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Introduction

Theorem 22
The alternating group An is nonabelian simple iff n ≥ 5.

This lecture: Understand the subgp structure of the almost simple
gps with socle An.

I Determine Out(An).

I Then for each G s.t. An EG ≤ Aut(An), find maximal subgps
of G .



Low-index subgroups

Lemma 23
Let n ≥ 5 and 1 < k < n. Then An has no subgp of index k.

Proof.
Suppose ∃ H < An, index k .
The right coset action of An on H is a transitive action on k
points, so induces a homom Ψ : An → Sk .
n > 2 ⇒ |An| = n!/2 > k!, so Ψ not an isom.
Thm 22: An is simple. So kerΨ = An, a contradiction.

Theorem 24
Let n ≥ 4. Then Aut(An) ∼= Sn, except Aut(A6) ∼= A6.2

2.

We first prove:

Lemma 25
Let n ≥ 9. If H ≤ An and θ : An−1 → H is an isom, then
H = (An)α for some α ∈ n.



n ≥ 9, H ≤ An, H ∼= An−1 ⇒ H = (An)α

n > 4, so Lemma 23 ⇒ H has no nontriv orbit length < n − 1.
So if H is not a point stab, then H is transitive.

Claim: θ maps 3-cycles to 3-cycles Let g ∈ H s.t. g = (1 2 3)θ.
Then g centralises a subgp K of H s.t. K ∼= An−4.
n − 4 ≥ 5⇒ K has an orbit αK s.t. |αK | = m ≥ n − 4.

|K : Kα| = m, so if NK (Kα) 6= Kα then K has a subgp of index
≤ m/2 ≤ n/2 < n − 4, a contradiction. Hence NK (Kα) = Kα.

Thm 21: G ≤ Sym(Ω), transitive. CSym(Ω)(G ) ∼= NG (Gα)/Gα.

So CSym(αK )(K ) = 1. Hence g moves ≤ 4 points in n.
Also, |g | = 3 so g = (a b c) is a 3-cycle.

Claim: H generated by 3-cycles with a common fixed point
Let X = {(1, 2, i) : 3 ≤ i ≤ n − 1} ⊆ An−1. Let x , y ∈ X . Then
〈x , y〉 ∼= A4

∼= 〈xθ, yθ〉. So each 3-cycle in Xθ is (a, b, j), for
distinct j .

〈X 〉 = An−1, so H = 〈Xθ〉 fixes exactly one point in n. �



Aut(An), ctd

Proof of Theorem 24, n ≥ 9
Let φ ∈ Aut(An).
Then φ acts on S = {H ≤ An : H ∼= An−1}.
By Lemma 25, each such H is a point stabiliser in the natural
action, so |S| = n.
Hence φ induces σ ∈ Sn. But σ completely determines the action
of φ on An, so φ ∈ Sn. �

I n = 4, 5, 7, 8: Exercise.

I A6
∼= PSL2(9), easier to understand automorphisms that way:

Lecture 3.



Intransitive groups

Let H ≤ Sn, n ≥ 5.
Is H transitive?
If not, let ∆ = αH ⊂ n, and k := |∆| < n.

Lemma 26
Up to An-conjugacy H ≤ Sk × Sn−k with orbits k and
X := {k + 1, . . . , n}.

Proof.
Example 15: An is transitive on k-subsets of n.
So ∃ τ ∈ An s.t. ∆τ = k. Then
kH

τ
= kτ

−1Hτ = ∆Hτ = ∆τ = k.

Corollary 27

If an intransitive subgp of X = An or Sn is maximal, it is of the
form X ∩ (Sk × Sn−k).



Intransitive maximal subgroups

Theorem 28
The intransitive maximal subgroups of Sn, n ≥ 5, are Sk × Sn−k
for 1 ≤ k < n/2.

Proof.
Let H = Sk × Sn−k for k < n/2.

Let g ∈ Sn \ H, and G = 〈H, g〉. We show G = Sn.

g 6∈ H so X g ∩ k 6= ∅. Since k < n/2, X g 6= k.

Let i , j ∈ X s.t. ig ∈ k, jg ∈ X .
Then (i j) ∈ H, so σ := (i j)g = (ig , jg ) ∈ G .

I := {στ : τ ∈ Sk} = {(z jg ) : 1 ≤ z ≤ k} ⊂ G .
{µτ : µ ∈ I , τ ∈ Sn−k} = {(a b) : a ∈ k, b ∈ X} ⊂ G .
So (a b) ∈ G for all a, b ∈ n, and G = Sn.



Imprimitivity

Defn: H ≤ Sn, transitive. If ∃ ∆ ⊂ n with 1 < |∆| < n s.t.
for each h ∈ H either ∆h = ∆ or ∆h ∩∆ = ∅
then ∆ is a block for H, and H is imprimitive.

