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Abstract 

Molecular sequences obtained at different sampling times from populations of rapidly 

evolving pathogens and from ancient sub-fossil and fossil sources are increasingly available 

with modern sequencing technology. Here, we present a Bayesian statistical inference 

approach to the joint estimation of mutation rate and population size that incorporates the 

uncertainty in the genealogy of such temporally spaced sequences by using Markov Chain 

Monte Carlo (MCMC) integration. The Kingman coalescent model is used to describe the 

time structure of the ancestral tree. We recover information about the unknown true ancestral 

coalescent tree, population size and the overall mutation rate from temporally spaced data, 

that is, from nucleotide sequences gathered at different times, from different individuals, in 

an evolving haploid population. We briefly discuss the methodological implications, and 

show what can be inferred, in various practically relevant states of prior knowledge. We 

develop extensions for exponentially growing population size and joint estimation of 

substitution model parameters. We illustrate some of the important features of this approach 

on a genealogy of HIV-1 envelope (env) partial sequences. 



 

1 Introduction 

One of the most significant developments in population genetics modelling in recent times 

was the introduction of coalescent or genealogical methods (Kingman, 1982a; 1982b). The 

coalescent is a stochastic process that provides good approximations to the distribution of 

ancestral histories that arise from classical forward-time models such as the Fisher-Wright 

(Fisher, 1930; Wright, 1931) and Moran population models. The explicit use of genealogies1 

to estimate population parameters allows the non-independence of sampled sequences to be 

accounted for. Many coalescent-based estimation methods focus on a single genealogy (Fu, 

1994; Nee et al, 1995; Pybus, Rambaut & Harvey, 2000) that is typically obtained using 

standard phylogenetic methods. However there is often considerable uncertainty in the 

reconstructed genealogy. In order to allow for this uncertainty it is necessary to compute the 

average likelihood of the population parameters of interest. The calculation involves 

integrating over genealogies distributed according to the coalescent (Griffiths & Tavare, 

1994; Kuhner, Yamato & Felsenstein, 1995). We can carry out this integration for some 

models of interest, using Monte Carlo methods. Importance-sampling algorithms have been 

developed to estimate the population parameter Θ = 2Neµ (Griffiths & Tavare, 1994; 

Stephens & Donnelly, 2000), migration rates (Bahlo & Griffiths, 2000) and recombination 

(Griffiths & Marjoram, 1996; Fearnhead & Donnelly, 2001). Metropolis-Hastings Markov 

Chain Monte Carlo (MCMC) (Metropolis et al, 1953; Hastings, 1970) has been used to 

obtain sample-based estimates of Θ (Kuhner, Yamato & Felsenstein, 1995), exponential 

growth rate (Kuhner, Yamato & Felsenstein, 1998), migration rates (Beerli & Felsenstein, 

1999, 2001) and recombination (Kuhner, Yamato & Felsenstein, 2000).  

 

In addition to developments in coalescent-based population genetic inference, sequence data 

sampled at different times are now available from both rapidly evolving viruses such as HIV 

(Holmes et al, 1992; Wolinsky et al, 1996; Rodrigo et al, 1999; Shankarappa et al, 1999), 

and from ancient DNA sources (Hanni et al, 1994; Leonard, Wayne & Cooper, 2000; Loreille 

et al, 2001).  This temporally spaced data provides the potential to observe the accumulation 

of mutations over time, and thus estimate mutation rate (Rambaut, 2000; Drummond & 

                                                 
1 'Genealogy' and 'tree' are used interchangeably throughout. In both cases we are referring to 
a collection of edges, nodes and node times that together completely specify a rooted history. 



Rodrigo, 2000). In fact it is even possible to estimate variation in the mutation rate over time 

(Drummond, Forsberg & Rodrigo, 2001). This leads naturally to the more general problem of 

simultaneous estimation of population parameters and mutation parameters from temporally 

spaced sequence data (Rodrigo et al, 1999; Rodrigo & Felsenstein, 1999; Drummond & 

Rodrigo, 2000; Drummond, Forsberg & Rodrigo, 2001).  

 

In this paper we estimate population and mutation parameters, dates of divergence and tree 

topology from temporally spaced sequence data, using sample-based Bayesian inference. The 

important novelties in the inference are the data type (i.e. temporally sampled sequences), the 

relatively large number of unknown model parameters, and the MCMC sampling procedures, 

not the Bayesian framework itself. The coalescent gives the expected frequency with which 

any particular genealogy arises under the Fisher-Wright population model. The coalescent 

may then be treated, either as part of the observation process defining the likelihood of 

population parameters, or as the prior distribution for the unknown true genealogy. In either 

case we must integrate the likelihood over the state space of the coalescent. Bayesian, and 

purely likelihood-based, population genetic inference use the same reasoning, and software, 

up to the point where prior distributions are given for the parameters of the coalescent and 

mutation processes.  

 

Are there then any important difficulties, or advantages in a Bayesian approach over a purely 

likelihood-based approach? The principle advantage is the possibility of quantifying the 

impact of prior information on parameter estimates and their uncertainties. The new difficulty 

is to represent different states of prior knowledge, of the parameters of the coalescent and 

mutation processes, as probability densities. However, such prior elicitation is often 

instructive. In the absence of prior information, researchers frequently choose to use non-

informative/improper priors for the parameters of interest.  Such an approach may be 

problematic and can result in improper posterior distributions. There exist a number of 

important cases in the literature in which knowledgeable authors inadvertently analyse a 

meaningless, improper posterior distribution. Why then do we choose to treat improper priors 

in this paper? We are developing and testing inferential and sampling methods. These 

methods become more difficult as the amount of information in the prior is reduced. The 

sampling problem becomes significantly more difficult. We therefore treat the “worst case” 

prior that might naturally arise. Since this prior is improper, we are obliged to check that the 



posterior is proper. However, when confronted with a specific analysis, detailed biological 

knowledge should be encoded in the prior distributions wherever possible. 

 

Although Bayesian reasoning has frequently been applied to phylogenetic inference (Yang & 

Rannala, 1997; Thorne, Kishino & Painter, 1998; Mau, Newton & Larget, 1999; 

Huelsenbeck, Larget & Swofford, 2000) it has thus far been the exception in population 

genetic inference (Wilson & Balding, 1998). 

 

In this paper, we begin with a description of the models we use. We then give the overall 

structure of the inferential framework, followed by an overview of how MCMC is carried 

out. We mention extensions of the basic inference that allow for (1) deterministically varying 

populations and (2) estimation of substitution parameters. Finally, we illustrate our methods 

with a group of studies of a sample of HIV-1 envelope (env) sequences, and a second group 

of studies of synthetic sequence data.   

