the free product of π1(X1, p1) and π1(X2, p2). The
Seifert–van Kampen theorem tells one how to present the
fundamental group of a space obtained by gluing X1 and
X2 along larger subspaces. If the inclusion of the subspaces
gives rise to an injection of fundamental groups, then one
can express the fundamental group of the resulting space
as an amalgamated free product, which we now define.

Let Γ1 and Γ2 be two groups. If some other group con-
tains copies of Γ1 and Γ2, then the intersection of those
copies must contain the identity element. The free product
Γ1 ∗ Γ2 was the freest group we could build that was sub-
ject to this minimal constraint. Now we shall insist that the
copies of Γ1 and Γ2 intersect nontrivially, specify which of
their subgroups must lie in the intersection, and build the
freest group that satisfies this constraint.

Suppose, then, that A1 is a subgroup of Γ1 and that
φ is an isomorphism from A1 to a subgroup A2 of Γ2.
As in the example of the free product, one can define the
“freest product that identifies A1 and A2” by means of a
universal property. Again, one can establish the existence
of such a group using presentations: if Γ1 = 〈S1 | R1〉 and
Γ2 = 〈S2 | R2〉, the group we seek takes the form

〈S1 � S2 | R1 �R1 � T 〉.
Here, T = {uav−1

a | a ∈ A1}, where ua is some word that
represents a in (the presentation of) Γ1 and va is a word
that represents φ(a) in Γ2.

This group is called the amalgamated free product of Γ1

and Γ2 along A1 and A2. It is often described by the casual
and ambiguous notation Γ1 ∗A1=A2 Γ2, or even Γ1 ∗A Γ2,
where A ∼= Aj is an abstract group.

Unlike with free products, it is no longer obvious that
the maps Γi → Γ1 ∗A Γ2 implicit in this construction are
injective, but they do turn out to be, as was shown by
Schreier in 1927.

A related construction of Higman, Neumann, and Neu-
mann in 1949 answers the following question: given a group

Γ and an isomorphism ψ : B1 → B2 between subgroups
of Γ , can one always embed Γ in a bigger group so that ψ
becomes the restriction to B1 of a conjugation?

By now, having seen the idea in the context of both
free products and amalgamated free products, the reader
may guess how one goes about answering this question:
one writes down the presentation of a universal candidate
for the desired enveloping group, denoted Γ∗ψ , and then
one sets about proving that the natural map from Γ to
Γ∗ψ (which takes each word to itself) is injective. Thus,
given Γ = 〈A | R〉, we introduce a symbol t /∈ A (usually
called the stable letter), we choose for each b ∈ B1 words
b̂, b̃ ∈ F (A) with b̂ = b and b̃ = ψ(b) in Γ , and we define

Γ∗ψ := 〈A, t | R, tb̂t−1b̃−1 (b ∈ B1)〉.
This is the freest group we can build from Γ by adjoining a
new element t and requiring it to satisfy all the equations
we want it to, namely tb̂t−1 = b̃ for every b ∈ B1 (which
we can think of as saying that tbt−1 = ψ(b)). This group
is called an HNN extension of Γ (after Higman, Neumann,
and Neumann).

Now we must show that the natural map from Γ to Γ∗φ
is injective. That is, if you take an element γ of Γ and
regard it as an element of Γ∗ψ , you should not be able
to use t and the relations in Γ∗ψ to cancel γ down to
the identity. This is proved with the help of the following
more general result known as Britton’s lemma. Suppose
that w is a word in the free group F (A, t). Then the only
circumstances under which it can give rise to the identity
in the group Γ∗ψ are if either it does not involve t and
represents the identity in Γ or it involves t but can be
simplified in an obvious way by containing a “pinch.” A
pinch is a subword of the form tbt−1, where b is a word in
F (A) that represents an element of B1 (in which case we
can replace it by ψ(b)), or one of the form t−1b′t, where b′

represents an element of B2 (in which case we can replace
it by ψ−1(b′)). Thus, if you are given a word that involves
t and contains no pinches, then you know that it cannot
be canceled down to the identity.

A similar noncancellation result holds for the amalga-
mated free product Γ1 ∗A1=A2 Γ2. If g1, . . . , gn belong to
Γ1 but not to A1 and h1, . . . , hn belong to Γ2 but not
to A2, then the word g1h1g2h2 · · · gnhn cannot equal the
identity in Γ1 ∗A1=A2 Γ2.

These noncancellation results do far more than show that
the natural homomorphisms we have been considering are
injective: they also demonstrate further aspects of freeness
in amalgamated free products and HNN extensions. For
example, suppose that in the amalgamated free product
Γ1 ∗A1=A2 Γ2 we can find an element g of Γ1 that generates
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an infinite group which intersects A1 in the identity and
an element h of Γ2 that does the same for A2. Then the
subgroup of Γ1 ∗A1=A2 Γ2 generated by g and h is the free
group on those two generators. With a little more effort,
one can deduce that any finite subgroup of Γ1 ∗A1=A2 Γ2

has to be conjugate to a subgroup of the obvious copy of
either Γ1 or Γ2. Similarly, the finite subgroups of Γ∗ψ are
conjugates of subgroups of Γ . We shall exploit these facts
in the constructions that follow.

There are many ways of combining groups that I have
not mentioned here. I have chosen to focus on amalgamated
free products and HNN extensions partly because they lead
to transparent solutions of the basic problems discussed
below but more because of their primitive appeal and the
way in which they arise naturally in the calculation of fun-
damental groups. They also mark the beginning of arboreal
group theory, which we will discuss later. If space allowed,
I would go on to describe semidirect and wreath products,
which are also indispensable tools of the group theorist.

Before turning to some applications of HNN extensions
and amalgamated free products, I want to return to the
Burnside problem, which asks if there exist finitely gen-
erated infinite groups all of whose elements have a given
finite order. This question generated important develop-
ments throughout the twentieth century, particularly in
Russia. It is appropriate to mention it here because it pro-
vides another illustration of the fact that it can be useful to
study a universal object in order to solve a general question.

5.1 The Burnside Problem

Given an exponent m, one clarifies the problem at hand
by considering the free Burnside group Bn,m given by the
presentation 〈a1, . . . , an | Rm〉, where Rm consists of all
mth powers in the free group F (a1, . . . , an). It is clear that
Bn,m maps onto any group with at most n generators in
which every element has order dividing m. Therefore, there
exists a finitely generated infinite group with all elements
of the same finite order if and only if, for suitable values of
n and m, the group Bn,m is infinite. Thus, a question that
takes the form, Does there exist a group such that . . . ?,
becomes a question about just one group.

