NZMRI Summer School Introduction to the finite simple groups

Colva Roney-Dougal colva.roney-dougal@st-andrews.ac.uk

School of Mathematics and Statistics, University of St Andrews

Nelson, 8 January 2018

Simple groups and maximal subgroups

Defn: A proper subgroup M < G is a maximal subgroup of G if $M < H \le G \Rightarrow H = G$.

Defn: A group G is simple if G is nontrivial and G has no proper non-trivial normal subgroups.

Example 1

G – abelian simple group of order n. $1 \neq g \in G$, a := |g|. If $a \neq n$ then $1 < \langle g \rangle < G$. Then G abelian $\Rightarrow \langle g \rangle$ is a proper non-trivial normal subgp of G. So each non-identity element of G has order n, and so n is prime

and G is cyclic.

The maximal subgroups of C_n are $C_{n/p}$ for each prime $p \mid n$.

The Jordan–Hölder Theorem

Theorem 2 (Jordan–Hölder Thm) G – finite group. Then \exists subgps G_1, \ldots, G_n of G s.t. $G = G_0 > G_1 > G_2 > \cdots > G_n = 1$ and $\forall i$ 1. $G_i \triangleleft G_{i-1}$ 2. G_{i-1}/G_i is simple. Let $G = H_0 > H_1 > H_2 > \cdots > H_p = 1$ satisfy the same two condns. Then n = p and \exists bijection $\phi : \{1, \ldots, n\} \rightarrow \{1, \ldots, p\}$ s.t. $\forall i$ $\frac{G_{i-1}}{G_i} \cong \frac{H_{\phi(i)-1}}{H_{\phi(i)}}.$

Moral: Every finite group is made up of simple groups in an essentially unique way.

These simple gps are the composition factors of G.

Introducing $PSL_d(q)$

Let $d \ge 2$, q be a prime power, \mathbb{F}_q be the field of order q, $V = \mathbb{F}_q^d$. Defn: $\operatorname{GL}_d(q) = \{ \text{invertible } d \times d \text{ matrices over } \mathbb{F}_q \}$, the general linear group.

The determinant map is a homom from $\operatorname{GL}_d(q)$ to \mathbb{F}_q^* , the multiplicative group of \mathbb{F}_q . The kernel is the determinant 1 matrices: $\operatorname{SL}_d(q)$, the special linear group.

Lemma 3 The center of $\operatorname{GL}_d(q)$ is $Z(\operatorname{GL}_d(q)) = \{\lambda I_d : \lambda \in \mathbb{F}_q^*\}$. Defn: The projective special linear group is $\operatorname{PSL}_d(q) := \frac{\operatorname{SL}_d(q)}{\operatorname{SL}_d(q) \cap Z(\operatorname{GL}_d(q))}$.

Theorem 4 $PSL_d(q)$ is simple if d > 2 or q > 3.

The classification of finite simple groups

- S finite simple group. Then S is one of the following:
 - 1. C_p for some prime p.
 - 2. A_n for $n \ge 5$.
 - 3. A classical group: $\text{PSL}_d(q)$, $\text{PSU}_d(q)$, $\text{PSp}_d(q)$, $\text{P\Omega}_d^{\varepsilon}(q)$, $\varepsilon \in \{+, -, \circ\}$.
 - 4. An exceptional group: $E_n(q) \ n \in \{6,7,8\}, F_4(q), G_2(q), {}^{2}B_2(q), {}^{3}D_4(q), {}^{2}E_6(q), {}^{2}F_4(q), {}^{2}G_2(q), {}^{2}F_4(2)'.$
 - 5. One of 26 sporadic simple groups.
- Cases 3 and 4 are the groups of Lie type:
 - q is a prime power;
 - some restrictions on d and q for existence and simplicity;
 - constructions are related to, but fiddlier than, $PSL_d(q)$.

Not all of these groups are pairwise non-isomorphic; e.g. $\mathrm{PSL}_2(9)\cong\mathrm{A}_6.$

Groups of automorphisms

Defn: An automorphism of a group G is an isomorphism $\phi: G \to G$. Aut(G) is the set of all automorphisms of G.

Lemma 5 Aut(G) forms a group under composition of maps.

Proof. $Aut(G) \subset Sym(G)$; only need to prove is a subgroup.