  

1.1 Kingman coalescent with temporally offset leaves 

In this section we define the coalescent density for the constant-sized Fisher-Wright 

population model. In Section 3 we give the corresponding density for the case of a population 

with deterministic exponential growth. It is assumed genealogies are realised by the Kingman 

coalescent process. Our time units in this paper are ‘calendar units before the present’ (e.g. 

days before present, or days BP), where the present is the time of the most recent leaf and set 

to zero. Let ρ denote the number of calendar units per generation and eNθ ρ= . The scale 

factor θ converts “coalescent time” to calendar time, and is one of two key objects of our 

inference. Notice that we will not estimate ρ and Ne separately, only their product. 

  

Consider a rooted binary tree g with n leaf nodes and n - 1 ancestral nodes. For node i, let ti 

denote the age of that node in calendar units. Node labels are numerically increasing with age 

so i > j implies ti ≥ tj. Let I denote the set of leaf node labels and let Y denote the set of 

ancestral node labels. There is one leaf node Ii ∈ associated with each individual in the data. 

These individuals are selected, possibly at different times, from a large background 

population. An edge 〈i, j〉, i > j of g represents an ancestral lineage. Going back in time, an 

ancestral node Yi ∈  corresponds to a coalescence of two ancestral lineages. The root node, 



with label i = 2n-1, represents the most recent common ancestor (MRCA) of all leaves. Let It  

be the times of the leaves and Yt  be the divergence times of the ancestral nodes. Let Eg denote 

the edge set of g, so that ),( Yg tEg =  specifies a realisation of the coalescent process. For 

given n and tI, let Γ denote the class of all coalescent trees ),( Yg tE  with n leaf nodes having 

fixed ages tI . The ages tY are subject to the obvious parent-child age order constraint. The 

element of measure in Γ is 121... −+= nn dtdtdg  with counting measure over distinct topologies 

associated with the distinguishable leaves. 

 

The probability density for a tree, )|( θgfG , Γ∈g  is computed as follows. Let ki denote the 

number of lineages present in the interval of time between the node i-1 and the node i. The 

coalescent process generates ),( Yg tEg = with probability density 
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The interpretation is as follows. Fix a time t and suppose k lineages are present at that time. A 

coalescence event between any of the k(k-1)/2 pairs of distinguished lineages occurs at 

instantaneous rate 1/θ. Given that two lineages coalesce at time t, the probability it was some 

particular pair is 2/k(k-1). It follows that, in the time interval of length 1−− ii tt  preceding the 

time of a leaf node Ii ∈ , ‘nothing’ happens with probability 1
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1[ , ], 2,3,..., 2 1i it t i n− = − , we obtain Equation [1] (Rodrigo & Felsenstein, 1998).  

1.2 Mutation 

We use the standard finite-sites selection-neutral likelihood framework (Felsenstein, 1981) 

with a general time-reversible (GTR) substitution model (Rodriguez et al, 1990). However, 

as we are considering genealogies in calendar units (or generations) as opposed to mutations 

we take some space to develop notation. 



Associated with each leaf node i ∈ I there is a nucleotide sequence 

,1 ,2 , ,( , ,..., ,..., )i i i i s i LD D D D D=  of some fixed length L say. Nucleotide base characters 

, , , 1,2,...,i sD i I s L∈ =  take values in the set },,,{ TGCA=C . An additional gap character, φ, 

indicates missing data. Let 1 2( , ,..., )T
nD D D D=  denote the Ln ×  matrix of sequences 

associated with the tree leaves, and let DA denote the Ln ×− )1(  matrix of unknown 

sequences associated with the ancestral nodes. The data is D together with tI, that is, the n 

sequences observed in the leaf-individuals and the n ages at which those individual sequences 

were taken. Let ( 1)n L−=D C  denote the set of all possible ancestral sequences. Consider a site 

s=1,2,…,L in the nucleotide sequence of an individual. The character at site s mutates in 

forward time according to a Poisson jump process with 44 ×  rate matrix Q. Here, jiQ ,  is the 

instantaneous rate for the transition from character i to character j, and 

4,3,2,1 ←←←← TGCA . We assume mutations are independent between sites. Let ππππ = 

(πA, πC, πG, πT) be a 41×  vector of base frequencies, corresponding to the stationary 

distribution of the mutation process, (0,0,0,0)Q =ππππ . 

 

The matrix Q is parameterised in terms of a symmetric 'relative rate' matrix R, 
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The time units of the rate ,i jQ  have been chosen so that the mean number of mutations per 

unit time occurring at a site is equal to one. Let µ give the mean number of mutations per 

calendar unit  (e.g. mutations / year) at a site. 

 



The conversion factor µ is the second of the two principal objects of our inference. In 

addition to µ, the relative rates, R, may be estimated. We have found that wherever it is 

feasible to estimate the scale parameters µ and θ, our data is informative about the elements 

of R. We return to inference for relative rates in Section 3. 

 

We now write down the likelihood for µ. Consider an edge gEji ∈〉〈 ,  of tree g. The 

individual associated with node j is a direct descendant of the individual associated with node 

i. However the sequences Di and Dj may differ if mutations have occurred in the interval. Let 

eQ denote the 44 ×  matrix exponential of Q. In the standard finite-sites selection-neutral 

likelihood framework ( )
, , ,

Pr{ | } i jQ t t
j s i s c c

D c D c e µ− −

′
 ′= = =    for c ∈C .  The probability for 

any particular set of sequences D, DA to be realised at the nodes of a given tree is  
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(in the above formula, compact notation is obtained by including in the product over edges an 

edge terminating at the root from an ancestor of infinite age). We may eliminate the unknown 

ancestral sequences DA from the above expression, by simply summing all AD ∈D ,  
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It is feasible to evaluate this sum, using a pruning algorithm (Felsenstein, 1981). 

 

 

1.3 Bayesian Inference for scale parameters 

We now consider Bayesian inference for scale parameters µ and θ.  Both of these quantities 

take a real positive value. The joint posterior density, hMΘG(µ, θ, g|D ), for the scale 

parameters and genealogy, is given in terms of the likelihood and coalescent densities above 

and two additional densities,  fM(µ) and fΘ(θ ). These functions quantify prior information 

about the scale parameters.  Let Z be an unknown normalising constant. The posterior is then 

  



                       hMΘG(µ, θ, g | D )  =  1
Z

Pr{D| µ, g } )|( θgfG  fM(µ)  fΘ(θ ) .             [6] 

 

We are interested in the marginal density, hMΘ(µ, θ | D ). We summarise this density using 

samples (µ, θ, g) ∼ hMΘG . The sampled genealogies can be thought of as uninteresting 

"missing data".    