Novikov and Adian showed in 1968 that Bn,m is infinite
when n � 2 and m � 667 is odd. Determining the exact
range of values for which Bn,m is infinite is an active area
of research. Of far greater interest is the open question of
whether there exist finitely presented infinite groups that
are quotients of Bn,m. Zelmanov was awarded the Fields
Medal for proving that each Bn,m has only finitely many
finite quotients.

5.2 Every Countable Group Can Be Embedded

in a Finitely Generated Group

Given a countable group G we list its elements,
g0, g1, g2, . . . , taking g0 to be the identity. We then take
a free product of G with an infinite cyclic group 〈s〉 ∼= Z.
Let Σ1 be the set of all elements of G ∗ Z of the form
sn = gnsn with n � 1. Then the subgroup 〈Σ1〉 generated
by Σ1 is isomorphic to the free group F (Σ1). Similarly,
if we let Σ2 = {s2, s3, . . . } (so it is Σ1 with the element
s1 = g1s removed), then 〈Σ2〉 is isomorphic to F (Σ2). It
follows that the map ψ(sn) = sn+1 gives rise to an isomor-
phism from 〈Σ1〉 to 〈Σ2〉. Now take the HNN extension
(G ∗ Z)∗ψ , whose stable letter we denote by t. This group
contains a copy of G, as we noted before. Moreover, since
we have ensured that tsnt−1 = sn+1 for every n � 1,
it can be generated by just the three elements s1, s, and
t. Thus, we have embedded an arbitrary countable group
into a group with three generators. (We leave the reader to
think about how one can vary this construction to produce
a group with two generators.)

5.3 There Are Uncountably Many

Nonisomorphic Finitely Generated Groups

This was proved by B. H. Neumann in 1932. Since there
are infinitely many primes, there are uncountably many
nonisomorphic groups of the form

⊕
p∈P Zp, where P is

an infinite set of primes. We have seen that each of these
groups can be embedded in a finitely generated group, and
our earlier comments on finite subgroups of HNN exten-
sions show that no two of the resulting finitely generated
groups are isomorphic.

5.4 An Answer to Hopf’s Question

A group G is called Hopfian if every surjective homo-
morphism from G to G is an isomorphism. Most famil-
iar groups have this property: for example, finite groups
obviously do, as do Z

n (as you can prove using linear alge-
bra) and free groups. So too do groups of matrices such as
SL(n,Z), as we shall discuss in a moment. An example of
a non-Hopfian group is the group of all infinite sequences
of integers (under pointwise addition), since the function
that takes (a1, a2, a3, . . . ) to (a2, a3, a4, . . . ) is a surjective
homomorphism that contains (1, 0, 0, . . . ) in its kernel. But
is there a finitely presented example? The answer is yes,
and Higman was the first to construct one. The following
examples are due to Baumslag and Solitar.

Let p � 2 be an integer and identify Z with the free
group 〈a〉 generated by a single generator a. Then the sub-
groups pZ and (p+ 1)Z of Z are identified with the powers
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of ap and ap+1, respectively. Let ψ be the isomorphism
between these subgroups that takes ap to ap+1 and con-
sider the corresponding HNN extension B. This has pre-
sentation B = 〈a, t | ta−pt−1ap+1〉. The homomorphism
ψ : B → B defined by t �→ t, a �→ ap is clearly a sur-
jection but its kernel contains, for example, the element
c = ata−1t−1a−2tat−1a, which does not contain a pinch
and is therefore not equal to the identity, by Britton’s
lemma. (If you want to convince yourself how useful this
lemma is, set p = 3 and try to prove directly that c is not
equal to the identity in the group B just defined.)

5.5 A Group that Has No Faithful Linear

Representation

One can show that a finitely generated group G of matrices
over any field is residually finite, which means that for each
nontrivial element g ∈ G there exists a finite group Q and
a homomorphism π : G → Q with π(g) �= 1. For example,
if you are given an element g ∈ SL(n,Z), then you can
pick an integer m bigger than the absolute values of all the
entries in g (which is an n × n matrix) and consider the
homomorphism from SL(n,Z) to SL(n,Z/mZ) that reduces
the matrix entries mod m. The image of g in the finite
group SL(n,Z/mZ) is clearly nontrivial.

Non-Hopfian groups are not residually finite, and hence
are not isomorphic to a group of matrices over any field.
One can see that the non-Hopfian group B defined above
is not residually finite by considering what happens to the
nontrivial element c. We saw that there was a surjective
homomorphism ψ : B → B with ψ(c) = 1. Let cn be an
element such that ψn(cn) = c (which exists since ψ is a sur-
jection). If there were a homomorphism π from B to a finite
group Q with π(c) �= 1, then we would have infinitely many
distinct homomorphisms from B to Q, namely the compo-
sitions π ◦ψn; these are distinct because π ◦ψm(cn) = 1 if
m > n and π ◦ ψn(cn) = π(c) �= 1. This is a contradiction,
since a homomorphism from a finitely generated group to a
finite group is determined by what it does to the generators,
so there can only be finitely many such homomorphisms.

5.6 Infinite Simple Groups

Britton’s lemma actually tells us more than that c �= 1: the
subgroup Λ of B generated by t and c is in fact a free group
on those generators. Thus we may form the amalgamated
free product Γ of two copies of B, denoted B1 and B2, by
gluing together the two copies of Λ with the isomorphism
c1 �→ t2, t1 �→ c2. We have seen that in any finite quotient
of Γ = B1 ∗Λ B2, the elements c1 (= t2) and c2 (= t1)
must have trivial image, and it is easy to deduce from this

that in fact the quotient must be trivial. Thus Γ is an
infinite group with no finite quotients. It follows that the
quotient of Γ by any maximal proper normal subgroup is
also infinite (and it is simple by maximality).

The simple group that we have constructed is infinite and
finitely generated but it is not finitely presentable. Finitely
presented infinite simple groups do exist, but they are much
harder to construct.

6 Higman’s Theorem and Undecidability

We have seen that there are uncountably many (noniso-
morphic) finitely generated groups. But as there are only
countably many finitely presented groups, only countably
many finitely generated groups can be subgroups of finitely
presented groups. Which ones are they?

A complete answer to this question is provided by the
following beautiful and deep theorem proved by Graham
Higman in 1961. It says, roughly, that the groups that arise
are all those that are algorithmically describable. (If you
have no idea what this means, even roughly, then you might
like to read the insolubility of the halting problem
(??) before continuing with this section.)

