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From Lecture 2
Examples:(1) The figure-eight knot complement.

I =m(S\K)=<a,bwaw™! =b,w=ab la" b >
Interested in components containing irreducible representations. So

normalize (i.e. conjugate):

o= 1) o= ;)

Evaluate p on the relation (i.e. wa — bw = 0) and we obtain:

(—rpogr)/xz p(x’g)/xz>
where

plx,r) =m* —x* + 22 =3 + 3% +r— 1.



Converting to traces

Setz=x+x"! = x,(a) = tr(p(a)) = x,(b) and
T=x,(ab™!)=2—r

Converting p(x, r) into a polynomial in z and 7"
P(z,T) = 22(2—T) -2+ (2-T)>=52-T)+5 = (1-T)2+T*+T—1
So we have an algebraic set cut out by:

PT—-1)=T*+T—-1

In particular, this determines a cubic curve.



A further change of co-ordinates makes it clearer what this curve is,

and indeed that it is irreducible.
Multiply both sides by (7'— 1) and set Y = (z — 1)T gives:
Y2=(T-1)(T*+T-1)

Note the RHS is cubic with distinct roots and so we deduce that there
is a unique component containing the character of an irreducible

representation. In this case is a genus 1 curve.



From Lecture 3
(2) The knot 5,

[ =m(8?\K)=<a,bwaw™ =b,w=a"'ba b~ 'ab~! >

As above set:

pla) = (g 1}x> and p(b) = (Jrc 1(/)x>'

Evaluate p on the relation wa — bw = 0 and simplifying produces a
unique component contain the character of an irreducible

representation described as the vanishing set of:

p(z,T) =T —T* + T +T* - 2T — 1.
This can be put in the form of a hyperelliptic curve:

Y2 = (T -T)(T° +T> - 2T + 1).



(3) The knot 74

I =m(8?\K) =< a,blaw? = w?b,w = ab~'ab~'a"'ba'b >
Repeating the above we get 2 curves containing the characters of

irreducible representations described as the vanishing set of.

(= 14272+ T3 —T?2?) (1 +-4T —4T> — T3+ T* —2T* +-37%* — T32%).

Using Snap, the component containing the character of the faithful

discrete representation can shown to be cut out by the first factor.



(4) K = (—2,3,7)-Pretzel knot

I = m($° \ K) =< a, blaab~'aabbabb >

As above conjugate:

s = (5 1)) e o= (),

Evaluate p on the relation and convert to traces (with co-ordinates):

P =Xp(a), Q= x,(b)and R = x,(ab).

We find:

_ 0 _ (1-20%)
S R (e

i.e. P, R are rational functions of Q, so Xy (actually the smooth

projective model) in this case is CP!.



From Lecture 4
Theorem 1 (Chinburg-R-Stover)
Let K be a hyperbolic knot and suppose that Ak (t) satisfies:

(%) for any root z of Ak(t) and w a square root of z, we have an
equality of fields: Q(w) = Q(w +w™).

Then there exists a finite set S of rational primes p so that if some

prime P of k, ramifies B, then P|p for some p € S.



Remarks:(1) When Ag(7) = 1 then S = () and so B, as above is

unramified at all finite places.

(2) The figure-eight knot

Ak(t) = > — 3t + 1, and so has roots

_3+45
= 3 s
and z = (£w)?, where
1++/5
W=

Thenw + 1/w = +/5,
Q(w) = Q(w + w~1) in this case. Hence (%) holds.
In this case § = {2}.



(3) The knot 74
Exercise: Ag(f) = 4¢> — 7t + 4 does not satisfy (x).



(4) (—2,3,7)-Pretzel knot

Ax(O) =t -+ — 4P 4P 41
If z is a root and w? = z, can check:

w satisfies an irreducible polynomial of degree 20

but T = w + 1/w satisfies a degree 10 polynomial:

14+ 12%T>+31 % T*+27+T0 + 9% T8+ T'°,

Hence condition (%) does not hold.



An intriguing connection:
Conjecture If K is a hyperbolic L-space knot it is never Azumaya
positive (i.e. (x) does not hold.)

e.g. The (—2,3,7)-Pretzel knot is an L-space knot.

Some positive evidence:
Theorem 1

Suppose that K is a hyperbolic L-space knot for which the canonical
component C is the unique component of X(K) containing the

character of an irreducible representation. Then (x) does not hold.