 

Consider now the densities fM(µ) and fΘ(θ ). In any particular application these functions will 

be chosen to summarise available prior knowledge of scale parameters. 

It is common practice to avoid the problem of prior elicitation, and attempt to construct a 

'non-informative' prior. This notion is poorly defined, since a prior may be non-informative 

with respect to some hypotheses, but informative with respect to others. Nevertheless we will 

illustrate sample based Bayesian inference under a prior that contains little information. We 

do this for two reasons. First, we wish to give our sampling instruments a thorough workout. 

From this point of view an improper prior is the best choice. Second, when carrying out 

Bayesian inference, it is necessary to test the sensitivity of conclusions to changes in the state 

of prior knowledge. What conclusions would a person in a state close to ignorance reach from 

this data? The improper prior we consider represents ignorance of a rather natural kind. 

People using our methods will very likely want to consider this particular state of knowledge, 

along with others, more representative of their own.  

 

 In our case µ and θ are both scale parameters (for time). The Jeffreys' prior, 0,1)( >∝ z
z

zf , 

invariant under scale transformations azz → , and the uniform prior on 0>z , are candidates 

for fM(µ) and fΘ(θ ).  If 
θµ
1,1 ∝∝ ΘΜ ff  and )|( θgfG  and Pr{ | , }D g µ  are as given in 

Equation [1] and Equation [5] then it may be shown that the posterior density in Equation [6] 

is not finitely normalisable. We may nevertheless consider ratios of posterior densities. But 

that means the only feasible Bayesian inference, at least under the uniform, improper prior, is 

exactly frequentist inference. We cannot treat the parameters of interest as random variables. 

Suppose fixed upper limits *µ µ≤ and *
root roott t≤  may be set, along with a lower limit *θ θ≥ . 

For the problems we use to illustrate our methods in Section 4, conservative limits of this 

kind determine a state of knowledge that arises quite naturally. Moreover it may be shown 



that the posterior density is finitely normalisable under uniform priors on the restricted state 

space, even though the prior on θ  remains improper.  

  

2 Markov Chain Monte Carlo for evolutionary parameters 

The posterior density hMΘG is a complicated function defined on a space of high dimension 

(between 30 and 40 in the examples which follow). We summarise the information it contains 

by computing the expectations, over hMΘG , of various statistics of interest. These 

expectations are estimated using samples distributed according to hMΘG. We use MCMC to 

gather the samples we need. MCMC and importance sampling are part of a family of Monte 

Carlo methods that may be used individually or in concert to solve the difficult integration 

problems that arise in population genetic inference. Earlier work on this subject is cited in the 

introduction. Figure 1 shows a cartoon of two proposal mechanisms used. See Appendix A 

for details of the proposal mechanisms and MCMC integration performed. 

 

As always in MCMC, it is not feasible to test for convergence to equilibrium. MCMC users 

are obliged to test for stationarity as a proxy. We make 3 basic tests. First, we check that 

results are independent of the starting state using ten independent runs with very widely 

dispersed initialisations. Secondly, we visually inspect output traces. These should contain no 

obvious trend.  Thirdly, we check that the MCMC output contains a large number of 

segments that are effectively independent of one another, independent, at least, in the 

distribution determined empirically by the MCMC output. Let ρf (k) give the autocorrelation 

at lag k for some function f of the MCMC output. Let γf denote the asymptotic standard 

deviation of some estimate of ρf (k), formed from the MCMC output. Large lag 

autocorrelations should fall off to zero, and remain within O(γf ) of zero, as discussed by 

Geyer (1992). Note that in the examples that follow in Section 4, these standards are not 

uniformly applied. The examples in Sections 4.2.1 and 4.2.2 pass all three checks. The 

examples in Section 4.2.3 pass the first test. Here we are displaying the limitations of our 

MCMC algorithm. However we believe the convergence is adequate for the points we make. 

Section A.2.1 describes the integrated autocorrelation time (IACT) and effective sample size 

(ESS) measures used to test the efficiency of our sampler. 

 



The MCMC algorithm we used was implemented twice, more or less independently, by AD, 

in JAVA, and GKN, in MatLab. This allowed us to compare results and proved very useful in 

debugging some of the more complex proposal mechanism combinations. To minimise 

programming burden, one of our implementations (GKN in MatLab) was partial, allowing 

only fixed population size and fixed R to be compared. Implementation issues are discussed 

more extensively in section A.2.2 of the Appendix. 

 

3 Extensions 

Extending the framework of Sections 1 and 2 to include deterministically varying models of 

population history and estimation of relative rate parameters is straightforward. Let Φ = 

(0,∞)5 be the state space for the relative rates of R above the diagonal and excluding G TR ↔ . 

Let s = (µ, θ, g, r, R), and let hS(s|D) denote the posterior density for S ∈ Ω*
S where Ω*

S = 

Ω*
MΘG × ℜ × Φ (see Appendix A).  The posterior probability density has the form 

 

                  hS( s | D )  =  1
Z

 Pr{D| µ, g, R } fG(g |θ ,r) fM(µ)  fΘ(θ ) fr(r) fR(R) [7] 

 

Let T denote the age of the most recent leaf, ie T = min i∈I ti. In this paper T = 0. Let t ≥ T be a 

generic age. In this model Ne=Ne(t). Recall that ρ, the number of calendar units per 

generation, is an unknown constant. Define a constant θ = Ne(T)ρ and a growth rate 

parameter r . The density ( | , )Gf g rθ is the density determined by the coalescent process with 

a population growing as ( )( ) r t T
eN t eθ

ρ
− −=  (Slatkin & Hudson, 1991). In terms of the notation 

defined in Section 1.1 in connection with Equation 1, for genealogies with temporally spaced 

tips the density is 
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If all of the relative rates in R, except G TR ↔ , are estimated we are fitting a general time-

reversible model of substitution. However it is sometimes useful to consider simpler nested 

models. One such model is the HKY model (Hasegawa et al, 1985). In the HKY model 



transitions occur at rate κ relative to transversions. Thus RA↔G = RC↔T = κ and RA↔C = RA↔T 

= RC↔G = RG↔T = 1. Either a Jeffreys' prior or a uniform prior can be used for the relative 

rates. However as a result of our parameterisation, the Jeffreys' prior provides more accurate 

estimates. In the examples that follow, a uniform prior is used for R and κ as this represents 

the most ignorant state of knowledge and is more than adequate for the purpose of illustrating 

the methodology. In the same spirit ( )rf r is set uniform on r, and this also proves acceptable. 