A set S of words over a finite alphabet A is called recur-
sively enumerable if there is some algorithm (or more for-
mally, turing machine (??)) that can produce a complete
list of the elements of S. A case of particular interest is
when A is just a singleton, in which case a word is deter-
mined by its length and we can think of S as a set of
nonnegative integers. The elements of S need not be listed
in a sensible order, so having an algorithm that produces
an exhaustive list of S does not mean that one can use
the algorithm to determine that some given word w does
not belong to S: if you imagine standing by your computer
as it enumerates S, there will not in general come a time
when you can say to yourself, “If it was going to appear,
then it would have done so by now,” and therefore be cer-
tain that it is not in S. If you want an algorithm with this
further property, then you need the stronger notion of a
recursive set, which is a set S such that S and its comple-
ment are both recursively enumerable. Then you can list
all the elements that belong to S and you can also list all
the elements that do not belong to S.

A finitely generated group is said to be recursively pre-
sentable if it has a presentation with a finite number of
generators and a recursively enumerable set of defining
relations. In other words, such a group is not necessar-
ily finitely presented, but at least the presentation of the
group is “nice” in the sense that it can be generated by
some algorithm.
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Higman’s embedding theorem states that a finitely gen-
erated group G is recursively presentable if and only if it
is isomorphic to a subgroup of a finitely presented group.

To get a feeling for how nonobvious this is, you might
consider the following presentation of the group of all ratio-
nals under addition, in which the generator an corresponds
to the fraction 1/n!:

Q = 〈a1, a2, · · · | ann = an−1 ∀n � 2〉.
Higman’s theorem tells us that Q can be embedded in a
finitely presented group, but no truly explicit embedding
is known.

The power of Higman’s theorem is illustrated by the ease
with which it implies the celebrated undecidability results
that were rightly regarded as watersheds of twentieth-
century mathematics. In order to make this case convinc-
ingly, I shall give a complete proof (except that I shall
assume some of the facts mentioned earlier) that there
exist finitely presented groups with unsolvable word prob-
lems, and also that there are sequences of finitely presented
groups among which one cannot decide isomorphism. We
shall also see how these group-theoretic results can be used
to translate undecidability phenomena into topology.

The basic seed of undecidability comes from the fact that
there are recursively enumerable subsets S ⊂ N that are not
recursive. Using this fact one can readily construct finitely
generated groups with an unsolvable word problem: given
such a set of integers S we consider

J := 〈a, b, t | t(bnab−n)t−1 = bnab−n ∀n ∈ S〉.
This is the HNN extension of the free group F (a, b) associ-
ated with the identity map L → L, where L is the subgroup
generated by {bnab−n : n ∈ S}. Britton’s lemma tells us
that the word wm := t(bmab−m)t−1(bma−1b−m) equals
1 ∈ J if and only if m ∈ S, and by definition there is no
algorithm to decide if m ∈ S, so we cannot decide which
of the wm are relations. Thus J has an unsolvable word
problem.

That there exist finitely presented groups for which the
word problem is unsolvable is a much deeper fact, but with
Higman’s embedding theorem to hand the proof becomes
almost trivial: Higman tells us that J can be embedded in
a finitely presented group Γ , and it is a relatively straight-
forward exercise to show that if one cannot decide which
words in the generators of J represent the identity, then
one cannot decide for arbitrary words in the generators of
Γ either.

Once one has a finitely presented group with an unsolv-
able word problem, it is easy to translate undecidability
into all manner of other problems. For example, suppose

that Γ = 〈A | R〉 is a finitely presented group with an
unsolvable word problem, where A = {a1, . . . , an} and no
ai equals the identity in Γ . For each word w made out of
the letters in A and their inverses, define a group Γw to
have presentation

〈A, s, t | R, t−1(siais−i)t(siws−i), i = 1, . . . , n〉.
It is not hard to show that if w = 1 in Γ then Γw is the
free group generated by s and t. If w �= 1, then Γw is an
HNN extension. In particular, it contains a copy of Γ , and
hence has an unsolvable word problem, which means that
it cannot be a free group. Thus, since there is no algorithm
to decide whether w = 1 in Γ , one cannot decide which of
the groups Γw are isomorphic to which others.

A variant of this argument shows that there is no
algorithm to determine whether or not a given finitely
presented group is trivial.

We shall see in a moment that every finitely presented
group G is the fundamental group of some compact four-
dimensional manifold. By following a standard proof of this
theorem with considerable care, Markov proved in 1958
that in dimensions 4 and above there is no algorithm to
decide which compact manifolds (presented as simplicial
complexes, for example) are homeomorphic. His basic idea
was to show that if there were an algorithm to deter-
mine which triangulated 4-manifolds are homeomorphic,
then one could use it to determine which finitely presented
groups are trivial, which we know is impossible. In order to
implement this idea one has to be careful to arrange that
the 4-manifolds associated with different presentations of
the trivial group are homeomorphic: this is the delicate
part of the argument.

Strikingly, there does exist an algorithm to decide which
compact three-dimensional manifolds are isomorphic. This
is an extremely deep theorem that relies in particular
on Perelman’s solution to thurston’s geometrization
conjecture (??).

7 Topological Group Theory

Let us change perspective now and look at the symbols
P ≡ 〈a1, . . . , a2 | r1, . . . , rm〉 through the eyes of a topolo-
gist. Instead of interpreting P as a recipe for constructing a
group, we regard it as a recipe for constructing a topolog-
ical space (??), more specifically a two-dimensional com-
plex. Such spaces consist of points, called vertices, some of
which are linked by directed paths, called edges, or 1-cells.
If a collection of such 1-cells forms a cycle, then it can be
filled in with a face, or 2-cell : topologically speaking, each
face is a disk with a directed cycle as its boundary.
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To see what this complex is, let us first consider the
standard presentation P ≡ 〈a, b | aba−1b−1〉 of Z

2. (This is
generated by a and b and the relation tells us that ab = ba.)
We begin with a graph K1 that has a single vertex and
two edges (which are loops) that are directed and labeled
a and b. Next, we take a square [0, 1] × [0, 1], the sides of
which are directed and labeled a, b, a−1, b−1 as we proceed
around the boundary. Imagine gluing the boundary of the
square to the graph so as to respect the labeling of edges:
with a bit of thought, you should be able to see that the
result is a torus, that is, a surface in the shape of a bagel.
An observation that turns out to be important is that the
fundamental group of the torus is Z

2, the group we started
with.

