NZMRI Summer School The symmetric and alternating groups

Colva Roney-Dougal colva.roney-dougal@st-andrews.ac.uk

School of Mathematics and Statistics, University of St Andrews

Nelson, 9 January 2018

Introduction

Theorem 22

The alternating group A_n is nonabelian simple iff $n \ge 5$.

This lecture: Understand the subgp structure of the almost simple gps with socle A_n .

- Determine $Out(A_n)$.
- Then for each G s.t. A_n ≤ G ≤ Aut(A_n), find maximal subgps of G.

Low-index subgroups

Lemma 23 Let $n \ge 5$ and 1 < k < n. Then A_n has no subgp of index k.

Proof.

Suppose $\exists H < A_n$, index k.

The right coset action of A_n on H is a transitive action on k points, so induces a homom $\Psi : A_n \to S_k$. $n > 2 \Rightarrow |A_n| = n!/2 > k!$, so Ψ not an isom.

Thm 22: A_n is simple. So ker $\Psi = A_n$, a contradiction.

Theorem 24

Let $n \ge 4$. Then $Aut(A_n) \cong S_n$, except $Aut(A_6) \cong A_6.2^2$. We first prove:

Lemma 25

Let $n \ge 9$. If $H \le A_n$ and $\theta : A_{n-1} \to H$ is an isom, then $H = (A_n)_{\alpha}$ for some $\alpha \in \underline{n}$.

$n \geq 9, H \leq A_n, H \cong A_{n-1} \Rightarrow H = (A_n)_{\alpha}$

n > 4, so Lemma 23 \Rightarrow *H* has no nontriv orbit length < n - 1. So if *H* is *not* a point stab, then *H* is transitive.

Claim: θ maps 3-cycles to 3-cycles Let $g \in H$ s.t. $g = (1 \ 2 \ 3)\theta$. Then g centralises a subgp K of H s.t. $K \cong A_{n-4}$. $n-4 \ge 5 \Rightarrow K$ has an orbit α^K s.t. $|\alpha^K| = m \ge n-4$. $|K : K_{\alpha}| = m$, so if $N_K(K_{\alpha}) \ne K_{\alpha}$ then K has a subgp of index $\le m/2 \le n/2 < n-4$, a contradiction. Hence $N_K(K_{\alpha}) = K_{\alpha}$. Thm 21: $G \le \text{Sym}(\Omega)$, transitive. $C_{\text{Sym}(\Omega)}(G) \cong N_G(G_{\alpha})/G_{\alpha}$. So $C_{\text{Sym}(\alpha^K)}(K) = 1$. Hence g moves ≤ 4 points in \underline{n} . Also, |g| = 3 so $g = (a \ b \ c)$ is a 3-cycle.

Claim: *H* generated by 3-cycles with a common fixed point Let $X = \{(1,2,i) : 3 \le i \le n-1\} \subseteq A_{n-1}$. Let $x, y \in X$. Then $\langle x, y \rangle \cong A_4 \cong \langle x\theta, y\theta \rangle$. So each 3-cycle in $X\theta$ is (a, b, j), for distinct *j*.

$$\langle X \rangle = A_{n-1}$$
, so $H = \langle X \theta \rangle$ fixes exactly one point in n.

$Aut(A_n)$, ctd

Proof of Theorem 24, $n \ge 9$ Let $\phi \in Aut(A_n)$. Then ϕ acts on $S = \{H \le A_n : H \cong A_{n-1}\}$. By Lemma 25, each such H is a point stabiliser in the natural action, so |S| = n. Hence ϕ induces $\sigma \in S_n$. But σ completely determines the action of ϕ on A_n , so $\phi \in S_n$.

• $A_6 \cong PSL_2(9)$, easier to understand automorphisms that way: Lecture 3.

Intransitive groups

Let $H \leq S_n$, $n \geq 5$. Is H transitive? If not, let $\Delta = \alpha^H \subset \underline{n}$, and $k := |\Delta| < n$. Lemma 26 Up to A_n -conjugacy $H \leq S_k \times S_{n-k}$ with orbits \underline{k} and $X := \{k + 1, ..., n\}$.

