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Simple groups and maximal subgroups

Defn: A proper subgroup M < G is a maximal subgroup of G if
M < H ≤ G ⇒ H = G .

Defn: A group G is simple if G is nontrivial and G has no proper
non-trivial normal subgroups.

Example 1

G – abelian simple group of order n.
1 6= g ∈ G , a := |g |.
If a 6= n then 1 < 〈g〉 < G . Then G abelian ⇒ 〈g〉 is a proper
non-trivial normal subgp of G .
So each non-identity element of G has order n, and so n is prime
and G is cyclic.

The maximal subgroups of Cn are Cn/p for each prime p | n.



The Jordan–Hölder Theorem

Theorem 2 (Jordan–Hölder Thm)

G – finite group. Then ∃ subgps G1, . . . ,Gn of G s.t.
G = G0 > G1 > G2 > · · · > Gn = 1 and ∀i

1. Gi E Gi−1

2. Gi−1/Gi is simple.

Let G = H0 > H1 > H2 > · · · > Hp = 1 satisfy the same two
condns.
Then n = p and ∃ bijection φ : {1, . . . , n} → {1, . . . , p} s.t. ∀i

Gi−1

Gi

∼=
Hφ(i)−1

Hφ(i)
.

Moral: Every finite group is made up of simple groups in an
essentially unique way.

These simple gps are the composition factors of G .



Introducing PSLd(q)

Let d ≥ 2, q be a prime power, Fq be the field of order q, V = Fd
q .

Defn: GLd(q) = {invertible d × d matrices over Fq}, the general
linear group.

The determinant map is a homom from GLd(q) to F∗q, the
multiplicative group of Fq.
The kernel is the determinant 1 matrices: SLd(q), the special
linear group.

Lemma 3
The center of GLd(q) is Z (GLd(q)) = {λId : λ ∈ F∗q}.
Defn: The projective special linear group is
PSLd(q):= SLd (q)

SLd (q)∩Z(GLd (q)) .

Theorem 4
PSLd(q) is simple if d > 2 or q > 3.



The classification of finite simple groups

S – finite simple group. Then S is one of the following:

1. Cp for some prime p.

2. An for n ≥ 5.

3. A classical group: PSLd(q), PSUd(q), PSpd(q), PΩε
d(q),

ε ∈ {+,−, ◦}.
4. An exceptional group: En(q) n ∈ {6, 7, 8}, F4(q), G2(q),

2B2(q), 3D4(q), 2E6(q), 2F4(q), 2G2(q), 2F4(2)′.

5. One of 26 sporadic simple groups.

Cases 3 and 4 are the groups of Lie type:

I q is a prime power;

I some restrictions on d and q for existence and simplicity;

I constructions are related to, but fiddlier than, PSLd(q).

Not all of these groups are pairwise non-isomorphic; e.g.
PSL2(9) ∼= A6.



Groups of automorphisms

Defn: An automorphism of a group G is an isomorphism
φ : G → G .
Aut(G ) is the set of all automorphisms of G .

Lemma 5
Aut(G ) forms a group under composition of maps.

Proof.
Aut(G ) ⊂ Sym(G ); only need to prove is a subgroup.

Products: Let α, β ∈ Aut(G ). Then
(gh)(αβ) = ((gh)α)β = ((gα)(hα))β = (g(αβ))(h(αβ)), so
αβ ∈ Aut(G ).

Inverses: Inverse of an isom is an isom.

Example 6

Let G = Cp. Then Aut(G ) ∼= Cp−1.



Types of automorphisms, and almost simple groups

Defn: Let g ∈ G . The map cg : G → G , x 7→ g−1xg is an inner
automorphism of G .

Lemma 7

1. Inn(G ) := {cg : g ∈ G}E Aut(G ).

2. Inn(G ) ∼= G/Z (G ).

Corollary 8

If G is nonabelian simple, then G ∼= Inn(G ).

Defn: G is almost simple if there exists a nonabelian simple group
S s.t. S ∼= Inn(S) E G ≤ Aut(S). S is the socle of G .

Defn: The outer automorphism group of G is
Out(G ) := Aut(G )/Inn(G ).

Health warnings: (a) Elts of Out(G ) are not automorphisms!
(b) Often refer to elts of Aut(G ) \ Inn(G ) as outer automorphisms.



Extensions and semi-direct products

G – group, 1 < N C G . If G/N ∼= H then G is an extension of N
by H. Write G = N.H.