The idea of “gluing” is made precise by the use of attach-
ing maps: we take a continuous map φ from the boundary
of the square S to the graph K1 that sends the corners
of the square to the vertex of K1 and sends each side
(minus its vertices) homeomorphically onto an open edge.
The torus is then the quotient of K1 � S by the equiva-
lence relation that identifies each x in the boundary of the
square with its image φ(x).

With this more abstract language in hand, it is easy
to see how the above construction generalizes to arbi-
trary presentations: given a presentation P ≡ 〈a1, . . . , an |
r1, . . . , rm〉, one takes a graph with a single vertex and n

oriented loops, which are labeled a1, . . . , an. Then for each
rj one attaches a polygonal disk by gluing its boundary
circuit to the sequence of oriented edges that traces out
the word rj .

In general, the result will not be a surface as it was
for 〈a, b | aba−1b−1〉. Rather, it will be a two-dimensional
complex with singularities along the edges and at the ver-
tex. You may find it instructive to do some more exam-
ples. From 〈a | a2〉 one gets the projective plane; from
〈a, b, c, d | aba−1b−1, cdc−1d〉 one gets a torus and a Klein
bottle stuck together at a point. Picturing the 2-complex
for 〈a, b | a2, b3, (ab)3〉 is already rather difficult.

The construction of K(P ) is the beginning of topologi-
cal group theory. The Seifert–van Kampen theorem (men-
tioned earlier) implies that the fundamental group of K(P )
is the group presented by P . But the group no longer
sits inertly in the form of an inscrutable presentation—
now it acts on the universal covering (??) of K(P ) by
homeomorphisms known as “deck transformations.” Thus,
through the simple construction of K(P ) (and the elegant
theory of covering spaces in topology) we achieve our aim of
realizing an abstract finitely presented group as the group
of symmetries of an object with a potentially rich structure,

on which we can bring global geometric and topological
techniques to bear.

To obtain an improved topological model for our group,
we can embed K(P ) in R

5 (just as one can embed a
finite graph (??) in R

3) and consider the compact four-
dimensional manifold M obtained by taking all points that
are a small fixed distance from the image. (I am assum-
ing that the embedding is suitably “tame,” which one can
arrange.) The mental picture to strive for here is a higher-
dimensional analogue of the surface (sleeve) one gets by
taking the points in R

3 a small fixed distance from an
embedded graph. The fundamental group of M is again
the group presented by P , so now we have our arbitrary
finitely presented group acting on a manifold (the universal
cover of M). This allows us to use the tools of analysis and
differential geometry (??).

The constructions ofK(P ) andM establish the more dif-
ficult implication of the theorem, promised earlier, that a
group can be finitely presented if and only if it is the funda-
mental group of a compact cell complex and of a compact 4-
manifold. This result raises several natural questions. First,
are there better, more informative, topological models for
an arbitrary finitely presented group Γ? And if not, then
what can one say about the classes of groups defined by the
natural constraints that arise when one tries to improve the
model? For example, we would like to construct a lower-
dimensional manifold with fundamental group Γ , enabling
us to exploit our physical insight into three-dimensional
geometry. But it turns out that the fundamental groups of
compact three-dimensional manifolds are very special; this
observation lies near the heart of a great deal of mathemat-
ics at the end of the twentieth century. Other interesting
fields open up when one asks which groups arise as the
fundamental groups of compact spaces satisfying curva-
ture (??) conditions, or constraints coming from complex
geometry.

A particularly rich set of constraints comes from the fol-
lowing question. Can one arrange for an arbitrary finitely
presented group to be the fundamental group of a compact
space (a complex or manifold, perhaps) whose universal
cover is contractible (??)? This is a natural question
from the point of view of topology because a space with
a contractible universal cover is, up to homotopy (??),
completely determined by its fundamental group. If the
fundamental group is Γ , then such a space is called a clas-
sifying space for Γ and its homotopy-invariant properties
provide a rich array of invariants for the group Γ (getting
away from the gross dependence thatK(P ) has on P rather
than Γ ).
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If our earlier discussion of how hard it is to recognize
Γ from P has left you very skeptical about whether this
dependence can actually be removed, then your skepti-
cism is well-founded: there are many obstructions to the
construction of compact classifying spaces for an arbi-
trary finitely presented group; the study of them (under
the generic name finiteness conditions) is a rich area
at the interface of modern group theory, topology, and
homological algebra.

One aspect of this area is the search for natural con-
ditions that ensure the existence of compact classifying
spaces (not necessarily manifolds). This is one of several
places where manifestations of nonpositive curvature play
a fundamental role in modern group theory. More combi-
natorial conditions also arise. For example, Lyndon proved
that for any presentation P ≡ 〈A | r〉 where the single
defining relation r ∈ F (A) is not a nontrivial power, the
universal cover of K(P ) is contractible.

A neighboring and highly active area of research con-
cerns questions of uniqueness and rigidity for classifying
spaces. (Here, as is common, the word rigidity is used to
describe a situation in which requiring two objects to be
equivalent in an apparently weak sense forces them to be
equivalent in an apparently stronger sense.) For example,
the (open) Borel conjecture asserts that if two compact
manifolds have isomorphic fundamental groups and con-
tractible universal covers, then those manifolds must be
homeomorphic.

I have been talking mostly about realizing groups as fun-
damental groups, which led to certain free actions. That
is, we could interpret the elements of the group as sym-
metries of a topological space and none of these symme-
tries had any fixed points. Before moving on to geometric
group theory I should point out that there are many sit-
uations in which the most illuminating actions of a group
are not free: one instead allows well-understood stabilizers.
(The stabilizer of a point is the set of all symmetries in
the group that leave that point fixed.) For example, the
natural way in which to study Γ∆ is by its action on the
triangulated plane, each vertex of which is left unmoved by
twelve symmetries.

A deeper illustration of the merits of seeking insight
into algebraic structure through nonfree actions on suit-
able topological spaces comes from the Bass–Serre theory
of groups acting on trees, which subsumes the theory of
amalgamated free products and HNN extensions, whose
potency we saw earlier. (This theory and its extensions
often go under the heading of arboreal group theory.)

A tree is a connected graph that has no circuits in it. It
is helpful to regard it as a metric space in which each edge

has length 1. The group actions that one allows on trees are
those that take edges to edges isometrically, never flipping
an edge.