Products: Let $\alpha, \beta \in Aut(G)$. Then $(gh)(\alpha\beta) = ((gh)\alpha)\beta = ((g\alpha)(h\alpha))\beta = (g(\alpha\beta))(h(\alpha\beta))$, so $\alpha\beta \in Aut(G)$.

Inverses: Inverse of an isom is an isom.

Example 6 Let $G = C_p$. Then $Aut(G) \cong C_{p-1}$. Types of automorphisms, and almost simple groups

Defn: Let $g \in G$. The map $c_g : G \to G$, $x \mapsto g^{-1}xg$ is an inner automorphism of G.

Lemma 7

- 1. $\operatorname{Inn}(G) := \{c_g : g \in G\} \trianglelefteq \operatorname{Aut}(G).$
- 2. $\operatorname{Inn}(G) \cong G/Z(G)$.

Corollary 8

If G is nonabelian simple, then $G \cong \text{Inn}(G)$.

Defn: G is almost simple if there exists a nonabelian simple group S s.t. $S \cong \text{Inn}(S) \trianglelefteq G \le \text{Aut}(S)$. S is the socle of G.

Defn: The outer automorphism group of G is Out(G) := Aut(G)/Inn(G).

Health warnings: (a) Elts of Out(G) are not automorphisms! (b) Often refer to elts of $Aut(G) \setminus Inn(G)$ as outer automorphisms.

Extensions and semi-direct products

G - group, $1 < N \lhd G$. If $G/N \cong H$ then G is an extension of N by H. Write G = N.H.

Internal semi-direct product

G - group s.t. $\exists 1 < N \lhd G$ and 1 < H < G s.t.

- ► $N \cap H = 1$
- HN = G.

Then G is a semi-direct product or split extension of N by H. Write G = N : H

Notice: $n_1h_1 \cdot n_2h_2 = n_1h_1n_2h_1^{-1}h_1h_2 = n_1n_2^{h_1^{-1}}h_1h_2$.

External construction

N, H – groups. $\phi : H \to \operatorname{Aut}(N)$ homom. The semi-direct product of N by H w.r.t. ϕ is $\{(n, h) : n \in N, h \in H\}$ with product $(n_1, h_1)(n_2, h_2) = (n_1(n_2(h_1^{-1}\phi)), h_1h_2).$

If $1 < N \lhd G$ and $G/N \cong H$ but $\not\exists K \leq G$ with $K \cong H$ and $K \cap N = 1$ then G is a non-split extension of N by H.

Theorem 9 (Ashbacher-Scott, very roughly)

To describe the maximal subgroups of a finite group G, it suffices to know:

- 1. The maximal subgps of the almost simple gps whose socles are composition factors of *G*.
- 2. The solution to the extension problem for various gps occurring in G: given gps N and H, determine all extensions of N by H.

Group actions and permutation groups

Defn: An action of a gp G on a nonempty set Ω is a function $\Omega \times G \to \Omega$, $(\alpha, g) \mapsto \alpha^g$ s.t. for all $\alpha \in \Omega$, $g, h \in G$ (A1) $\alpha^{(gh)} = (\alpha^g)^h$; and (A2) $\alpha^{1_G} = \alpha$.

Usually denote gp actions by conjugation.

Example 10

The symmetric gp S_n naturally acts on $\underline{n} = \{1, ..., n\}$. Any gp *G* acts on itself by conjugation: $x^g = g^{-1}xg$.

Defn: A permutation representation is a homomorphism $\theta : G \to \operatorname{Sym}(\Omega)$ for some Ω . A permutation group is a subgp of S_n for some n.

Example 11

The map $G \to \operatorname{Inn}(G) \leq \operatorname{Sym}(G)$, $g \mapsto c_g$ is a perm rep.

Equivalence of actions and perm reps

Lemma 12

Group actions are in natural bijection with perm reps.

Proof.

Given $\theta: G \to \operatorname{Sym}(\Omega)$, define an action of G on Ω by $\alpha^{g} = \alpha^{(g\theta)}$. (A1) $\alpha^{(gh)} = \alpha^{((gh)\theta)} = \alpha^{(g\theta)(h\theta)} = (\alpha^{g\theta})^{h\theta} = (\alpha^{g})^{h}$. (A2) $\alpha^{1_{G}} = \alpha^{1_{\theta}} = \alpha^{1_{\operatorname{Sym}(\Omega)}} = \alpha$.

