




26.457  The Circle Map : 2

The two approaches of the handouts on the circle map illustrate a deep cultural rift between the approaches of the
physicist and mathematician.  Schuster's treatment gives a much better feel of the real world background of the circle
map in physical systems, and the link between multi-dimensional continuous dynamics and 1D iterations on the
circle, but the development is obscure mathematically.  Devaney tends to the other extreme, taking pages to
establish that the concept of the winding number is well defined.  I will try to give a different emphasis sketching
the mechanical aspects, but elaborating the description of the Devil's staircase Cantor function result.

Consider any differentiable homeomorphism   f : S1 ! S1 :  It is natural, as Schuster assumes to assume that any
such map can naturally be lifted coordinate-wise onto the real line (mod 1) by wrapping around the circle using the
map "(x) = e2"ix.  The unit interval is then used as a coordinate system wrapped once around the circle (mod 1).
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(1) The Winding number exists is well-defined
Devaney however goes at length to show how long it actually takes to establish this intuitively obvious idea.
Lift the map f : S1 ! S1 to a map F : !  by using the winding function  " : ! S1 "(x) = e2"ix.  
A lift is any real map which models f when wound onto S1 : i.e. " o F = f o ". 

(a) Uniqueness.   We consider the limit   #0(F) =   lim
n ! $ |F

n(xo)|
n

   where x0 is any starting point.
By the periodicity of the lifting F(x+1) - (x+1) = F(x) - x, so F(x) - id has period 1.
Hence |Fn(x) - Fn(y)| %  |Fn(x) - x - (Fn(y) - y)| + |x - y| % 1 + |x - y|.  Hence the limit is independent of x0.
Exercise : Show any two lifts differ by an integer (assignment).  

We can thus define       # = fract   lim
n ! $ |F

n(xo)|
n

          which is then independent of the choice of lifting.

This model is realistic on the circle, but it is losing all complete revolutions in the original map on the torus.

(b) Existence
(i) Periodic.  We then verify that in the case of a mapping with a periodic point fm(&) = & this limit exists.  

Then Fm(x) = x + k for some k and we get    lim
j ! $ |F

jm(x)|
jm

  =  lim
j ! $ x

jm
 + k

m
 = k

m
 .

But we now need to clinch the deal for all n.  

Since Fr - id is bounded by M for any r    lim
n ! $ |F

n+r(x) - Fn(x)|
n

  =  lim
n ! $ M

n
 = 0

We can then use this to interpolate all the values of n in the limit (exercise) - notice Devaney has hashed this one!

(ii) Non-periodic.   Now we attack non-periodic mappings.  
Since Fn(x) - x is never an integer, we can squeeze it between two integers :    kn  < Fn(x) - x < kn + 1   

and hence     kn  < Fn(0) < kn + 1,   and so    kn
n

 < |F
n(0)|
n

  < kn + 1
n

  .

By repeating the iteration m times and adding we get  mkn  < Fmn(0) < m(kn + 1),   and kn
n

 < |F
mn(0)|
mn

  < kn + 1
n

 .

 |Fn(0)|
n

  - |F
m(0)|
m

  < |Fn(0)|
n

  - |F
mn(0)|
mn

  + |Fmn(0)|
mn

  - |F
m(0)|
m

   < 1
m

 + 1
n

Now   |F
n(0)|
n

  is Cauchy and hence convergent, and so # exists for this case also.



(2) Continuity of ####    wrt    ''''....        We now establish that # varies ()continuously with C0 *-small perturbations of f 
                  i.e. + ( > 0  , * : | f(&) - g(&) | < * - | #(f) - #(g) | < (.

Choose n so that 2/n < (, a lift so that   r - 1  < Fn(0) < r + 1 and * small enough so that r - 1  < Gn(0) < r + 1

then as before   m(r - 1)  < Fmn(0) < m(r + 1),   m(r - 1)  < Gmn(0) < m(r + 1) , so |F
mn(0)|
mn

 – |G
mn(0)|
mn

  < 2
n

 < ( .

(3) ####(f) irrational ....  f has no periodic points.  We already know # is rational if f has periodic points.
Suppose f has no fixed points, but # is rational.  If  #(f) = p/q then #(fq) = pq/q = 0 (mod 1).  So let # = 0.
Since F has no fixed points assume F(x) > x for all x.  
(a) Fn(0) < 1 for all n.  Then Fn(0) monotonically increasing and bounded above, so convergent. Then the limit
point p is fixed since F(lim Fn(0)) = lim Fn+1(0) = lim Fn(0) contradiction.
(b) Fn(0) > 1 for some n.    So Fmn(0) > m making # > 1/n again contradiction.

(4) The devil's staircase for the standard circle map.
We now finally come "full circle and re-examine the particular case :

                        &n+1 = f',((&n) = &n + 2"' + ( sin(&n) 

  with lift                                 xn+1 = F',((xn) = xn + ' + (
2"

 sin(2"xn) 

Note that F',((x) and hence Fn
',((x) monotonically increases with ', so that #0 and hence # must also for fixed (.

By the above continuity, # also varies continuously with '.  Let us fix ( > 0.

(a) #### rational.  We now show there is an interval of ' for which # remains fixed  
Let # = p/q.  Then F' has period q, i.e. we can find  k  :  Fq

'/(x0) = x0 + k    ( actually k has to be p )  

Now the graph of Fq
'/(x) must then intersect x + k at (x0, x0 + k).

(i) 0
0

1
x
F xo' (, ( ) 1 .   By the implicit function theorem there is an interval about ' for which x can be written

explicitly as a function of ', i.e. x' = g(') satisfies  Fq
'(x') = x' + k, and these values of ' also have  # = p/q.

(ii) 0
0

=
x
F xo' (, ( ) 1   then since it is analytic it must have a higher order derivative non-zero.  An non zero odd

order derivative gives an inflection and the result still holds.  An even order gives concave up or down giving a one-
sided interval in each case.
(b) #### irrational.        The proof that each irrational value of # has only a single ' is too difficult for Devaney. 

The resulting graph is the Devil's staircase Cantor function shown in the previous section, which is constant on
intervals and yet everywhere continuous.  At ( = 1 the intervals fill [0,1] leaving a measure zero Cantor set.

(5) Dynamics on the tongues. 
Note also the development of widening mode-locking tongues, as ( increases as in the previous illustrations.

The dynamics of this can be visualized as follows :   f has a fixed point when sin(&) = - 2"'
(

 .   But this gives 2
solutions for small values reducing to one and then none as the quotient is increased because of the shape of sin(&) :

  

We can check that the fixed points have f' 1 1 except at the single bifurcation point "1". 
Thus as we move across the central tongue (' increasing) a saddle-node bifurcation creates a pair of fixed points
which move around the circle as ' increases, giving rational mode locking until they meet and annihilate again, thus
spanning the interval "/2 < & < 3"/2  or   - (

2"
 < ' < (

2"
  across the tongue.  The tongues are not actually linear. 