 

4 Examples 

In this section, we illustrate our methods on two HIV-1 env data sets and a series of synthetic 

data sets of comparable size. 

 

4.1 HIV-1 env data 

The method was first tested on HIV-1 partial envelope sequences obtained from a single 

patient over five sampling occasions spanning approximately 3 years: an initial sample (day 

0) followed by additional samples after 214 days, 671 days, 699 days and 1005 days. Details 

of this dataset have been previously published (Rodrigo et al, 1999). An important feature of 

this data is that monotherapy with Zidovudine was initiated on day 409 (Drummond, 

Forsberg & Rodrigo, 2001) and continued during the remainder of the study. The total dataset 

consists of 60 sequences from these 5 time points. The length of the alignment is 660 

nucleotides. Gapped columns were included in the analysis. The evidence for recombination 

seems to be negligible in this dataset (Rodrigo et al, 1999) and recombination is ignored for 

the purposes of illustrating our method. Rough estimates of Ne may be obtained by assuming 

a generation length of ρ = 1 day per generation (Rodrigo et al, 1999). However, we 

emphasize that we estimate Neρ only in this work. The dataset was split into two subsets for 

separate analysis. One contained all pre-treatment sequences (28 sequences), and the other 

contained all sequences after treatment commenced (32 sequences; henceforth called post-

treatment). The rationale behind this split is that both (1) population size and (2) mutation 

rate per unit time, may be affected by a replication inhibitor such as Ziduvodine. In all of the 

analyses, base frequencies were fixed to empirically determined values, however inference of 

these would have been trivial. Two analyses are undertaken on each dataset. The pre-

treatment data is strongly informative for all parameters estimated. The results are robust to 

the choice of priors and MCMC convergence is quick. In contrast, the post-treatment data is 



only weakly informative for µ, θ and troot parameters, the results are sensitive to the choice of 

prior and MCMC convergence is very slow. 

 

4.1.1 Pre-treatment data, constant population size, HKY substitution 

In this first analysis of the pre-treatment dataset, we fit the HKY substitution model and 

assume a constant population size. We are estimating µ, θ, g, and κ. We illustrate our 

methods using uniform prior distributions on µ and θ, an upper limit on mutation rate of 

µ*=1, a lower limit on Neρ of θ*=1 and a very conservative upper limit on troot of t*=107 

days. Ten MCMC runs were made, with starting values for mutation rate distributed on a log 

scale from 5×10-3 down to 10-7 mutations per site per day. This range greatly exceeds the 

range of values supported by the posterior. In order to test MCMC convergence on tree 

topologies, each of the ten MCMC runs was started on a random tree drawn from a 

coalescent distribution with population size equal to one thousand (in exploratory work we 

initialize on a sUPGMA or neighbour-joining topology). The 10 Markov chain simulations 

were run for 2,000,000 steps and the first 100,000 steps were discarded as burn-in. Each run 

took about four hours on a machine with a 700MHz Pentium III processor. The mean 

integrated autocorrelation time (IACT) of the mutation rate parameter was 4190 giving an 

effective sample size (ESS) of approximately 450 per simulation. Table 1 presents parameter 

estimates for all ten runs, illustrating close concordance between runs. Note also that the 

variability, between runs, of estimated means, is in line with standard errors estimated within 

runs. This is a consistency check on our estimation of the IACT. Figures 2 and 3 show the 

marginal posterior density of µ and θ for each of the ten runs. In all ten runs the consensus 

tree computed from the MCMC output, was the same, despite the fact that the starting trees 

were drawn randomly (data not shown). Combining the output of all ten runs, the 95% HPD 

(highest posterior density) intervals for the mutation rate and troot are respectively [4.20, 8.28] 

× 10-5 mutations per site per day, and [580, 1040] days. 

 

Table 1 Parameter estimates for 10 independent analyses of the pre-treatment dataset 

assuming constant population size and HKY model of mutation.  

Run Mutation rate 

(mutations 

generation-1 site-1 

Population size 

× generation 

length (θ) 

Age of root 

(days) 

Transition/ 

transversion bias 

parameter (κ) 



×105) length (θ) 

1 6.238 (0.0517)a 1284 (13.0) 796 (6.03) 4.132 (0.00634) 
2 6.173 (0.0498) 1304 (12.7) 799 (5.99) 4.141 (0.00599) 
3 6.218 (0.0466) 1291 (12.7) 794 (5.45) 4.124 (0.00631) 

4 6.168 (0.0434) 1303 (14.0) 797 (5.65) 4.138 (0.00629) 
5 6.297 (0.0474) 1269 (12.8) 784 (5.45) 4.134 (0.00640) 
6 6.159 (0.0458) 1309 (12.4) 802 (6.21) 4.135 (0.00630) 
7 6.308 (0.0539) 1270 (13.9) 784 (5.90) 4.130 (0.00678) 
8 6.256 (0.0463) 1279 (11.5) 790 (5.63) 4.133 (0.00674) 
9 6.247 (0.0474) 1283 (13.1) 791 (5.75) 4.122 (0.00661) 

10 6.201 (0.0578) 1291 (15.4) 801 (7.54) 4.123 (0.00736) 
Overall 6.227  1288 794 4.131 

95% HPD 

interval 

[4.20, 8.28] [660, 2050] [580, 1040] [3.07, 5.31] 

aNumbers in brackets are the standard errors of the means calculated using IACT statistic.  

4.1.2 Pre-treatment data, exponential growth, general substitution model 

In this second analysis of the pre-treatment dataset, we fit the general-time reversible 

substitution model, with exponential growth of population size. We are estimating µ, θ, g, r, 

RA↔C, RA↔G, RA↔T, RC↔G and RC↔T. This is the most parameter-rich model we fit. To assess 

the convergence characteristics of this analysis we ran 10 independent runs of 3,000,000 

cycles, each starting with an independent random tree topology (the mean IACT for µ was 

7955 giving an ESS of 358 per run). Figure 4 shows the ten estimates of the marginal 

posterior density of mutation rate. Table 2 shows parameter estimates for each of the ten runs. 

Convergence is still achieved with the extra parameters. 

 

Compare the distribution of summary statistics under the two models - described here and in 

section 4.1.1. Given the nature of infection of HIV-1, it seems likely that an exponential 

growth rate assumption is more accurate. Estimated 95% HPD intervals for the growth rate r, 

[1.09 × 10-3, 6.65 × 10-3], exclude small growth rates, corroborating this view. The 95% HPD 

intervals for the mutation rate and troot are respectively [3.61, 8.11] × 10-5 mutations per site 

per day, and [570, 1090] days. Compare these with model in section 4.1.1. The change in 

model has minimal effect (< 10%) on the posterior mean mutation rate. 