If a group Γ acts on a set X (in other words, if it can be
regarded as a group of symmetries of X), then the orbit of
a point x ∈ X is the set of all its images gx with g ∈ Γ . A
group Γ can be expressed as an amalgamated free product
A∗CB if and only if it acts on a tree in such a way that there
are two orbits of vertices, one orbit of edges, and stabilizers
A, B, C (where A and B are the stabilizers of adjacent
vertices and intersect in C, which is the edge stabilizer).
HNN extensions correspond to actions with one orbit of
vertices and one orbit of edges. Thus, amalgamated free
products and HNN extensions appear as graphs of groups,
which are the basic objects of Bass–Serre theory. These
objects allow one to recover groups acting on trees from the
quotient data of the action, i.e., the quotient space (which
is a graph) and the pattern of edge and vertex stabilizers.

An early benefit of Bass–Serre theory is a transparent
and instructive proof that any finite subgroup of A ∗C B is
conjugate to a subgroup of either A or B: given any set V
of vertices in a tree, there is a unique vertex or midpoint
x minimizing max{d(x, v) | v ∈ V }; one applies this obser-
vation with V an orbit of the finite subgroup; x provides a
fixed point for the action of the subgroup; and any point
stabilizer is conjugate to a subgroup of either A or B.

Arboreal group theory goes much deeper than this first
application suggests. It is the basis for a decomposition
theory of finitely presented groups from which it emerges,
for example, that there is an essentially canonical maxi-
mal splitting of an arbitrary finitely presented group as
a graph of groups with cyclic edge stabilizers. This pro-
vides a striking parallel with the decomposition theory of
3-manifolds, a parallel that extends far beyond a mere anal-
ogy and accounts for much of the deepest work in geomet-
ric group theory in the past ten years. If you want to learn
more about this, search the literature for JSJ decomposi-
tions. You may also want to search for complexes of groups,
which provide the appropriate higher-dimensional analogue
for graphs of groups.

8 Geometric Group Theory

Let us refresh the image of K(P ) in our mind’s eye
by thinking again about the presentation P ≡ 〈a, b |
aba−1b−1〉 of Z. The complex K(P ), as we saw earlier,
is a torus. Now the torus can be defined as the quotient
of the Euclidean plane R

2 by the action of the group
Z

2 (where the point (m,n) ∈ Z
2 acts as the translation

(x, y) �→ (x +m, y + n)): in fact, R
2, with an appropriate
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square tiling, is the universal cover (??) of the torus.
If we look at the orbit of the point 0 under this action, it
forms a copy of Z

2, and one can thereby see the large-scale
geometry of Z

2 laid out for us. We can make the idea of
the “geometry of Z

2” precise by decreeing that edges of
the tiling have length 1 and defining the graph distance
between vertices to be the length of the shortest path of
edges connecting them.

As this example shows, the construction of K(P )
involves the two main (intertwined) strands of geometric
group theory. In the first and more classical strand, one
studies actions of groups on metric and topological spaces
in order to elucidate the structures of both the space and
the group (as with the action of Z

2 on the plane in our
example, or the action of the fundamental group of K(P )
on its universal cover in general). The quality of the insights
that one obtains varies according to whether the action has
or does not have certain desirable properties. The action
of Z

2 on R
2 consists of isometries on a space with a fine

geometric structure, and the quotient (the torus) is com-
pact. Such actions are in many ways ideal, but sometimes
one accepts weaker admission criteria in order to obtain a
more diverse class of groups, and sometimes one demands
even more structure in order to narrow the focus and study
groups and spaces of an exceptional, but for that reason
interesting, character.

This first strand of geometric group theory mingles with
the second. In the second strand, one regards finitely gen-
erated groups as geometric objects in their own right
equipped with word metrics, which are defined as follows.
Given a finite generating set S for a group Γ , one defines
the Cayley graph of Γ by joining each element γ ∈ Γ by
an edge to each element of the form γs or γs−1 with s ∈ S

(which is the same as the graph formed by the edges of
the universal covering of K(P )). The distance dS(γ1, γ2)
between γ1 and γ2 is then the length of the shortest path
from γ1 to γ2 if all edges have length 1. Equivalently, it is
the length of the shortest word in the free group on S that
is equal to γ−1

1 γ2 in Γ .
The word metric and Cayley graph depend on the choice

of generating set but their large-scale geometry do not. In
order to make this idea precise, we introduce the notion
of a quasi-isometry. This is an equivalence relation that
identifies spaces that are similar on a large scale. If X and
Y are two metric spaces, then a quasi-isometry fromX to Y
is a function φ : X → Y with the following two properties.
First, there are positive constants c, C, and ε such that
cd(x, y)− ε � d(φ(x), φ(y)) � Cd(x, y)+ ε: this says that φ
distorts sufficiently large distances by at most a constant
factor. Second, there is a constant C′ such that for every

y ∈ Y there is some x ∈ X for which d(φ(x), y) � C′: this
says that φ is a “quasi-surjection” in the sense that every
element of Y is close to the image of an element of X.

Consider for example the two spaces R
2 and Z

2, where
the metric on Z

2 is given by the graph distance defined
earlier. In this case the map φ : R

2 → Z
2 that takes (x, y)

to (�x�, �y�) (where �x� denotes the largest integer less
than or equal to x) is easily seen to be a quasi-isometry:
if the Euclidean distance d between two points (x, y) and
(x′, y′) is at least 10, say, then the graph distance between
(�x�, �y�) and (�x′�, �y′�) will certainly lie between 1

2d and
2d. Notice how little we care about the local structure of
the two spaces: the map φ is a quasi-isometry despite not
even being continuous.

It is not hard to check that if φ is a quasi-isometry from
X to Y , then there is a quasi-isometry ψ from Y to X that
“quasi-inverts” φ, in the sense that every x in X is at most
a bounded distance from ψφ(x) and every y in Y is at most
a bounded distance from φψ(y). Once one has established
this, it is easy to see that quasi-isometry is an equivalence
relation.

Returning to Cayley graphs and word metrics, it turns
out that if you take two different sets of generators for
the same group, then the resulting Cayley graphs will be
quasi-isometric. Thus, any property of a Cayley graph that
is invariant under quasi-isometry will be a property not just
of the graph but of the group itself. When dealing with such
invariants we are free to think of Γ itself as a space (since
we do not care which Cayley graph we form), and we can
replace it by any metric space that is quasi-isometric to it,
such as the universal cover of a closed Riemannian manifold
with fundamental group Γ (whose existence we discussed
earlier). Then the tools of analysis can be brought to bear.