{∆h : h ∈ H} is a system of imprimitivity. Each ∆h is a block,
and ∪h∈H∆h = n, so blocks partition n into equal size parts.

If G is transitive and not imprimitive then G is primitive.

Example 29

C6 = 〈(1 2 . . . 6)〉. One system of imprimitivity is
{{1, 4}, {2, 5}, {3, 6}}, so C6 is imprimitive.
Another is {{1, 3, 5}, {2, 4, 6}}: systems of imprimitivity are not
unique.

Consider Cp acting on p points, some prime p. Then size of a
block divides |Ω| ⇒ Cp is primitive.



Imprimitive wreath products

Defn: H – group, G ≤ Sd . The wreath product H o G is the
semidirect product Hd : G , where (h1, . . . , hd)g

−1
= (h1g , . . . , hdg ).

That is
(h11, . . . , h1d)g1(h21, . . . , h2d)g2 = (h11h21g1 , . . . , h1dh2dg1 )g1g2.

Theorem 30
H ≤ Sym(∆), G ≤ Sd both transitive. There is an imprimitive
action of H o G on ∆× d: (α, i)(h1,...,hd )g = (αhi , ig ).

Proof.
A1 ((α, i)(h11,...,h1d )g1)(h21,...,h2d )g2 = (αh1i , ig1)(h21,...,h2d )g2

= (αh1ih2ig1 , ig1g2) = (α, i)(h11h21g1 ,...,h1dh2dg1 )g1g2

A2 (α, i)(1H ,...,1H)1G = (α1H , i1G ) = (α, i).

Transitive: Let α, β ∈ ∆, i , j ∈ d . Then ∃h ∈ H s.t. αh = β and
∃g ∈ G s.t. ig = j . Then (α, i)(h,h,...,h)g = (αh, ig ) = (β, j).

Blocks are {(α, i) : α ∈ ∆}, for i ∈ d .



Maximal imprimitive subgroups

Lemma 31
G ≤ Sn imprimitive, blocks size k.
Up to An-conjugacy G ≤ Sk o Sn/k with blocks
Ba := {(a− 1)k + 1, . . . , ak} for 1 ≤ a ≤ n/k.

Proof.
Can conjugate G in An to yield blocks B1, . . . ,Bn/k .
If σ ∈ Sn preserves {B1, . . . ,Bn/k}, can write σ = µτ1 . . . τn/k ,
where µ permutes the subscripts on the Bi but sends
i1k + j 7→ i2k + j , for all i1, j , and τi ∈ Sym(Bi ). µ↔ µ′ ∈ Sn/k ,
Sym(Bi ) ∼= Sk , so σ ∈ Sk o Sn/k .

Theorem 32
Sk o Sn/k is a maximal subgp of Sn for all proper nontrivial divisors
k of n.



Point stabilisers of primitive groups

G – primitive. Then G is not contained in any intransitive or
imprimitive group.

Lemma 33
G ≤ Sn – transitive. The gp G is primitive iff Gα ≤max G.

Proof.
G imp ⇒ Gα not maximal
∆ – block for G , s.t. α ∈ ∆. Let H = {g ∈ G : ∆g = ∆}. Then
H ≤ G and H 6= G . Also, if g ∈ Gα then α ∈ ∆ ∩∆g so ∆ = ∆g

and g ∈ H. So Gα ≤ H. Let β ∈ ∆, β 6= α. Then ∃ g ∈ G with
αg = β. Hence ∆g = ∆, so g ∈ H. Hence Gα < H < G .

Gα not maximal ⇒ G imprimitive.
Let Gα < H < G . Then |H : Gα| < |G : Gα| = |Ω|, so H is
intransitive. Let ∆ = αH , and let g ∈ G . If g ∈ H then ∆g = ∆.
If ∆g ∩∆ 6= ∅, then ∃u, v ∈ H s.t. αug = αv . Then ugv−1 ∈ Gα,
so g ∈ u−1Gαv ⊂ H. Hence ∆g ∩∆ 6= ∅ ⇒ ∆g = ∆.



Primitive groups of affine type

p – prime, V = Fd
p .

Defn: The affine general linear group AGLd(p) is
V : GLd(p) = {(h, v) : v ∈ V , h ∈ GLd(p)} with multiplication
(h1, v1)(h2, v2) = (h1h2, v

h2
1 + v2).

AGLd(p) acts on V via v (h,w) = vh + w . Action is faithful, so
AGLd(p) ≤ Sym(V ).
With this action, V ∼= {(1, v) : v ∈ V }EAGLd(p) is regular.
GLd(p) is the stabiliser of 0 ∈ V .

Defn: A group of affine type is G ≤ Spd s.t. V E G ≤ AGLd(p).

Lemma 34
G – gp of affine type. G is primitive iff G0 is an irreducible
subgroup of GL(V ).