Conversely, given an action of G on Ω , define $\theta : G \to \text{Sym}(\Omega)$ by $\alpha^{g\theta} = \alpha^g$ for all $\alpha \in \Omega$.

These two operations are mutually inverse.

Defn: An action/perm rep of G is faithful if the only elt of G to fix all points of Ω is 1_G .

Example 13

The action of S_n on $\{\{\alpha, \beta\} : \alpha, \beta \in \underline{n}\}$ is faithful if n > 2. The conjugation action of G on itself has kernel Z(G). So action is not faithful iff $Z(G) \neq 1 \neq G$.

Orbits

These defns apply to actions, perm reps and perm gps.

Defn: The orbit of $\alpha \in \Omega$ under G is $\alpha^{G} = \{ \alpha^{g} : g \in G \}.$

Lemma 14 Let $\beta, \gamma \in \alpha^{G}$. Then $\exists x \in G \text{ s.t. } \beta^{x} = \gamma$. Hence orbits partition Ω .

Proof.

$$\exists g, h \in G \text{ s.t. } \alpha^g = \beta, \ \alpha^h = \gamma. \text{ Then} \\ \beta^{g^{-1}h} = (\beta^{g^{-1}})^h = ((\alpha^g)^{g^{-1}})^h = (\alpha^{gg^{-1}})^h = \alpha^h = \gamma.$$

Defn: If G has a single orbit on Ω then G is transitive; otherwise G is intransitive.

Example 15

If $n \ge 3$ then for $1 \le k \le n$, A_n is transitive on k-subsets of \underline{n} . Gp G with conjugation action is intransitive iff $G \ne 1$: orbits are conjugacy classes.

Stabilisers

Defn: Let G act on Ω and $\alpha \in \Omega$. The stabiliser in G of α is

$$G_{\alpha} = \{ g \in G : \alpha^g = \alpha \}.$$

Exercise

(i) G_{α} is a subgp of G. (ii) Let $\beta = \alpha^{g}$. Then $G_{\beta} = G_{\alpha}^{g}$. Hence if G is transitive then all point stabilisers are conjugate in G.

Let $H \leq G$, with $H = Hg_1, Hg_2, \ldots, Hg_n$ the right cosets of H in G. The right coset action of G on H is

$$(Hg_i)^g = Hg_ig.$$

Lemma 16

The right coset action of G on H is transitive, with point stabilisers $\{H^g : g \in G\}$. The kernel of the action is $\bigcap_{g \in G} H^g$. Hence there is a natural correspondence between transitive actions and conjugacy classes of subgps.

The orbit-stabiliser theorem

Theorem 17 (The orbit-stabiliser thm) Let $G \leq \text{Sym}(\Omega)$, $\alpha \in \Omega$. Then $|\alpha^{G}| = |G : G_{\alpha}|$. So G transitive $\Rightarrow |G : G_{\alpha}| = |\Omega|$.

Proof.

 $\begin{array}{l} \alpha^{x} = \alpha^{y} \text{ iff } \alpha^{xy^{-1}} = \alpha \text{ iff } xy^{-1} \in \mathcal{G}_{\alpha} \text{ iff } \mathcal{G}_{\alpha}x = \mathcal{G}_{\alpha}y. \\ \text{Hence there is a natural bijection } \alpha^{\mathcal{G}} \leftrightarrow \{\mathcal{G}_{\alpha}g : g \in \mathcal{G}\}. \end{array}$

Defn: G is regular if G is transitive and $G_{\alpha} = 1$.

Corollary 18 If $G \leq \text{Sym}(\Omega)$ is regular then $|G| = |\Omega|$.

Lemma 19 If $G \leq Sym(\Omega)$ and $N \leq G$ then G permutes the orbits of N.

Proof. Let $\beta \in \alpha^N$. Then $\exists n \in N$ s.t. $\beta = \alpha^n$. Then $\beta^g = (\alpha^n)^g$ $= \alpha^{gn_1} \in (\alpha^g)^N$, so $(\alpha^N)^g \subseteq (\alpha^g)^N$. Converse similar.