Proof.

Example 15: A_n is transitive on *k*-subsets of \underline{n} . So $\exists \tau \in A_n$ s.t. $\Delta^{\tau} = \underline{k}$. Then $\underline{k}^{H^{\tau}} = \underline{k}^{\tau^{-1}H_{\tau}} = \Delta^{H_{\tau}} = \Delta^{\tau} = \underline{k}$.

Corollary 27

If an intransitive subgp of $X = A_n$ or S_n is maximal, it is of the form $X \cap (S_k \times S_{n-k})$.

Intransitive maximal subgroups

Theorem 28

The intransitive maximal subgroups of S_n , $n \ge 5$, are $S_k \times S_{n-k}$ for $1 \le k < n/2$.

Proof Let $H = S_k \times S_{n-k}$ for k < n/2. Let $g \in S_n \setminus H$, and $G = \langle H, g \rangle$. We show $G = S_n$. $g \notin H$ so $X^g \cap k \neq \emptyset$. Since $k < n/2, X^g \neq k$. Let $i, j \in X$ s.t. $i^g \in k, j^g \in X$. Then $(i \ j) \in H$, so $\sigma := (i \ j)^g = (i^g, j^g) \in G$. $I := \{ \sigma^{\tau} : \tau \in S_k \} = \{ (z \ j^g) : 1 < z < k \} \subset G.$ $\{\mu^{\tau} : \mu \in I, \tau \in \mathcal{S}_{n-k}\} = \{(a b) : a \in k, b \in X\} \subset G.$ So $(a \ b) \in G$ for all $a, b \in n$, and $G = S_n$.

Imprimitivity

Defn: $H \leq S_n$, transitive. If $\exists \Delta \subset \underline{n}$ with $1 < |\Delta| < n$ s.t. for each $h \in H$ either $\Delta^h = \Delta$ or $\Delta^h \cap \Delta = \emptyset$ then Δ is a block for H, and H is imprimitive.

 $\{\Delta^h : h \in H\}$ is a system of imprimitivity. Each Δ^h is a block, and $\cup_{h \in H} \Delta^h = \underline{n}$, so blocks partition \underline{n} into equal size parts.

If G is transitive and not imprimitive then G is primitive.

Example 29

 $\begin{array}{l} C_6 = \langle (1 \ 2 \ \ldots \ 6) \rangle. \mbox{ One system of imprimitivity is} \\ \{ \{1,4\}, \{2,5\}, \{3,6\} \}, \mbox{ so } C_6 \mbox{ is imprimitive.} \\ \mbox{ Another is } \{ \{1,3,5\}, \{2,4,6\} \}: \mbox{ systems of imprimitivity are not} \\ \mbox{ unique.} \end{array}$

Consider C_p acting on p points, some prime p. Then size of a block divides $|\Omega| \Rightarrow C_p$ is primitive.

Imprimitive wreath products

Defn: H - group, $G \leq S_d$. The wreath product $H \wr G$ is the semidirect product $H^d : G$, where $(h_1, \ldots, h_d)^{g^{-1}} = (h_{1^g}, \ldots, h_{d^g})$. That is

 $(h_{11},\ldots,h_{1d})g_1(h_{21},\ldots,h_{2d})g_2 = (h_{11}h_{21^{g_1}},\ldots,h_{1d}h_{2d^{g_1}})g_1g_2.$

Theorem 30

 $H \leq \operatorname{Sym}(\Delta), \ G \leq \operatorname{S}_d$ both transitive. There is an imprimitive action of $H \wr G$ on $\Delta \times \underline{d}$: $(\alpha, i)^{(h_1, \dots, h_d)g} = (\alpha^{h_i}, i^g).$

Proof.
A1
$$((\alpha, i)^{(h_{11},...,h_{1d})g_1})^{(h_{21},...,h_{2d})g_2} = (\alpha^{h_{1i}}, i^{g_1})^{(h_{21},...,h_{2d})g_2}$$