Example 35

If Cp E G ≤ AGL1(p) ∼= Cp : Cp−1 ≤ Sp then G is primitive.



Product action primitive groups

Let H ≤ Sym(∆), K ≤ Sd . The product action of G = H o K on
Ω = ∆d = {(δ1, . . . , δd) : δi ∈ ∆} is:

(δ1, . . . , δd)(h1,...,hd )k = (δh1
1 , . . . , δ

hd
d )k

= (δ
h

1k
−1

1k−1 , . . . , δ
h
dk

−1

dk−1 )

If H is transitive then H o K is transitive.
(α1, . . . , αd), (β1, . . . , βd) ∈ kd . Then ∀i ∃ hi ∈ H s.t. αhi

i = βi .
Hence (α1, . . . , αd)(h1,...,hd )1K = (β1, . . . , βk).

Theorem 36
G is primitive iff (i) H is primitive and not regular on ∆ and (ii) K
is transitive on d.

Corollary 37

Sk o Sd is primitive in the product action on kd for all k ≥ 3.



Diagonal type groups

T – nonabelian simple, k ≥ 2.
D = {(t, t, . . . , t) : t ∈ T} ∼= T ≤ T k – diagonal subgroup.
Right coset action of T k on D:
Ω = {D(t1, . . . , tk) = D(1, t−1

1 t2, . . . , t
−1
1 tk) : ti ∈ T}.

Hence n := |Ω| = |T |k−1.
k > 2 ⇒ D not maximal ⇒ T k not primitive.

Theorem 38
NSn(T k) = T k .(Out(T )× Sk) ∼= (T o Sk).Out(T ) =
{(s1, . . . , sk)σ : si ∈ Aut(T ), σ ∈ Sk , Inn(T )si = Inn(T )sj ∀i , j}.

Defn: If G ≤ S|T |k−1 with T k E G ≤ T k .(Out(T )× Sk) and
Inn(T ) ≤ Gα ≤ Aut(T )× Sk then G is a group of diagonal type.

Theorem 39
G is primitive iff either k = 2 or k > 2 and the action of G by
conjugation on direct factors {T1, . . . ,Tk} of T k is primitive.



The maximal subgroups of An and Sn

Theorem 40 (O’Nan–Scott + Liebeck–Praeger–Saxl)

H < X = An or Sn, n ≥ 5. Up to Sn-conjugacy, H is a subgp of
one of the following groups G < X.

1. G = (Sk × Sn−k) ∩ X with k 6= n/2. G ≤max X.

2. G = Sk o Sn/k ∩ X, with 1 < k < n. G ≤max X except when
X = A8, k = 2.

3. G = AGLk(p) ∩ X. G ≤max AnG, except when X = An and
n ∈ {7, 11, 17, 23}.

4. G = (T k .(Out(T )× Sk)) ∩ X , with n = |T |k−1.
G ≤max AnG.

5. G = (Sm o Sk) ∩ X, with m ≥ 5, k ≥ 2, product action.
G ≤max AnG except when X = An and G is imprimitive.

6. S E H ≤ G ≤ Aut(S) is a primitive almost simple group.



The almost simple maximals of An and Sn

Liebeck, Praeger and Saxl classified the non-maximal cases when
G is almost simple.
To determine the explicit list of maximals for a given n:

I For the gps G on the previous slide, determine which exist.

I If AnG = Sn then get one class of G in Sn, and one class of
G ∩An in An.

I If NSn(G ) < An then get two classes of G in An.

I Find the almost simple primitive groups G ≤ Sn.

I Sort them by their socles S . Eliminate the non-maximals by
LPS. Determine conjugacy as above.

Theorem 41 (CMRD 05)

The maximal subgps of An and Sn are known for n ≤ 2500.

Theorem 42 (Coutts, Quick & CMRD 2011)

The primitive gps of degree less than 4095 are known.



An example: A8 and S8



Exercises on Lecture 2

1. Prove that An is simple for n ≥ 5:

1.1 Show that An is generated by the set of all 3-cycles.
1.2 Show that any normal subgroup 1 6= NEAn contains a 3-cycle.
1.3 Show that if N contains one 3-cycle then N contains all

3-cycles.

2. Prove Lemma 24 for n = 7 (easy), and n = 8 (a bit trickier). Hence
prove Theorem 25 for n 6= 6.

3. Prove that if n = 2m then the natural intransitive action of
Sm × Sm is not a maximal subgroup of Sn.

4. Show that Sk o Sm is maximal in Skm for all k ,m ≥ 2. [Hint:
consider m = 2 first. Mimic proof of Thm 28].

5. Verify that the given action of AGLd(p) is an action, and that V is
a regular normal subgroup.

6. Verify that the product action of a wreath product is an action.

7. Verify that the group T k .(Out(T )× Sk) is primitive.