A fundamental fact, discovered independently by many
people and often called the Milnor–Švarc lemma, provides
a crucial link between the two main strands of geometric
group theory. Let us call a metric space X a length space
if the distance between each pair of points is the infimum
of the lengths of paths joining them. The Milnor–Švarc
lemma states that if a group Γ acts nontrivially as a set
of isometries of a length space X, and if the quotient is
compact, then Γ is finitely generated and quasi-isometric
to X (for any choice of word metric).

We have seen an example of this already: Z
2 is quasi-

isometric to the Euclidean plane. Less obviously, the same
is true of Γ∆. (Consider the map that takes each element
α of Γ∆ to the point of Z

2 nearest α(0).)
The fundamental group of a compact Riemannian man-

ifold is quasi-isometric to the universal cover of that man-
ifold. Therefore, from the point of view of quasi-isometry
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invariants, the study of such manifolds is equivalent to the
study of arbitrary finitely presented groups. In a moment
we will discuss some nontrivial consequences of this equiva-
lence. But first let us reflect on the fact that, when finitely
generated groups are considered as metric objects in the
framework of large-scale geometry, they present us with a
new challenge: we should classify finitely generated groups
up to quasi-isometry.

This is an impossible task, of course, but nevertheless
serves as a guiding beacon in modern geometric group
theory—a beacon that has guided us towards many beau-
tiful theorems, particularly under the general heading of
rigidity. For example, suppose that you come across a
finitely generated group Γ that is reminiscent of Z

n on a
large scale: in other words, quasi-isometric to it. We are not
necessarily given any algebraically defined map between
this mystery group and Z

n, and yet it transpires that such
a group must contain a copy of Z

n as a subgroup of finite
index.

At the heart of this result is Gromov’s polynomial growth
theorem, a landmark theorem published in 1981. This the-
orem concerns the number of points within a distance r
of the identity in a finitely generated group Γ . This will
be a function f(r), and Gromov was interested in how the
function f(r) grows as r tends to infinity, and what that
tells us about the group Γ .

If Γ is an Abelian group with d generators, then it is
not hard to see that f(r) is at most (2r + 1)d (since each
generator is raised to a power between −r and r). Thus,
in this case f(r) is bounded above by a polynomial in r.
At the other extreme, if Γ is a free group with two gener-
ators a and b, say, then f(r) is exponentially large, since
all sequences of length r that consist of as and bs (and not
their inverses) give different elements of Γ .

Given this sharp contrast in behavior, one might wonder
whether requiring f(r) to be bounded above by a poly-
nomial forces Γ to exhibit a great deal of commutativity.
Fortunately, there is a much-studied definition that makes
this idea precise. Given any group G and any subgroup H
of G, the commutator [G,H] is the subgroup generated by
all elements of the form ghg−1h−1, where g belongs to G
and h belongs to H. If G is Abelian, then [G,H] contains
just the identity. If G is not Abelian, then [G,G] forms a
group G1 that contains other elements besides the identity,
but it may be that [G,G1] is trivial. In that case, one says
that G is a two-step nilpotent group. In general, a k-step
nilpotent group G is one where, if you form a sequence by
setting G0 = G and Gi+1 = [G,Gi] for each i, then you
eventually reach the trivial group, and the first time you

do so is at Gk. A nilpotent group is a group that is k-step
nilpotent for some k.

Gromov’s theorem states that a group has polynomial
growth if and only if it has a nilpotent subgroup of finite
index. This is a quite extraordinary fact: the polynomial
growth condition is easily seen to be independent of the
choice of word metric and to be an invariant of quasi-
isometry. Thus the seemingly rigid and purely algebraic
condition of having a nilpotent subgroup of finite index is
in fact a quasi-isometry invariant, and therefore a flabby,
robust characteristic of the group.

In the past fifteen years quasi-isometric rigidity theorems
have been established for many other classes of groups,
including lattices in semisimple Lie groups and the fun-
damental groups of compact 3-manifolds (where the clas-
sification up to quasi-isometry involves more than alge-
braic equivalences), as well as various classes defined in
terms of their graph of group decompositions. In order to
prove theorems of this type, one must identify nontrivial
invariants of quasi-isometry that allow one to distinguish
and relate various classes of spaces. In many cases such
invariants come from the development of suitable analogues
of the tools of algebraic topology, modified so that they
behave well with respect to quasi-isometries rather than
continuous maps.

9 The Geometry of the Word Problem

It is time to explain the comments I made earlier about
the geometry inherent in the basic decision problems of
combinatorial group theory. I shall concentrate exclusively
on the geometry of the word problem.

Gromov’s filling theorem describes a startlingly intimate
connection between the highly geometric study of disks
with minimal area in riemannian geometry (??) and the
study of word problems, which seems to belong more to
algebra and logic.

On the geometric side, the basic object of study is the
isoperimetric function FillM (l) of a smooth compact man-
ifold M . Given any closed path of length l, there is a disk
of minimal area that is bounded by that path. The largest
such area, over all closed paths of length l, is defined to be
FillM (l). Thus, the isoperimetric function is the smallest
function of which it is true to say that every closed path of
length l can be filled by a disk of area at most FillM (l).

The image to have in mind here is that of a soap film:
if one twists a circular wire of length l in Euclidean space
and dips it in soap, the film that forms has area at most
l2/4π, whereas if one performs the same experiment in
hyperbolic space (??), the area of the film is bounded
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by a linear function of l. Correspondingly, the isoperimet-
ric functions of E

n and H
n (and quotients of them by

groups of isometries) are quadratic and linear, respectively.
In a moment we shall discuss what types of isoperimetric
functions arise when one considers other geometries (more
precisely, compact Riemannian manifolds).

To state the filling theorem we need to think about the
algebraic side as well. Here, we identify a function that
measures the complexity of a direct attack on the word
problem for an arbitrary finitely presented group Γ = 〈A |
R〉. If we wish to know whether a word w equals the identity
in Γ and do not have any further insight into the nature of
Γ , then there is not much we can do other than repeatedly
insert or remove the given relations r ∈ R.

Consider the simple example Γ = 〈a, b | b2a, baba〉. In
this group aba2b represents the identity. How do we prove
this? Well,

aba2b = a(b2a)ba2b = ab(baba)ab

= abab = a(baba)a−1 = aa−1 = 1.

Now let us think about the proof geometrically, via the
Cayley graph. Since aba2b = 1 in the group Γ , we obtain a
cycle in this graph if we start at the identity and go along
edges labeled a, b, a, a, b, in that order (in which case we
visit the vertices 1, a, ab, aba, aba2, aba2b = 1). The equal-
ities in the proof can be thought of as a way of “contract-
ing” this cycle down to the identity by means of inserting
or deleting small loops: for instance, we could insert b, a,
b, a into the list of edge directions, since baba is a relation,
or we could delete a trivial loop of the form a, a−1. This
contraction can be given a more topological character if we
turn our Cayley graph into a two-dimensional complex by
filling in each small loop with a face. Then the contraction
of the original cycle consists in gradually moving it across
these small faces.