 $= (\alpha^{h_{1i}h_{2ig_1}}, i^{g_1g_2}) = (\alpha, i)^{(h_{11}h_{21g_1},...,h_{1d}h_{2dg_1})g_1g_2}$
A2 $(\alpha, i)^{(1_H,...,1_H)1_G} = (\alpha^{1_H}, i^{1_G}) = (\alpha, i).$

Transitive: Let $\alpha, \beta \in \Delta$, $i, j \in \underline{d}$. Then $\exists h \in H$ s.t. $\alpha^h = \beta$ and $\exists g \in G$ s.t. $i^g = j$. Then $(\alpha, i)^{(h,h,\dots,h)g} = (\alpha^h, i^g) = (\beta, j)$. Blocks are $\{(\alpha, i) : \alpha \in \Delta\}$, for $i \in \underline{d}$.

Maximal imprimitive subgroups

Lemma 31 $G < S_n$ imprimitive, blocks size k. Up to A_n -conjugacy $G \leq S_k \wr S_{n/k}$ with blocks $B_a := \{(a-1)k+1, \dots, ak\}$ for $1 \le a \le n/k$. Proof. Can conjugate G in A_n to yield blocks $B_1, \ldots, B_{n/k}$. If $\sigma \in S_n$ preserves $\{B_1, \ldots, B_{n/k}\}$, can write $\sigma = \mu \tau_1 \ldots \tau_{n/k}$, where μ permutes the subscripts on the B_i but sends $i_1k + j \mapsto i_2k + j$, for all i_1, j , and $\tau_i \in \text{Sym}(B_i)$. $\mu \leftrightarrow \mu' \in \text{S}_{n/k}$, $\operatorname{Sym}(B_i) \cong \operatorname{S}_k$, so $\sigma \in \operatorname{S}_k \wr \operatorname{S}_{n/k}$.

Theorem 32

 $\mathrm{S}_k \wr \mathrm{S}_{n/k}$ is a maximal subgp of S_n for all proper nontrivial divisors k of n.

Point stabilisers of primitive groups

G – primitive. Then G is not contained in any intransitive or imprimitive group.

Lemma 33

 $G \leq S_n$ – transitive. The gp G is primitive iff $G_{\alpha} \leq_{\max} G$.

Proof.

 $\begin{array}{l} G \ \operatorname{imp} \ \Rightarrow \ G_{\alpha} \ \operatorname{not} \ \operatorname{maximal} \\ \Delta \ - \ \operatorname{block} \ \operatorname{for} \ G, \ \operatorname{s.t.} \ \alpha \in \Delta. \ \operatorname{Let} \ H = \{g \in G \ : \ \Delta^g = \Delta\}. \ \operatorname{Then} \\ H \leq G \ \operatorname{and} \ H \neq G. \ \operatorname{Also}, \ \operatorname{if} \ g \in G_{\alpha} \ \operatorname{then} \ \alpha \in \Delta \cap \Delta^g \ \operatorname{so} \ \Delta = \Delta^g \\ \operatorname{and} \ g \in H. \ \operatorname{So} \ G_{\alpha} \leq H. \ \operatorname{Let} \ \beta \in \Delta, \ \beta \neq \alpha. \ \operatorname{Then} \ \exists \ g \in G \ \operatorname{with} \\ \alpha^g = \beta. \ \operatorname{Hence} \ \Delta^g = \Delta, \ \operatorname{so} \ g \in H. \ \operatorname{Hence} \ G_{\alpha} < H < G. \end{array}$

 $\begin{array}{l} G_{\alpha} \text{ not maximal} \Rightarrow G \text{ imprimitive.} \\ \text{Let } G_{\alpha} < H < G. \text{ Then } |H : G_{\alpha}| < |G : G_{\alpha}| = |\Omega|, \text{ so } H \text{ is} \\ \text{intransitive. Let } \Delta = \alpha^{H}, \text{ and let } g \in G. \text{ If } g \in H \text{ then } \Delta^{g} = \Delta. \\ \text{If } \Delta^{g} \cap \Delta \neq \emptyset, \text{ then } \exists u, v \in H \text{ s.t. } \alpha^{ug} = \alpha^{v}. \text{ Then } ugv^{-1} \in G_{\alpha}, \\ \text{so } g \in u^{-1}G_{\alpha}v \subset H. \text{ Hence } \Delta^{g} \cap \Delta \neq \emptyset \Rightarrow \Delta^{g} = \Delta. \end{array}$

