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Simple groups and maximal subgroups

Defn: A proper subgroup M < G is a maximal subgroup of G if
M<H<G=H=4G.

Defn: A group G is simple if G is nontrivial and G has no proper
non-trivial normal subgroups.

Example 1

G — abelian simple group of order n.

1#g€G,a:=]|g|

If a# nthen 1 < (g) < G. Then G abelian = (g) is a proper
non-trivial normal subgp of G.

So each non-identity element of G has order n, and so n is prime
and G is cyclic.

The maximal subgroups of C, are C,/, for each prime p | n.



The Jordan—Holder Theorem

Theorem 2 (Jordan—Holder Thm)
G — finite group. Then 3 subgps Gy, ..., G, of G s.t.
G=G>G >G>--->G,=1andVi
1. Gid Gy
2. Gj_1/G;j is simple.
Let G = Hy > Hy > Hy > --- > H, = 1 satisfy the same two

condns.
Then n = p and 3 bijection ¢ : {1,...,n} = {1,...,p} s.t. Vi

Gi—1 ~ Hy(iy-1

G Hup

Moral: Every finite group is made up of simple groups in an
essentially unique way.

These simple gps are the composition factors of G.



Introducing PSLg4(q)

Let d > 2, q be a prime power, [F; be the field of order q, V = Fg.

Defn: GL4(q) = {invertible d x d matrices over Fg}, the general
linear group.

The determinant map is a homom from GL4(q) to F, the
multiplicative group of IFy.

The kernel is the determinant 1 matrices: SL4(q), the special
linear group.

Lemma 3
The center of GL4(q) is Z(GLq4(q)) = {\Ma : A € Fg}.

Defn: The projective special linear group is

L SL
PSL4(q):= Wg&(q»-

Theorem 4
PSL4(q) is simple if d > 2 or g > 3.



The classification of finite simple groups

S — finite simple group. Then S is one of the following:
1. Cp for some prime p.
2. A, forn>5.
3. A classical group: PSL4(q), PSU4(q), PSpy(q), PQ5(q),
ee{+,—,0}
4. An exceptional group: E,(q) n € {6,7,8}, Fa(q), G2(q),
?B2(q), *Da(q), *Es(q), *Fa(q), *Ga(q), *Fa(2)"
5. One of 26 sporadic simple groups.
Cases 3 and 4 are the groups of Lie type:
> g is a prime power;
> some restrictions on d and g for existence and simplicity;
» constructions are related to, but fiddlier than, PSL4(q).
Not all of these groups are pairwise non-isomorphic; e.g.
PSIL,(9) = As.



Groups of automorphisms

Defn: An automorphism of a group G is an isomorphism
¢o:G— G.
Aut(G) is the set of all automorphisms of G.

Lemma 5
Aut(G) forms a group under composition of maps.

Proof.
Aut(G) C Sym(G); only need to prove is a subgroup.

Products: Let a, 8 € Aut(G). Then

(gh)(af) = ((gh)a)B = ((ga)(ha))B = (g(aB))(h(ap)), so
af € Aut(G).

Inverses: Inverse of an isom is an isom.

Example 6
Let G = Cp. Then Aut(G) = Cp_1.



Types of automorphisms, and almost simple groups

Defn: Let g € G. Themap ¢z : G — G, x — g 'xg is an inner
automorphism of G.
Lemma 7
1. Inn(G) :={cz : g € G} T Aut(G).
2. Inn(G) =2 G/Z(G).
Corollary 8
If G is nonabelian simple, then G = Inn(G).

Defn: G is almost simple if there exists a nonabelian simple group
Sst. S=Inn(S) <G < Aut(S). S is the socle of G.

Defn: The outer automorphism group of G is
Out(G) := Aut(G)/Inn(G).

Health warnings: (a) Elts of Out(G) are not automorphisms!
(b) Often refer to elts of Aut(G)\ Inn(G) as outer automorphisms.