Thus, the difficulty of demonstrating that a word w

equals the identity is intimately connected with the area of
w, denoted Area(w), which can be thought of algebraically
as the smallest sequence of relations you need to insert and
delete to turn w into the identity, or geometrically as the
smallest number of faces you need to make a disk that fills
the cycle represented by w.

The Dehn function δΓ : N → N bounds Area(w) in
terms of the length |w| of the word w: δΓ (n) is the largest
area of any word of length at most n that equals 1 in Γ .
If the Dehn function grows rapidly, then the word prob-
lem is hard, since there are short words that are equal
to the identity, but their area is very large, so that any
demonstration that they are equal to the identity has to be

very long. Results bounding the Dehn function are called
isoperimetric inequalities.

The subscript on δΓ is somewhat misleading since dif-
ferent finite presentations of the same group will in general
yield different Dehn functions. This ambiguity is tolerated
because it is tightly controlled: if the groups defined by two
finite presentations are isomorphic, or just quasi-isometric,
then the corresponding Dehn functions have similar growth
rates. More precisely, they are equivalent, with respect to
what is sometimes called the standard equivalence relation
“�” of geometric group theory: given two monotone func-
tions f, g : [0,∞) → [0,∞), one writes f � g if there exists
a constant C > 0 such that f(l) � Cg(Cl+C)+Cl+C for
all l � 0, and f � g if f � g and g � f ; and one extends
this relation to include functions N → [0,∞).

You will have noticed a resemblance between the defini-
tions of FillM (l) and δΓ (n). The filling theorem relates
them precisely: it states that if M is a smooth com-
pact manifold, then FillM (l) � δΓ (l), where Γ is the
fundamental group π1M of M .

For example, since Z
2 is the fundamental group of the

torus T = R
2/Z2, which has Euclidean geometry, δ

Z2 (l) is
quadratic.

9.1 What Are the Dehn Functions?

We have seen that the complexity of word problems is
related to the study of isoperimetric problems in Rieman-
nian and combinatorial geometry. Such insights have, in
the last fifteen years, led to great advances in the under-
standing of the nature of Dehn functions. For example,
one can ask for which numbers ρ the function nρ is a Dehn
function. The set of all such numbers, which can be shown
to be countable, is known as the isoperimetric spectrum,
denoted IP, and it is now largely understood.

Following work by many authors, Brady and Bridson
proved that the closure of IP is {1} ∪ [2,∞). The finer
structure of IP was described by Birget, Rips, and Sapir
in terms of the time functions of Turing machines. A fur-
ther result by the same authors and Ol’shanskii explains
how fundamental Dehn functions are to understanding the
complexity of arbitrary approaches to the word problem
for finitely generated groups Γ : the word problem for Γ
lies in NP if and only if Γ is a subgroup of a finitely pre-
sented group with polynomial Dehn function. (Here, NP is
the class of problems in the famous “P = NP” question:
see computational complexity (??) for a description of
this class.)

The structure of IP raises an obvious question: What
can one say about the two classes of groups singled out as
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special—those with linear Dehn functions and those with
quadratic ones? The true nature of the class of groups with
a quadratic Dehn function remains obscure for the moment
but there is a beautifully definitive description of those
with a linear Dehn function: they are the word hyperbolic
groups, which we shall discuss in the next section.

Not all Dehn functions are of the form nα: there are
Dehn functions such as nα logn, for example, and others
that grow more quickly than any iterated exponential, for
example that of

〈a, b | aba−1bab−1a−1b−2〉.
If Γ has unsolvable word problem, then δΓ (n) will grow
faster than any recursive function (indeed this serves as a
definition of such groups).

9.2 The Word Problem and Geodesics

A closed geodesic on a Riemannian manifold is a loop that
locally minimizes distance, such as a loop formed by an
elastic band when released on a perfectly smooth surface.
Examples such as the great circles on a sphere or the waist
of an hourglass show that manifolds may contain closed
geodesics that are null-homotopic: that is, they can be
moved continuously until they are reduced to a point. But
can one construct a compact topological manifold with
the property that no matter what metric one puts on it
there will always be infinitely many such geodesics? (Tech-
nically, if you go round a geodesic loop n times, then you
get a geodesic; we avoid this by counting only “primitive”
geodesics.)

From a purely geometric point of view this is a daunting
problem: all specific metric information has been stripped
away and one has to deal with an arbitrary metric on the
floppy topological object left behind. But group theory pro-
vides a solution: if the Dehn function of the fundamental
group π1M grows at least as fast as 22n

, then in any Rie-
mannian metric on M there will be infinitely many closed
geodesics that are null-homotopic. The proof of this is too
technical to sketch here.

10 Which Groups Should One Study?

Several special classes of groups have emerged from our
previous discussion, such as nilpotent groups, 3-manifold
groups, groups with linear Dehn functions, and groups with
a single defining relation. Now we shall change viewpoint
and ask which groups present themselves for study as we set
out to explore the universe of all finitely presented groups,
starting with the easiest ones.

The trivial group comes first, of course, followed by the
finite groups. Finite groups are discussed in various other
places in this volume, so I shall ignore them in what fol-
lows and adopt the approach of large-scale geometry, blur-
ring the distinction between groups that have a common
subgroup of finite index.

The first infinite group is surely Z, but what comes
next is open to debate. If one wants to retain the safety
of commutativity, then finitely generated Abelian groups
come next. Then, as one slowly relinquishes commutativ-
ity and control over growth and constructibility, one passes
through the progressively larger classes of nilpotent, poly-
cyclic, solvable, and elementary amenable groups. We have
already met nilpotent groups in our discussion of Gromov’s
polynomial-growth theorem. They crop up in many con-
texts as the most natural generalization of Abelian groups
and much is known about them, not least because one can
prove a great deal by induction on the k for which they are
k-step nilpotent. One can also exploit the fact that G is
built from the finitely generated Abelian groups Gi/Gi+1

in a very controlled way. The larger class of polycyclic
groups are built in a similar way, while finitely generated
solvable groups are built in a finite number of steps from
Abelian groups that need not be finitely generated. This
last class is not only larger but wilder; the isomorphism
problem is solvable among polycyclic groups, for exam-
ple, but unsolvable among solvable groups. By definition a
group G is solvable if its derived series, defined inductively
by G(n) = [G(n−1), G(n−1)] with G(0) = G, terminates in
a finite number of steps.