Primitive groups of affine type

p – prime, $V = \mathbb{F}_p^d$. Defn: The affine general linear group $AGL_d(p)$ is $V : \operatorname{GL}_d(p) = \{(h, v) : v \in V, h \in \operatorname{GL}_d(p)\}$ with multiplication $(h_1, v_1)(h_2, v_2) = (h_1h_2, v_1^{h_2} + v_2).$ $AGL_d(p)$ acts on V via $v^{(h,w)} = vh + w$. Action is faithful, so $\operatorname{AGL}_d(p) < \operatorname{Sym}(V).$ With this action, $V \cong \{(1, v) : v \in V\} \trianglelefteq AGL_d(p)$ is regular. $\operatorname{GL}_d(p)$ is the stabiliser of $0 \in V$. Defn: A group of affine type is $G \leq S_{p^d}$ s.t. $V \leq G \leq AGL_d(p)$. Lemma 34 G – gp of affine type. G is primitive iff G_0 is an irreducible

subgroup of GL(V).

Example 35

If $C_p \trianglelefteq G \le \operatorname{AGL}_1(p) \cong C_p : C_{p-1} \le \operatorname{S}_p$ then G is primitive.

Product action primitive groups

Let $H \leq \operatorname{Sym}(\Delta)$, $K \leq \operatorname{S}_d$. The product action of $G = H \wr K$ on $\Omega = \Delta^d = \{(\delta_1, \dots, \delta_d) : \delta_i \in \Delta\}$ is:

$$(\delta_1, \dots, \delta_d)^{(h_1, \dots, h_d)k} = (\delta_1^{h_1}, \dots, \delta_d^{h_d})^k = (\delta_{1^{k^{-1}}}^{h_{1^{k^{-1}}}}, \dots, \delta_{d^{k^{-1}}}^{h_{d^{k^{-1}}}})$$

If *H* is transitive then $H \wr K$ is transitive. $(\alpha_1, \ldots, \alpha_d), (\beta_1, \ldots, \beta_d) \in \underline{k}^d$. Then $\forall i \exists h_i \in H$ s.t. $\alpha_i^{h_i} = \beta_i$. Hence $(\alpha_1, \ldots, \alpha_d)^{(h_1, \ldots, h_d) \mathbf{1}_K} = (\beta_1, \ldots, \beta_k)$.

Theorem 36

G is primitive iff (i) *H* is primitive and not regular on Δ and (ii) *K* is transitive on <u>*d*</u>.

Corollary 37

 $S_k \wr S_d$ is primitive in the product action on \underline{k}^d for all $k \ge 3$.

Diagonal type groups

 $T - \text{nonabelian simple, } k \ge 2.$ $D = \{(t, t, \dots, t) : t \in T\} \cong T \le T^k - \text{diagonal subgroup.}$ Right coset action of T^k on D: $\Omega = \{D(t_1, \dots, t_k) = D(1, t_1^{-1}t_2, \dots, t_1^{-1}t_k) : t_i \in T\}.$ Hence $n := |\Omega| = |T|^{k-1}.$ $k > 2 \Rightarrow D \text{ not maximal} \Rightarrow T^k \text{ not primitive.}$

Theorem 38 $N_{\mathbf{S}_n}(T^k) = T^k.(\operatorname{Out}(T) \times \mathbf{S}_k) \cong (T \wr \mathbf{S}_k).\operatorname{Out}(T) =$ $\{(s_1, \ldots, s_k)\sigma : s_i \in \operatorname{Aut}(T), \sigma \in \mathbf{S}_k, \operatorname{Inn}(T)s_i = \operatorname{Inn}(T)s_j \forall i, j\}.$

Defn: If $G \leq S_{|\mathcal{T}|^{k-1}}$ with $\mathcal{T}^k \leq G \leq \mathcal{T}^k.(\operatorname{Out}(\mathcal{T}) \times S_k)$ and $\operatorname{Inn}(\mathcal{T}) \leq G_{\alpha} \leq \operatorname{Aut}(\mathcal{T}) \times S_k$ then G is a group of diagonal type.