 



Table 2 Parameter estimates for 10 independent analyses of the pre-treatment dataset 

assuming exponential growth and GTR model of mutation.  

Run Mutation rate 

(mutations 

generation-1 site-1 

×105) 

Population size 

× generation 

length (θ) 

Age of root (days) Growth rate 

(r×103) 

1 5.910 (0.0623)a 5404 (127) 800 (7.43) 3.815 (0.0407) 

2 5.761 (0.0526) 5321 (125) 821 (7.05) 3.719 (0.0436) 
3 6.045 (0.0550) 5089 (123) 786 (6.85) 3.832 (0.0418) 
4 5.891 (0.0708) 5443 (172) 806 (8.56) 3.839 (0.0377) 
5 5.849 (0.0609) 5338 (113) 812 (8.05) 3.815 (0.0423) 
6 5.930 (0.0615) 5242 (170) 804 (8.66) 3.748 (0.0409) 

7 5.857 (0.0589) 5318 (148) 806 (7.33) 3.780 (0.0388) 
8 5.809 (0.0605) 5236 (123) 817 (7.51) 3.696 (0.0382) 
9 5.982 (0.0542) 5064 (127) 795 (5.63) 3.786 (0.0382) 

10 5.859 (0.0692) 5306 (188) 813 (10.2) 3.708 (0.0400) 
Overall 5.889  5276 806 3.774 

95% HPD 

interval 

[3.61, 8.11] [920, 12450] [570, 1090] [1.09, 6.65] 

aNumbers in brackets are the standard errors of the means calculated using IACT statistic.  

4.1.3 Post-treatment 

The post treatment data is analysed twice under the HKY substitution model with constant 

population size. The first analysis uses the same priors as the first pre-treatment analysis. In 

contrast to the pre-treatment dataset, the mutation rate of the post-treatment dataset is difficult 

to estimate. This is illustrated in Figures 5 and 6, in which the marginal posterior densities of 

µ and θ estimated from ten independent MCMC runs, each 5,000,000 cycles long, are 

compared.  We were unable to compute an IACT for each run, so we are unable to compare 

within and between run variability.  However the between run concordance visible in Figure 

5 justifies the following statement. The post-treatment mutation rate shows one mode at about 

2.8 × 10-5 mutations site-1 day-1 with a second mode on the lower boundary. The data 

determines a diffuse, and bimodal, marginal posterior on µ. One of the modes is associated 

with states (µ, θ, g) with physically unrealistic root times (greater than the age of the patient). 

These are allowed, if we are not prepared to assert some restriction on troot. This behaviour 



also occurs when we use a Jeffreys' prior on the mutation rate (data not shown). It reflects a 

real property of the data, namely that states of low µ and large troot are not well distinguished 

from otherwise identical states of larger µ and smaller troot.  

 

In the second post-treatment analysis, we revise the upper limit on troot downwards, from 107 

to t*=3650, a value more representative of actual prior knowledge for this data set. The new 

limit, set 3 years before seroconversion occurred in the infected patient, is still conservative. 

Here we explored the prior belief that HIV infection most often originates from a small, 

homogenous population and then subsequently accumulates variation. This prior effectively 

assumes that all viruses in an infected individual share a common ancestor at most as old as 

the time of infection of the host. Estimated 95% HPD interval for the mutation rate was [1.16, 

4.27] × 10-5 mutations per site per day, markedly down on the pre-treatment mutation rate. 

Figure 7 depicts the resulting uni-modal marginal posterior density for mutation rate, 

showing that the spurious mode has been eliminated. Again, no IACT was computed. 

However between run variability was much improved over Figures 5 and 6. Information 

about troot has been converted into information about mutation rates and population size. 

 

4.2 Simulated sequence data 

To test the ability of our inference procedure to recover accurate estimates of parameters 

from the above HIV-1 dataset we undertook four simulation studies. In each experiment we 

generated 100 synthetic datasets. For experiment 1, the posterior estimates of θ, µ and κ 

obtained from the pre-treatment dataset in section 4.1.1 were used to generate 100 coalescent 

trees and then simulate sequences on each of the resulting trees. The synthetic data was 

generated under a constant-size population model with HKY mutation model but analysed 

under an exponentially-growing population model and a GTR mutation model.  

In the second experiment, 100 synthetic datasets were generated using the pre-treatment 

parameter estimates in section 4.1.2 as the true values.  In this case the models for simulation 

and inference are matched. Synthetic data was generated under an exponentially-growing 

population model and a GTR mutation model. In both experiments 1 and 2 uniform bounded 

priors were used for all parameters. Experiments 3 and 4 differed from experiments 1 and 2 

only in that we used Jeffreys' prior for scale parameters (mutation rate, population size and 

relative rates). 



All datasets had the same number of sequences (28), the same sampling times (0 and 214 

days) and the same sequence length (660) as the pre-treatment dataset. Table 3 shows that the 

true values are successfully recovered (i.e. fall within the 95% HPD interval) ≥ 90% of the 

time in all cases except for the relative rate parameters in experiment 1. In the most complex 

model we fit, we recover true parameter values. The over-parameterisation present in 

experiments 1 and 3 does not seem problematic for estimating mutation rate, θ or growth rate. 

These results suggest that inference of biologically realistic growth rates is quite feasible. The 

relative rates performed most poorly of the parameters of interest. This is caused 

predominantly because the uniform prior on relative rates introduces metric factors that 

inflate the densities. In experiment 1, when the true value of a relative rate parameter was not 

within the 95% HPD interval (which occurred 75 times out of 500), it was almost always 

over estimated (74 out of 75 times). Furthermore conditioning on a tranversion ( RG↔T = 1), a 

rare event, may also have an impact. However, experiments 3 and 4 demonstrate that the use 

of a Jeffreys' prior for these and other scale parameters results in > 90% recovery in all 

parameters.  We are not aiming to prescribe any particular non-informative prior. Our choice 

of uniform prior in earlier experiments is deliberately crude. However, it allows us to lay out 

the methodology with as little emphasis as possible on prior elicitation. The reader should 

undertake this process for their specific problem.   

Table 3 Percentage of times that the true parameter was found in the 95% HPD region 

of the marginal posterior density. 