Extensions and semi-direct products

G —group, 1 < N< G. If G/N = H then G is an extension of N
by H. Write G = N.H.

Internal semi-direct product
G—-groupst. I1<NagGand1l < H<G st

» NNnH=1

» HN = G.
Then G is a semi-direct product or split extension of N by H.
Write G=N: H B
Notice: nyhy - nphy = nyhymphy “hyhy = nynit hyhy.
External construction
N, H — groups. ¢ : H — Aut(N) homom.The semi-direct product
of Nby Hw.rt. ¢is {(n,h) : ne N, he H} with product
(n1, h1)(n2, ha) = (m(n2(hy '), hyhe).
If1<N<Gand G/N=Hbut AK < G with K = H and
KN N =1 then G is a non-split extension of N by H.



Maximal subgroups

Theorem 9 (Ashbacher-Scott, very roughly)
To describe the maximal subgroups of a finite group G, it suffices
to know:
1. The maximal subgps of the almost simple gps whose socles
are composition factors of G.

2. The solution to the extension problem for various gps
occurring in G: given gps N and H, determine all extensions

of N by H.



Group actions and permutation groups

Defn: An action of a gp G on a nonempty set €2 is a function
QxG—Q, (v,g)—~ a8 st forallaeQ, g,heG

(A1) o(8h) = (a®)": and

(A2) ate = a.

Usually denote gp actions by conjugation.

Example 10

The symmetric gp S, naturally acts on n={1,...,n}.
Any gp G acts on itself by conjugation: x8 = g 1xg.

Defn: A permutation representation is a homomorphism
0 : G — Sym(Q) for some Q. A permutation group is a subgp of
S, for some n.

Example 11
The map G — Inn(G) < Sym(G), g — ¢z is a perm rep.



Equivalence of actions and perm reps

Lemma 12
Group actions are in natural bijection with perm reps.

Proof.

Given 6 : G — Sym(Q), define an action of G on Q by a8 = a(8%),
(A1) ofleh) = o((en)f) — o(80)(h0) — (80)h0 — (&)

(A2) ate = al? = alsym@ = q.

Conversely, given an action of G on £, define § : G — Sym(Q) by
a8 = a8 for all o € Q.

These two operations are mutually inverse. []
Defn: An action/perm rep of G is faithful if the only elt of G to fix
all points of Q is 1¢.

Example 13

The action of S, on {{«, 8} : «, 5 € n} is faithful if n > 2.
The conjugation action of G on itself has kernel Z(G). So action
is not faithful iff Z(G) #1 # G.



Orbits

These defns apply to actions, perm reps and perm gps.
Defn: The orbit of & € Q under G is a® = {a® : g € G}.

Lemma 14
Let B,y € a®. Then3 x € G s.t. BX = ~. Hence orbits partition
Q.

Proof.
Jg,he Gst. a8 =3, a’ =+. Then
B8 = (B = ((a®)F ) = (a®8 ) = ah = v, s

Defn: If G has a single orbit on Q then G is transitive; otherwise
G is intransitive.

Example 15

If n> 3 then for 1 < k < n, A, is transitive on k-subsets of n.
Gp G with conjugation action is intransitive iff G £ 1: orbits are
conjugacy classes.



Stabilisers
Defn: Let G act on Q and o € Q. The stabiliser in G of « is
Go={g€G : af =a}
Exercise
(i) G, is a subgp of G. (ii) Let 8 = a&. Then Gg = G§. Hence if

G is transitive then all point stabilisers are conjugate in G.

Let H < G, with H = Hgy, Hg, . . ., Hg, the right cosets of H in
G. The right coset action of G on H is

(Hgi)® = Hgig.

Lemma 16
The right coset action of G on H is transitive, with point
stabilisers {H& : g € G}. The kernel of the action is NgccH®.

Hence there is a natural correspondence between transitive actions
and conjugacy classes of subgps.



The orbit-stabiliser theorem

Theorem 17 (The orbit-stabiliser thm)
Let G < Sym(Q), a € Q. Then [a®| = |G : G,|.
So G transitive = |G : G,| = [Q].