Maximal subgroups of almost simple groups

G – almost simple, socle T. Let $M \leq_{\max} G$.

One of the following occurs:

1. $T \cap M = T$. Trivial maximal.

- 2. $T \cap M \leq_{\max} T$. Ordinary maximal.
- 3. $T \cap M \leq_{non-max} T$. Novelty maximal.

The trivial maximals of G can be found by calculating the maximal subgps of G/T.

Theorem 20

Let $M \leq_{\max} G$. Then $M \cap T \neq 1$.

Hence M - ordinary or novelty maximal of G, $H := T \cap M \neq 1$. Then $H \leq M$ and by Thm 20 H is not normal in G, so $M = N_G(H)$. Also, $M \leq_{max} G \Rightarrow TM = G \Rightarrow M/(M \cap T) \cong TM/TG/T$.

How to determine maximal subgroups

Work is to find ordinary and novelty maximals: $M \leq_{\max} G$ s.t. $M = N_G(M \cap T)$ and $M/(M \cap T) \cong G/T \leq \text{Out}(T)$.

 Classify (possibly only roughly) all subgps of some gp S closely related to T.

(S chosen to be as easy to work with as possible).

- Deduce information about all conjugacy classes of subgps in *T*.
- Out(T) acts on conjugacy classes of subgps of T.
- ► Stabiliser in Out(T) of a conjugacy class of subgps corresponds to normaliser in Aut(T) of a subgp in that class.
- Deduce ordinary and novelty maximal subgps of *G*.

Centralisers in the symmetric group

Theorem 21 $G \leq \text{Sym}(\Omega)$, transitive. $C := C_{\text{Sym}(\Omega)}(G)$. Then $C_{\alpha} = 1$ for all $\alpha \in \Omega$, and $C \cong N_G(G_{\alpha})/G_{\alpha}$.

Proof.

Identify Ω with $\{G_{\alpha}g : g \in G\}$, let $H := G_{\alpha}$. Let $K = N_G(H)$. Define action λ of K on Ω by $(Hg)^{k\lambda} = Hk^{-1}g$.

 $\ker(\lambda) = H$, $\operatorname{im}(K) \cong K/H$. Because $Hk^{-1}g = Hg$ for some $g \in G$ iff $k^{-1} \in H$ iff $Hk^{-1}g = Hg \ \forall g \in G$.

$$K\lambda \leq C$$
. Let $x \in G$, $y \in K$. Then for all $Hg \in \Omega$
 $Hg^{x(y\lambda)} = Hy^{-1}gx = Hg^{(y\lambda)x}$.

 $C \leq K\lambda$. Let $c \in C$, pick $z \in G$ s.t. $\alpha^c = \alpha^z$. Then $H^c = Hz$. Then for all $Hg \in \Omega$, $(Hg)^c = H^{gc} = H^{cg} = Hzg$. If $g \in H$ then $Hz = H^c = (Hg)^c = Hzg$. So $zgz^{-1} \in H$, so $z \in N_G(H)$, and $c = (z^{-1})\lambda$.

Exercises on Lecture 1

- 1. Find a nonabelian gp with two different composition series.
- 2. Prove that $Z(GL_d(q))$ is the set of scalar matrices.
- Show that the following hold: (i) Inn(G) ≤ Aut(G).
 (ii) Inn(G) ≅ G/Z(G).
- 4. Show that $S_n \cong A_n$: C_2 , and that $A_4 \cong V_4$: C_3 . Show that Q_8 is not a split extension.
- 5. Finish the proof of Lemma 12: check $g\theta \in \operatorname{Sym}(\Omega)$ and that θ is a homom.
- Let G ≤ Sym(Ω) and α ∈ Ω. Show that (i) G_α is a subgp of G. (ii) Let β = α^g. Then G_β = G^g_α. (iii) If G is transitive then the point stabilisers form a complete conjugacy class of subgps of G.
- 7. Let G act on the set of its subgps by conjugation. What is the stabiliser of $H \leq G$? Deduce that $|\{H^g : x \in G\}| | |G|$.
- Let α ∈ Aut(G), and let C be a conjugacy class of elements of G or of subgps of G. Show that (i) C^α is a conjugacy class of (elements or subgps of) G. (ii) If C^α = C and X ∈ C then there exists g ∈ G s.t. X^{αcg} = X.