Parameter Experiment 1 Experiment 2 Experiment 3 Experiment 4 

Mutation rate 92 96 96 97 
θ 98 99 96 97 
Growth rate 91 92 94 92 
R

A→C 87* 93 96 92 
R

A→G 79* 90 96 94 
R

A→T 83* 90 94 96 
R

C→G 88* 96 98 91 
R

C→T 88* 92 98 94 
*indicates success rate significantly lower than 95%. 

5 Discussion 



We have described Bayesian coalescent-based methods to estimate, and assess the 

uncertainty in, mutation parameters, population parameters, tree topology and dates of 

divergence from aligned temporally-spaced sequence data.  The sample-based Bayesian 

framework allows us to bring together information of different kinds, in order to reduce 

uncertainty in the objects of the inference. Much of the hard work is in designing, 

implementing and testing a suitable Monte Carlo algorithm. We found a suite of MCMC 

updates that do the job. 

 

We have analysed two contrasting HIV-1 datasets and 400 synthetic datasets to illustrate the 

main features of our methods. The results of Sections 4.2.1, 4.2.2 and 4.2.4 show that a robust 

summary of parameter-rich models, including the joint estimation of mutation rate and 

population size, is possible for some moderate-sized datasets. The pre-treatment data restricts 

the set of plausible parameter values to a comparatively small range. For this dataset, useful 

results can be obtained from a state of ignorance about physically plausible outcomes. This 

situation is in contrast to the situation illustrated in Section 4.2.3 by the post-treatment data. 

For this data set, prior ignorance implies posterior ambiguity, in the form of a bimodal 

posterior distribution for the mutation rate. One of these modes is supported by genealogies 

conflicting with very basic current ideas about HIV population dynamics. We modify the 

coalescent prior on genealogies to account for this prior knowledge, restricting the most 

recent common ancestor to physically realistic values. The ambiguity in mutation rate is 

removed. Similar results could be obtained in a likelihood-based analysis of the post-

treatment data, since the prior information amounts to an additional hard constraint on the 

root time of the coalescent genealogy.   

 

There is some redundancy in the set of MCMC updates we used, in the sense that the limiting 

distribution of the MCMC is unaltered if we remove the scaling update (move 1) or the 

Wilson-Balding update (move 2) (see Appendix for details of theses moves).  However, these 

two updates types are needed in practice. There are two time scales in MCMC, time to 

equilibrium, and mixing time in equilibrium. The scaling move sharply reduces mixing time 

in equilibrium. The Wilson-Balding update is needed to bring the equilibrium time to 

acceptable values. We have seen MCMC simulations, minus the Wilson-Balding move, in 

which an apparently stationary Monte Carlo process undergoes a sudden and unheralded 

mean shift at around two million updates. This problem was picked up at the debugging 

stage, in comparisons between our two MCMC implementations. Subsequent simulation has 



shown that the genealogies explored in the first two million updates of that simulation were 

just one of the tree-clusters supported by the target distribution.  

 

The methods presented here reduce to those of Felsenstein and co-workers (Kuhner, Yamato 

& Felsenstein, 1995) in the case of a uniform prior on Θ = 2Neµ, a fixed R, a fixed µ and 

contemporaneous data, if instead of summarizing results using 95% HPD interval estimates, 

we use the mode and curvature of the posterior density for Θ  to recover the MLE estimate, 

and its associated confidence interval.  

 

A distinction can be made between a dataset, like the pre-treatment dataset, for which there is 

strong statistical information about mutation rates (we refer to populations from which such 

datasets may be obtained as “measurably evolving”) and a dataset, like the post-treatment 

data, in which the statistical signal is weak.  In both of these datasets the familiar parameter Θ 

= 2Neµ is in fact well determined by the data (not shown above), so that MCMC convergence 

in Θ is quick. However, it is only in the pre-treatment data that this parameter can easily be 

separated into its two factors. This is related to the well-known problem of identifiability for 

population size and mutation rate. We can see that temporally spaced data may or may not 

contain information that allows us to separate these two factors. In this particular example, 

lineages of the post-treatment viruses branch from those of the pre-treatment viral population. 

Consequently a more appropriate analysis for this dataset would allow for a change of 

mutation rate and/or population size over the genealogy of the entire set of sequences. In the 

case of mutation rate this has already been demonstrated within a likelihood framework 

(Drummond, Forsberg & Rodrigo, 2001).  In a Bayesian analysis, coalescence of post-

treatment lineages with pre-treatment lineages will tend to limit the age of the most recent 

common ancestor of the post-treatment data, so that the pre-treatment lineages will play the 

role of the reduced upper bound *
roott  in section 4.2.3.  

 

A software package called MEPI (Molecular Evolutionary Population Inference) developed 

using the Phylogenetic Analysis Library (PAL; Drummond & Strimmer, 2001), 

implementing the described method and further extensions (codon position rate heterogeneity 

etc) is available from http://www.cebl.auckland.ac.nz/mepi/index.html.  

 

http://www.cebl.auckland.ac.nz/mepi/index.html
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Appendix A: MCMC details and move types 
 

A description of Markov Chain Monte Carlo for temporally spaced sequence data including 

proposal mechanism used. 

Denote by ΩMΘG the space [0,∞) × [0,∞) × Γ of all possible (µ, θ, g) values. Let  

 

Ω*
MΘG = { (µ, θ, (Eg, tY) ) ∈ ΩMΘG  : *µ µ≤ , *θ θ≥ , *

root roott t≤ }. 

 

We now describe a Monte Carlo algorithm realising a Markov chain Xn, n=0,1,2,... with states 

x = (µ, θ, g) , x ∈ Ω*
MΘG, and equilibrium hX = hMΘG. 

 

Suppose nX x= . A value for Xn+1 is computed using a Metropolis-Hastings algorithm. 

Define a set of random operations on the state. A given move may alter one or more of µ, θ 

and g. Label the different move types m=1,2,...,M. The random operation with label m, acting 

on state x, generates state x', with probability density ( | )mq x x′  say. Let (a ∧ b) equal a if a<b 

and otherwise b and (a ∨ b) equal a if a>b and otherwise b, let  

 

P(x,x') = hX(x'|D ) / hX(x|D) 

 

 stand for the ratio of posterior densities, and let  
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Qm(x,x') = qm(x|x') / qm(x'|x) 

 

give the ratio of the densities for proposals x'→ x, and x→ x'. The algorithm determining Xn+1 

given Xn can be described as follows. First, a label m is chosen according to some arbitrary 

fixed probability distribution on the M move types. A value for the candidate state x' is drawn 

according to the density ( | )mq x x′ . Secondly, we accept the candidate, and set 1nX x+ ′=  with 

probability   

 

αm(x,x') = 1 ∧  ( P(x,x') Qm(x,x') ) .                               [9] 

 

Otherwise, with probability 1-αm(x,x'), the candidate is rejected and we set 1nX x+ = .  