Proof.
o =) iff ¥ =aiff xy € Gy iff Gox = Guy.
Hence there is a natural bijection a® <+ {G,g : g € G}.

Defn: G is regular if G is transitive and G, = 1.

Corollary 18

If G < Sym(Q) is regular then |G| = |Q].

Lemma 19

If G < Sym(2) and N 9 G then G permutes the orbits of N.
Proof.

Let e al. ThenI ne Nst. B=a" Then 38 = (a")8
= a8™ ¢ (a8)N, so (aV)& C (a8)N. Converse similar.



Maximal subgroups of almost simple groups

G — almost simple, socle T. Let M <jax G.

One of the following occurs:
1. TNM = T. Trivial maximal.
2. TNM <pax T. Ordinary maximal.
3. TNM <yon—max . Novelty maximal.
The trivial maximals of G can be found by calculating the maximal
subgps of G/ T.
Theorem 20
Let M <pax G. Then MN'T # 1.

Hence M — ordinary or novelty maximal of G, H:=TNM # 1.
Then H <A M and by Thm 20 H is not normal in G, so

M = Ng(H).

Also, M <pax G = TM =G = M/(MNT)= 2TM/TG/T.



How to determine maximal subgroups

Work is to find ordinary and novelty maximals: M <_.x G s.t.

M =

>

Ng(MA T)and M/(MNT)= G/T < Out(T).

Classify (possibly only roughly) all subgps of some gp S
closely related to T.
(S chosen to be as easy to work with as possible).

Deduce information about all conjugacy classes of subgps in
T.

Out(T) acts on conjugacy classes of subgps of T.

Stabiliser in Out(T) of a conjugacy class of subgps
corresponds to normaliser in Aut(T) of a subgp in that class.

Deduce ordinary and novelty maximal subgps of G.



Centralisers in the symmetric group

Theorem 21
G < Sym(Q), transitive. C := Cgyyy(q)(G). Then Co =1 for all
aeQ, and C = Ng(G,)/Gy.

Proof.
Identify Q with {G,g : g € G}, let H := G,.
Let K = Ng(H). Define action A of K on Q by (Hg)** = Hk 1g.

ker(\) = H, im(K) = K/H. Because Hk~1g = Hg for some
geGiff k€ Hiff Hk g = Hg Vg € G.

KA < C. Let xe G, y € K. Then for all Hg € Q
ng(y/\) = Hy_lgx = Hg()/)‘)x_

C< KA Letce C, pick ze Gs.t. a° =a*. Then H® = Hz.
Then for all Hg € Q, (Hg)¢ = H& = H® = Hzg. If g € H then
Hz = H® = (Hg)¢ = Hzg. So zgz~! € H, so z € Ng(H), and
c=(z"1HA O



Exercises on Lecture 1

1. Find a nonabelian gp with two different composition series.

2. Prove that Z(GLg4(q)) is the set of scalar matrices.

3. Show that the following hold: (i) Inn(G) < Aut(G).
(i) Inn(G) = G/Z(G).

4. Show that S, =2 A, : G, and that A, =2V, : (3. Show that Qg
is not a split extension.

5. Finish the proof of Lemma 12: check gf € Sym(Q2) and that 6 is a
homom.

6. Let G < Sym(Q2) and o € Q. Show that (i) G, is a subgp of G. (ii)
Let 8 =a&. Then Gg = G&. (iii) If G is transitive then the point
stabilisers form a complete conjugacy class of subgps of G.

7. Let G act on the set of its subgps by conjugation. What is the
stabiliser of H < G? Deduce that [{H8 : x € G}| | |G|.

8. Let @ € Aut(G), and let C be a conjugacy class of elements of G or
of subgps of G. Show that (i) C* is a conjugacy class of (elements
or subgps of) G. (i) If C* = C and X € C then there exists g € G
s.t. X% = X.