The concept known as amenability forms an important
link between geometry, analysis, and group theory. Solvable
groups are amenable but not vice versa. It is not quite the
case that a finitely presented group is amenable if and only
if it does not contain a free subgroup of rank 2, but for a
novice this serves as a good rule of thumb.

Now, let us return to Z in a more adventurous frame
of mind, throw away the security of commutativity, and
start taking free products instead. In this more liberated
approach, finitely generated free groups appear after Z as
the first groups in the universe. What comes next? Think-
ing geometrically, we might note that free groups are pre-
cisely those groups that have a tree as a Cayley graph
and then ask which groups have Cayley graphs that are
tree-like.

A key property of a tree is that all of its triangles are
degenerate: if you take any three points in the tree and join
them by shortest paths, then every point in one of these
paths is contained in at least one other path as well. This
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is a manifestation of the fact that trees are spaces of infi-
nite negative curvature. To get a feeling for why, consider
what happens when one rescales the metric on a space of
bounded negative curvature such as the hyperbolic plane
H

2. If we replace the standard distance function d(x, y) by
(1/n)d(x, y) and let n tend to ∞, then the curvature of
this space (in the classical sense of differential geometry)
tends to −∞. This is captured by the fact that triangles
look increasingly degenerate: there is a constant δ(n), with
δ(n) → 0 as n → ∞, such that any side of a triangle in
the scaled hyperbolic space (H2, (1/n)d) is contained in
the δ(n)-neighborhood of the union of the other two sides.
More colloquially, triangles in H

2 are uniformly thin and
get increasingly thin as one rescales the metric.

With this picture in mind, one might move a little away
from trees by asking which groups have Cayley graphs in
which all triangles are uniformly thin. (It makes little sense
to specify the thinness constant δ since it will change when
one changes generating set.) The answer is Gromov’s hyper-
bolic groups. This is a fascinating class of groups that has
many equivalent definitions and arises in many contexts.
For example, we already met it as the class of groups that
have linear Dehn functions. (It is not at all obvious that
these two definitions are equivalent.)

Gromov’s great insight is that because the thin-triangles
condition encapsulates so much of the essence of the large-
scale geometry of negatively curved manifolds, hyperbolic
groups share many of the rich properties enjoyed by the
groups that act nicely by isometries on such spaces. Thus,
for example, hyperbolic groups have only finitely many con-
jugacy classes of finite subgroups, contain no copy of Z

2,
and (after accounting for torsion) have compact classify-
ing spaces. Their conjugacy problems can be solved in less
than quadratic time, and Sela showed that one can even
solve the isomorphism problem among torsion-free hyper-
bolic groups. In addition to their many fascinating prop-
erties and natural definition, a further source of interest
in hyperbolic groups is the fact that in a precise statistical
sense, a random finitely presented group will be hyperbolic.

Spaces of negative and nonpositive curvature have played
a central role in many branches of mathematics in the last
twenty years. There is no room even to begin to justify this
assertion here but it does guide us in where to look for natu-
ral enlargements of the class of hyperbolic groups: we want
nonpositively curved groups, defined by requiring that their
Cayley graphs enjoy a key geometric feature that cocom-
pact groups of isometries inherit from simply connected
spaces of nonpositive curvature (“CAT(0) spaces”). But in
contrast to the hyperbolic case, the class of groups that one

obtains varies considerably when one perturbs the defini-
tion, and delineating the resulting classes and their (rich)
properties has been the subject of much research.

The added complications that one encounters when one
moves from negative to nonpositive curvature are exempli-
fied by the fact that the isomorphism problem is unsolv-
able in one of the most prominent classes that arises: the
so-called combable groups.

Let us now return to free groups and ask which hyper-
bolic groups are the immediate neighbors of free groups.
Remarkably, this vague question has a convincing answer.

One of the great triumphs of arboreal group theory is the
proof that there is a finite description of the set Hom(G,F )
of homomorphisms from an arbitrary finitely generated
group G to a free group F . The basic building blocks in
this description are what Sela calls limit groups. One of
the many ways of defining a limit group L is that for each
finite subset X ⊂ L there should exist a homomorphism to
a finitely generated free group that is injective on X.

Limit groups can also be defined as those whose first-
order logic (see model theory (?? ??)) resembles that of
a free group in a precise sense. To see how first-order logic
can be used to say something nontrivial about a group,
consider the sentence

∀x, y, z (xy �= yx) ∨ (yz �= zy) ∨ (xz = zx) ∨ (y = 1).

A group with this property is commutative transitive: if
x commutes with y �= 1, and y commutes with z, then x

commutes with z. Free groups and Abelian groups have this
property but a direct product of non-Abelian free groups,
for example, does not.

It is a simple exercise to show that free Abelian groups
are limit groups. But if one restricts attention to groups
that have precisely the same first-order logic as free groups,
one gets a smaller class consisting only of hyperbolic
groups. The groups in this class are the subject of intense
scrutiny at the moment. They all have negatively curved
two-dimensional classifying spaces, built from graphs and
hyperbolic surfaces in a hierarchical manner. The funda-
mental groups Σg of closed surfaces of genus g � 2 lie in
this class, lending substance to the traditional opinion in
combinatorial group theory that, among nonfree groups, it
is the groups Σg that resemble free groups Fn most closely.

Incorporating this opinion into our earlier discussion, we
arrive at the view that the groups Z

n, the free groups Fn,
and the groups Σg are the most basic of infinite groups.
This is the start of a rich vein of ideas involving the auto-
morphisms of these groups. In particular, there are many
striking parallels between their outer automorphism groups
GL(n,Z), Out(Fn), and Modg ∼= Out(Σg) (the mapping
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class group). These three classes of groups play a funda-
mental role across a broad spectrum of mathematics. I
have mentioned them here in order to make the point that,
beyond the search for knowledge about natural classes of
groups, there are certain “gems” in group theory that merit
a deep and penetrating study in their own right. Other
groups that people might suggest for this category include
coxeter groups (??) (generalized reflection groups, for
which Γ∆ is a prototype) and Artin groups (particularly
braid groups (??), which again crop up in many branches
of mathematics).

I have thrown classes of groups at you thick and fast
in this last section. Even so, there are many fascinating
classes of groups and important issues that I have ignored
completely. But so it must be, for as Higman’s theorem
assures us, the challenges, joys, and frustrations of finitely
presented groups can never be exhausted.
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