 

A.1 Proposal mechanisms 

In this section we describe the proposal mechanisms (moves) and their acceptance 

probabilities. In each move nX x= , with x = (µ, θ, (Eg, tY) ).  For each node i let 

Yiparent ∈)( denote the label of the node ancestral to i, and connected to i by an edge. We 

get a compact notation if we treat Y, and g, as if Y contained a notional parent(root) node 

with ( )parent roott = ∞ , as we did in Equation [4].  Also, we now drop the convention that node 

labels increase with age. 

 

Let dx = dµ dθ dg in Ω*
MΘG and  

 

HX( dx | D ) = hX( x | D ) dx . 

 

The moves listed below determine an HX-irreducible aperiodic Metropolis Hastings kernel. 

By Theorem 2 corollary 2 of Tierney (1992) the MCMC is Harris recurrent and ergodic, with 

HX its unique equilibrium distribution.  

A.1.1 Scaling move 

Label this move m=1.  Let a real constant β>1 be given. For β-1 ≤ δ ≤ β, let x→ δx denote the 

transformation 
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(µ, θ, (Eg, tY) ) → (µ/δ, δθ, (Eg, δtY) ) . 

 

If x' = δ x then x = δ' x' with δ' = 1/δ. The change of variables in the product measure is 

  

HX( dx' | D ) dδ' = δn-3 HX( dx | D ) dδ . 

 

Notice that this transformation is not simply a change of units. The times ti associated with 

ancestral nodes i∈Y are scaled whilst leaf node times ti, i∈I (which are part of the data) are 

left unchanged.  

 

The move is as follows. Choose a δ ∼ Unif( β-1 , β )  and set x' = δ x. If x∉Ω*
MΘG, (if, for 

example, µ/δ > µ ∗ , or the parent child age order constraint is violated at the unscaled leaves 

in the scaled tree) then the move fails and we set 1nX x+ = . In a slight abuse of notation we 

set Q1(x, x') = 1/δn-3 , in the formula for α1(x, x') in Equation [9] (Green (1996) explains how 

this scale factor arises in Metropolis-Hastings MCMC). The choice β=1.2 gave reasonable 

acceptance rates in our simulations. 

A.1.2 Wilson-Balding move 

Label this move m=2. A random sub-tree is moved to a new branch. This move is based on 

the branch-swapping move of Wilson and Balding (1998). The SPR move in PAUP* 

(Swofford, 1999) is similar. However the move below acts on a rooted-tree and maintains all 

node ages except one.  

 

Two nodes, i, j I Y∈ ∪  are chosen uniformly at random without replacement. Let 

( )jp parent j=  and ( )ip parent i= . If tjp ≤ ti, if ip j= or ip jp= , then the move fails and we 

set 1nX x+ = . Given i and j, the candidate state ),,( gx ′=′ θµ  is generated in the following 

way. Let i~  denote the child of ip that is not i, and let ( )ipp parent ip= , the grandparent of i. 

Reconnect node ip so that it is a child of jp and a parent of j, that is, set  

 

gE′  = { , , ,jp j ip i〈 〉 〈 〉% , ,ipp ip〈 〉 } ∪ Eg  \  { , , ,jp ip ip j〈 〉 〈 〉 , ,ipp i〈 〉% } 
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If node j is not the root, assign to node ip a new time ipt′  chosen uniformly at random in the 

interval [(ti ∨ tj), tjp]. If node j is the root, choose δ ∼ Exp(θ) and set ipt′ = tj+δ. Let Yt ′  denote 

the set of node times with ipt replaced by ipt′ . Let x' = (µ, θ, ( gE′ , Yt ′ ) ). If node j and node ip 

are not root, the ratio Q2(x, x') in Equation [9] is  

 

Q2(x, x') = ( tjp – ( ti ∨ tj ) ) / ( tipp – ( ti ∨ t i~  ) ) . 

 

If node j is the root,   

   

Q2(x, x') = θ / ( exp(-δ /θ  ) ( tipp – ( ti ∨ t i~  ) ) , 

 

and if ip is the root, 

         

Q2(x, x') = ( tjp – ( ti ∨ tj ) ) exp( - ( tip – t i~  ) / θ  )  / θ . 

 

A.1.3 Sub-tree exchange 

Label this move m=3. Choose a node i I Y∈ ∪ . Let ip = parent(i),   ( )jp parent ip= , and let 

j denote the child of jp that is not ip. If node i is the root or a direct child of the root, or ip jt t<  

then the move fails and we set 1nX x+ = . Given i and j, the candidate state ),,( gx ′=′ θµ  is 

generated in the following way. Swap nodes i and j, setting 

 

gE′  =  { , , ,ip j jp i〈 〉 〈 〉 } ∪ Eg \ { , , ,jp j ip i〈 〉 〈 〉 } 

 

Let x' =  (µ, θ, ( gE′ , tY) ).  The ratio Q3(x, x’) = 1 in Equation [9].  

 

The sub-tree exchange above is a local operation. In a second version of this move we chose 

node j uniformly at random over the whole tree.  

A.1.4 Node age move 

Label this move m=4. Choose an internal node, i∈Y, uniformly at random. Let ip = parent(i) 

and let j and k be the two children of i ( so i=parent(j) and i=parent(k), j≠k ). If i is not the 
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root, choose a new time it′  uniformly at random in [(tj∨ tk), tip], otherwise, if i is the root, 

choose δ ∼ Unif(β-1 , β) (see move m=1) and set it′ = (tj∨ tk)+ δ(ti -(tj∨ tk)). Let Yt ′  denote the 

set of ancestral node times, tY,  with it replaced by it′ . Let x' = (µ, θ, (Eg, Yt ′ )).  If i is not the 

root, then Q4(x, x') = 1 in Equation [9]. If i is the root then Q4(x, x') = 1/δ.   

A.1.5 Random walk moves for θθθθ and µµµµ 

Label this move m=5. The random-walk update to θ is as follows. Let a real constant wθ > 0 

be given. Choose δ ∼ Unif(-wθ , wθ) and set x' = (µ, θ+δ, g). If x∉Ω*
MΘG, then the move fails 

and we set 1nX x+ = . Since the candidate generation process is symmetric, Q5(x, x') = 1, in 

the formula for α5(x, x') in Equation [9]. The random walk move for µ, with random-walk 

window parameter wµ say, is similar to the move just described for θ. The window sizes wθ 

and wµ must be adjusted in order to get reasonable sampling efficiency. 