Internal semi-direct product
G – group s.t. ∃ 1 < N C G and 1 < H < G s.t.

I N ∩ H = 1

I HN = G .

Then G is a semi-direct product or split extension of N by H.
Write G = N : H

Notice: n1h1 · n2h2 = n1h1n2h
−1
1 h1h2 = n1n

h−1
1

2 h1h2.

External construction
N,H – groups. φ : H → Aut(N) homom.The semi-direct product
of N by H w.r.t. φ is {(n, h) : n ∈ N, h ∈ H} with product
(n1, h1)(n2, h2) = (n1(n2(h−1

1 φ)), h1h2).

If 1 < N C G and G/N ∼= H but 6 ∃K ≤ G with K ∼= H and
K ∩ N = 1 then G is a non-split extension of N by H.



Maximal subgroups

Theorem 9 (Ashbacher-Scott, very roughly)

To describe the maximal subgroups of a finite group G , it suffices
to know:

1. The maximal subgps of the almost simple gps whose socles
are composition factors of G .

2. The solution to the extension problem for various gps
occurring in G : given gps N and H, determine all extensions
of N by H.



Group actions and permutation groups

Defn: An action of a gp G on a nonempty set Ω is a function
Ω× G → Ω, (α, g) 7→ αg s.t. for all α ∈ Ω, g , h ∈ G
(A1) α(gh) = (αg )h; and
(A2) α1G = α.
Usually denote gp actions by conjugation.

Example 10

The symmetric gp Sn naturally acts on n = {1, . . . , n}.
Any gp G acts on itself by conjugation: xg = g−1xg .

Defn: A permutation representation is a homomorphism
θ : G → Sym(Ω) for some Ω. A permutation group is a subgp of
Sn for some n.

Example 11

The map G → Inn(G ) ≤ Sym(G ), g 7→ cg is a perm rep.



Equivalence of actions and perm reps

Lemma 12
Group actions are in natural bijection with perm reps.

Proof.
Given θ : G → Sym(Ω), define an action of G on Ω by αg = α(gθ).
(A1) α(gh) = α((gh)θ) = α(gθ)(hθ) = (αgθ)hθ = (αg )h.
(A2) α1G = α1θ = α1Sym(Ω) = α.

Conversely, given an action of G on Ω, define θ : G → Sym(Ω) by
αgθ = αg for all α ∈ Ω.

These two operations are mutually inverse.

Defn: An action/perm rep of G is faithful if the only elt of G to fix
all points of Ω is 1G .

Example 13

The action of Sn on {{α, β} : α, β ∈ n} is faithful if n > 2.
The conjugation action of G on itself has kernel Z (G ). So action
is not faithful iff Z (G ) 6= 1 6= G .



Orbits

These defns apply to actions, perm reps and perm gps.

Defn: The orbit of α ∈ Ω under G is αG = {αg : g ∈ G}.

Lemma 14
Let β, γ ∈ αG . Then ∃ x ∈ G s.t. βx = γ. Hence orbits partition
Ω.

Proof.
∃ g , h ∈ G s.t. αg = β, αh = γ. Then
βg

−1h = (βg
−1

)h = ((αg )g
−1

)h = (αgg−1
)h = αh = γ.

Defn: If G has a single orbit on Ω then G is transitive; otherwise
G is intransitive.

Example 15

If n ≥ 3 then for 1 ≤ k ≤ n, An is transitive on k-subsets of n.
Gp G with conjugation action is intransitive iff G 6= 1: orbits are
conjugacy classes.



Stabilisers

Defn: Let G act on Ω and α ∈ Ω. The stabiliser in G of α is

Gα = {g ∈ G : αg = α}.

Exercise
(i) Gα is a subgp of G . (ii) Let β = αg . Then Gβ = G g

α . Hence if
G is transitive then all point stabilisers are conjugate in G .

Let H ≤ G , with H = Hg1,Hg2, . . . ,Hgn the right cosets of H in
G . The right coset action of G on H is

(Hgi )
g = Hgig .

Lemma 16
The right coset action of G on H is transitive, with point
stabilisers {Hg : g ∈ G}. The kernel of the action is ∩g∈GHg .

Hence there is a natural correspondence between transitive actions
and conjugacy classes of subgps.



The orbit-stabiliser theorem

Theorem 17 (The orbit-stabiliser thm)

Let G ≤ Sym(Ω), α ∈ Ω. Then |αG | = |G : Gα|.
So G transitive ⇒ |G : Gα| = |Ω|.