Theorem 39

G is primitive iff either k = 2 or k > 2 and the action of *G* by conjugation on direct factors $\{T_1, \ldots, T_k\}$ of T^k is primitive.

The maximal subgroups of A_n and S_n

Theorem 40 (O'Nan–Scott + Liebeck–Praeger–SaxI)

 $H < X = A_n$ or S_n , $n \ge 5$. Up to S_n -conjugacy, H is a subgp of one of the following groups G < X.

- 1. $G = (S_k \times S_{n-k}) \cap X$ with $k \neq n/2$. $G \leq_{\max} X$.
- 2. $G = S_k \wr S_{n/k} \cap X$, with 1 < k < n. $G \leq_{\max} X$ except when $X = A_8$, k = 2.
- 3. $G = \operatorname{AGL}_k(p) \cap X$. $G \leq_{\max} A_n G$, except when $X = A_n$ and $n \in \{7, 11, 17, 23\}$.
- 4. $G = (T^k.(\operatorname{Out}(T) \times S_k)) \cap X$, with $n = |T|^{k-1}$. $G \leq_{\max} A_n G$.
- 5. $G = (S_m \wr S_k) \cap X$, with $m \ge 5$, $k \ge 2$, product action. $G \le_{\max} A_n G$ except when $X = A_n$ and G is imprimitive.
- 6. $S \leq H \leq G \leq Aut(S)$ is a primitive almost simple group.

The almost simple maximals of A_n and S_n

Liebeck, Praeger and Saxl classified the non-maximal cases when G is almost simple.

To determine the explicit list of maximals for a given n:

- For the gps G on the previous slide, determine which exist.
- ▶ If $A_n G = S_n$ then get one class of G in S_n , and one class of $G \cap A_n$ in A_n .
- If $N_{S_n}(G) < A_n$ then get two classes of G in A_n .
- Find the almost simple primitive groups $G \leq S_n$.
- Sort them by their socles S. Eliminate the non-maximals by LPS. Determine conjugacy as above.

Theorem 41 (CMRD 05)

The maximal subgps of A_n and S_n are known for $n \leq 2500$.

Theorem 42 (Coutts, Quick & CMRD 2011)

The primitive gps of degree less than 4095 are known.

An example: A_8 and S_8

Maximal subgroups			
Order	Index	Structure	G.2
2520	8	A ₇	: S ₇
1344	15	2 ³ :L ₃ (2)	2 ⁴ :S4,
1344	15	2 ³ :L ₃ (2)	2 ⁴ :S ₄ ,] L ₃ (2):2
720	28	s ₆	: S ₆ x 2
576	35	2 ⁴ :(S ₃ xS ₃)	: (S ₄ xS ₄):2
360	56	(A ₅ x3):2	: s ₅ x s ₃

Exercises on Lecture 2

- 1. Prove that A_n is simple for $n \ge 5$:
 - 1.1 Show that A_n is generated by the set of all 3-cycles.
 - 1.2 Show that any normal subgroup $1 \neq N \trianglelefteq A_n$ contains a 3-cycle.
 - Show that if N contains one 3-cycle then N contains all 3-cycles.
- 2. Prove Lemma 24 for n = 7 (easy), and n = 8 (a bit trickier). Hence prove Theorem 25 for $n \neq 6$.
- 3. Prove that if n = 2m then the natural intransitive action of $S_m \times S_m$ is not a maximal subgroup of S_n .
- Show that S_k ≥ S_m is maximal in S_{km} for all k, m ≥ 2. [Hint: consider m = 2 first. Mimic proof of Thm 28].
- 5. Verify that the given action of $AGL_d(p)$ is an action, and that V is a regular normal subgroup.
- 6. Verify that the product action of a wreath product is an action.
- 7. Verify that the group T^k .(Out(T) × S_k) is primitive.