 

A.2 Implementation, convergence checking and debugging 

A.2.1 Convergence and standard errors 

The efficiency of our Markov sampler, as a tool for estimating the mean of a given function f 

,  is measured by calculating from the output τf  = 1 + 2∑ ρf (k) , the integrated autocorrelation 

time (IACT) of f. Dividing the run length by τf , we get the number of “effective independent” 

samples in the run ( the number of independent samples required to get the same precision for 

estimation of the mean of f ). We will call this the effective sample size (ESS). Better MCMC 

algorithms have smaller IACT’s and thus larger ESSs, though it may be necessary to measure 

τ in units of CPU time in order to make a really useful comparison. One will typically want to 

run the Markov chain at least a few hundred times the IACT, in order to test convergence, 

and get reasonably stable marginal histograms. Notice first, that we do not know the IACT 

when we set the MCMC running. Exploratory runs are needed.  Secondly, a statement like 

“We ran the MCMC for 106 updates discarding the first 104” is worthless without some 

accompanying measurement of an IACT or equivalent. This point is made in Sokal (1989). 

The summation cutoff in the estimate for the IACT, τf, is determined using a monotone 

sequence estimator (Geyer, 1992). The IACTs we get for our MCMC algorithms suggest that 

analysis of large datasets (50-100 sequences and 500-1000 nucleotides) is feasible with 

current desktop computers. Examples may be found in Section 4 (Table 2). 
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The inverse of the IACT of a given statistic is the “mixing rate”. Statistics with small mixing 

rates are called the “slow modes” of a MCMC algorithm. The mutation rate µ was the slowest 

mode among those we checked, and we therefore present IACT’s for that statistic in Section 

4. 

A.2.2 Implementation issues 

In this section we discuss debugging and MCMC efficiency of our two implementations. We 

compare expectations computed in the coalescent with estimates obtained from MCMC 

output. Standard errors are obtained from estimates of the corresponding IACT. Consider a 

tree with four leaves, two at time zero, and two offset τ time units to greater age. Consider 

simulation in the coalescent, with no data. The expectation of troot is 

 

EG{ troot } = (  τ  +  4θ/3 ) ( 1 – e-τ/θ ) +  (  τ  +  3θ/2 ) e-τ/θ 

 

A number of other expectations may be computed.  

 

For problems involving data, expectations are not available. However, an MCMC algorithm 

with several different move types may be tested for consistency. The equilibrium is the 

posterior distribution of µ, θ and g, and should not alter as we vary the proportions in which 

move types used to generate candidate states. For example, move 2 (Wilson-Balding) is 

irreducible on its own, whilst moves 3 and 4 (Sub-tree exchange and Node-age move) form 

another irreducible group. We fix a small synthetic data set and compare the output of two 

MCMC runs: one generated using move 2 alone, and the other using moves 3 and 4 alone in 

tandem. 

 

We now turn to questions of MCMC efficiency. Each update has a number of parameters. 

These are adjusted, by trial and error for each analysis, so that the MCMC is reasonably 

efficient. An ad hoc adaptive scheme, based on monitoring acceptance rates, and akin to that 

described in Larget and Simon (1999), was used. The samples used in output analysis are 

taken from the final portion of the run, in which these parameters are fixed.  The scaling and 

Wilson-Balding updates are particularly effective. 

 

We have experimented with a range of other moves. However, whilst it is easy to think up 

computationally demanding updates with good mixing rates per MCMC update, we have 
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focused on developing a set of primitive moves with good mixing rate per CPU second. In 

our experience simple moves may have low acceptance rates, but they are easy to implement 

accurately, and are rapidly evaluated. They may give good mixing rates when we measure in 

CPU-seconds. Larget and Simon (1999) have given an effective MCMC scheme for a similar 

problem. We did not use their scheme, as its natural data structure did not fit well with our 

other operators. A second update, which may be useful to us in future, would use the 

importance sampling process of Stephens and Donnelly (2000) to determine an independence 

sampling update. 

 

Because of the explicit nature of MCMC inference, the details of a particular analysis, 

including the proposal mechanisms, the chain length, the evolutionary model and the prior 

distributions can be quite difficult to keep track of. One of us (AD) developed an XML data 

format to describe phylogenetic/population genetic analyses. This enables the user to write 

down the details of an analysis in a human-readable format that can also be used as the input 

for the computer program. For the more visually inclined a graphical user interface (GUI) 

was developed that can generate the XML input files, given a NEXUS or PHYLIP alignment.  
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Alexei Drummond
Figure 1. Diagrams of two proposal mechanisms used to modify tree topology during an MCMC analysis. (A) This move is called the "narrow exhange", and is similar to a nearest neighbour interchange. This move picks two subtrees at random under the constraint  that they have an aunt-niece relationship, i.e. the parent of one is the grandparent of the other, but neither is parent of the other. Once picked these two subtrees are swapped so long as doing so does not require any modifications in node heights to maintain parent-child order constraints. (B) This move is similar to one proposed by Wilson and Balding (1997) and involves removing a subtree and reattaching on a new parent branch.
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Alexei Drummond
Figure 2. The marginal posterior density of mutation rate for 10 independent MCMC runs on the pre-treatment HIV-1 env dataset. Each run was started on a random tree topology. Initial mutation rates ranged from 5e-3 to 1e-7.
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Figure 3. The marginal posterior density of theta for 10 independent MCMC runs on the pre-treatment HIV-1 env dataset. Each run was started on a random tree topology. Initial mutation rates ranged from 5e-3 to 1e-7.
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Figure 4. The marginal posterior density of mutation rate for 10 independent MCMC runs on the pre-treatment HIV-1 env dataset. An exponential growth rate model of demography and a general time-reversible (GTR) model of substitution were assumed. Each run was started on a random tree topology. Initial mutation rates ranged from 5e-3 to 1e-7.
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Figure 5. The marginal posterior density of mutation rate for 10 independent MCMC runs on the post-treatment HIV-1 env dataset. The thick line represents the density of all 10 runs combined. Each run was started on a random tree topology. Initial mutation rates ranged from 5e-3 to 10e-7.
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Figure 6. The marginal posterior density of theta for 10 independent MCMC runs on the post-treatment HIV-1 env dataset. Each run was started on a random tree topology. Initial mutation rates ranged from 5e-3 to 10e-7.
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Figure 7. The marginal posterior density of mutation rate for ten MCMC runs on the post-treatment HIV-1 env dataset where the age of the root had an upper limit of 10 years (3650 days). The thick line represents the density of all 10 runs combined. 
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