Proof.
αx = αy iff αxy−1

= α iff xy−1 ∈ Gα iff Gαx = Gαy .
Hence there is a natural bijection αG ↔ {Gαg : g ∈ G}.

Defn: G is regular if G is transitive and Gα = 1.

Corollary 18

If G ≤ Sym(Ω) is regular then |G | = |Ω|.

Lemma 19
If G ≤ Sym(Ω) and N E G then G permutes the orbits of N.

Proof.
Let β ∈ αN . Then ∃ n ∈ N s.t. β = αn. Then βg = (αn)g

= αgn1 ∈ (αg )N , so (αN)g ⊆ (αg )N . Converse similar.



Maximal subgroups of almost simple groups

G – almost simple, socle T . Let M ≤max G .

One of the following occurs:

1. T ∩M = T . Trivial maximal.

2. T ∩M ≤max T . Ordinary maximal.

3. T ∩M ≤non−max T . Novelty maximal.

The trivial maximals of G can be found by calculating the maximal
subgps of G/T .

Theorem 20
Let M ≤max G . Then M ∩ T 6= 1.

Hence M – ordinary or novelty maximal of G , H := T ∩M 6= 1.
Then H EM and by Thm 20 H is not normal in G , so
M = NG (H).
Also, M ≤max G ⇒ TM = G ⇒ M/(M ∩ T ) ∼= ∼= TM/TG/T .



How to determine maximal subgroups

Work is to find ordinary and novelty maximals: M ≤max G s.t.
M = NG (M ∩ T ) and M/(M ∩ T ) ∼= G/T ≤ Out(T ).

I Classify (possibly only roughly) all subgps of some gp S
closely related to T .
(S chosen to be as easy to work with as possible).

I Deduce information about all conjugacy classes of subgps in
T .

I Out(T ) acts on conjugacy classes of subgps of T .

I Stabiliser in Out(T ) of a conjugacy class of subgps
corresponds to normaliser in Aut(T ) of a subgp in that class.

I Deduce ordinary and novelty maximal subgps of G .



Centralisers in the symmetric group

Theorem 21
G ≤ Sym(Ω), transitive. C := CSym(Ω)(G ). Then Cα = 1 for all
α ∈ Ω, and C ∼= NG (Gα)/Gα.

Proof.
Identify Ω with {Gαg : g ∈ G}, let H := Gα.
Let K = NG (H). Define action λ of K on Ω by (Hg)kλ = Hk−1g .

ker(λ) = H, im(K ) ∼= K/H. Because Hk−1g = Hg for some
g ∈ G iff k−1 ∈ H iff Hk−1g = Hg ∀g ∈ G .

Kλ ≤ C . Let x ∈ G , y ∈ K . Then for all Hg ∈ Ω
Hg x(yλ) = Hy−1gx = Hg (yλ)x .

C ≤ Kλ. Let c ∈ C , pick z ∈ G s.t. αc = αz . Then Hc = Hz .
Then for all Hg ∈ Ω, (Hg)c = Hgc = Hcg = Hzg . If g ∈ H then
Hz = Hc = (Hg)c = Hzg . So zgz−1 ∈ H, so z ∈ NG (H), and
c = (z−1)λ.



Exercises on Lecture 1

1. Find a nonabelian gp with two different composition series.

2. Prove that Z (GLd(q)) is the set of scalar matrices.

3. Show that the following hold: (i) Inn(G ) E Aut(G ).
(ii) Inn(G ) ∼= G/Z (G ).

4. Show that Sn
∼= An : C2, and that A4

∼= V4 : C3. Show that Q8

is not a split extension.

5. Finish the proof of Lemma 12: check gθ ∈ Sym(Ω) and that θ is a
homom.

6. Let G ≤ Sym(Ω) and α ∈ Ω. Show that (i) Gα is a subgp of G . (ii)
Let β = αg . Then Gβ = G g

α . (iii) If G is transitive then the point
stabilisers form a complete conjugacy class of subgps of G .

7. Let G act on the set of its subgps by conjugation. What is the
stabiliser of H ≤ G? Deduce that |{Hg : x ∈ G}| | |G |.

8. Let α ∈ Aut(G ), and let C be a conjugacy class of elements of G or
of subgps of G . Show that (i) Cα is a conjugacy class of (elements
or subgps of) G . (ii) If Cα = C and X ∈ C then there exists g ∈ G
s.t. Xαcg = X .


