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Small airways vs large airways in asthma: time for a new perspective
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Is asthma predominately a disease of the large or small air-
ways? The question has vexed these pages for at least 50 years
(1–4) and although a consensus appears to be emerging in
favor of a substantial role for the small airways, the recent
evidence is scarcely more conclusive. Structurally, we now
know that airway remodeling may be variable with respect to
the involvement of the large or small airways (5). However,
this does not necessarily answer the question in terms of
function, which ultimately is the answer we seek. Indirect
measurements, such as forced oscillation-derived resistance
at two different frequencies [e.g., R5–R20 and others (6)] or
inferences from flow-volume curves (7, 8) Fn1

1 offer some infor-
mation but the specificity is, by the nature of the measure-
ment, somewhat limited (9).

Advances in imaging methodology increasingly allow
direct measurement of substantial numbers of individual
small airways in vivo, at least in animal models, and yet
the evidence remains seemingly contradictory–for exam-
ple, synchrotron-source computed tomography (CT) sug-
gests much greater responsiveness in the small airways in
response to methacholine (10, 11), whereas tantalum dust
and microfocal X-ray show almost precisely the opposite
(a predominant role for large airways) (12). Neither
approach is possible in humans, and as such direct airway
measurements from CT in humans are limited by meth-
odological constraints to the relatively larger airways (13,
14), and generally are interpreted as supporting the conclusion
that the smaller airways are the primary site of closure and air-
flow obstruction (15). On the other hand, hyperpolarized gas
MRI studies suggest, from analysis of ventilation distributions,
a role for closure of medium- and large-sized airways (15).
Leaving aside the methodological differences, let us for the
moment take these data at face value. Even with measure-
ments that Ann Woolcock, Jere Mead, and Peter Macklem
could scarcely have dreamt of in the late 60s, we are still left
without a clear picture. How, despite the attentions of so many
talented investigators over so many years, can there yet be no
consistent answer to this seemingly innocuous question?

The picture is, of course, further clouded by asthma’s sta-
tus as an umbrella diagnosis encompassing multiple pheno-
types (or endotypes). Many readers would happily agree that
while the framing as a disease of the large or small airways is
oversimplified for asthma as a whole, individual asthma

phenotypes may be small or large airway dominated. We
would take the argument one step further and suggest that
even in the context of a single phenotype, the small versus
large airway dichotomymay be unhelpful.

We argue in this Viewpoint that “small or large airway?” is
the wrong question. Let us start with the premise. Why do we
expect a useful delineation between large and small airways?
One potential reason is that we observe the structural differ-
ences between cartilaginous and noncartilaginous airways,
and suspect that this boundary is also relevant in terms of
function. Similarly we are constrained by our abilities to
observe and measure, much easier in the large airways than
the small [i.e., the “Quiet” (16) or “Silent Zone” (2)]. Thus, our
thinking coalesces along these lines: the seemingly natural
distinction between the large, cartilaginous, measurable air-
ways on the one hand, and the small, noncartilaginous, and
difficult-to-measure airways on the other. However, the latter
distinction is not relevant to function at all, and the former,
although genuine, is perhaps overstated.

To wit, the conducting airway tree operates in vivo as an
interconnected entity without any ready distinction between
the large and the small airways (except inasmuch as the
mechanical properties of the airways may be altered at the
cartilaginous boundary). Indeed, there are remarkable pat-
terns of near-fractal self-similarity in the airway tree (17–
20), implicitly arguing against a fundamental distinction
between small and large airways. In asthma, in response to
a contractile agonist, activation of the airway smooth mus-
cle (ASM) drives airway narrowing; in some airways this
leads to closure (or near-closure) and so-called ventilation
defects or ventilation heterogeneity, whereas in other air-
ways, paradoxical dilation and hyperinflation is apparent
(15, 21, 22). Thus, from a functional perspective we are
interested in the distribution of these responses and how it
depends on airway size.

As but a single example, consider the compliance of the
airways, and how it varies with airway size. Typically, central
airways are assumed to be stiff, giving way to increasingly
compliant airways toward the periphery (23). Imagine if the
difference in compliance between peripheral and central air-
ways is actually less than is generally assumed. How would
this alter the response of the airways, as a whole, to a con-
tractile stimulus?
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We can attempt to address this question using an existing
mathematical model of asthma, designed to study the inter-
action of airway tree structure and function (24) and incorpo-
rating airway dynamics and flow-induced instability (25).
When the compliance of peripheral airways is exaggerated
relative to more centrally located airways, airway narrowing
is concentrated in the smaller airways (Fig. 1, red dashed
curve), and one would be tempted to conclude that dysfunc-
tion manifests due to a susceptibility for closure in small
airways. In contrast, when the difference in compliance
between peripheral and central airways is reduced, the loca-
tion of critical airway narrowing shifts toward larger airways
(Fig. 1, solid blue curve). In such a case, we might conclude
that the large airways dominate. That is not to say that either
configuration is necessarily indicative of asthma, but instead
that what we might think of as small airway disease, as
opposed to large airway-dominated disease, are not so much
distinct phenomena but rather variations on a theme. Ergo,
although we seem eager to stratify patients into functionally
distinct phenotypes, in reality, there may only be subtle dif-
ferences in terms of structure (or even, potentially, methodo-
logical variation).

Compliance is, of course, just one consideration when
attempting to isolate the fundamental site of pathology in
asthma, and we do not mean to imply by its selection as our
example that it is the most important. Similar functional
shifts can be brought about by other means of including ago-
nist deposition patterns, postural changes, inflation pres-
sures, lung volume, agonist receptor density, ASM tone, and/
or distribution of airway structure, to name but a few.
However, compliance is also illustrative in the sense of dem-
onstrating how little we know. The compliance curves are
surprisingly poorly studied; although some evidence exists
for changes with disease in the central airways (26, 27), direct
measurement of the small airways is almost nonexistent.
Many representations are based, one way or another, on the
study by Lambert et al. (23), in which the small airway

compliance was not measured at all but extrapolated from
larger airways and expectations about overall flow behavior.
A small number of subsequent measurements have sug-
gested that the original extrapolation was surprisingly accu-
rate (28), but the characterization remains far from complete,
and is almost nonexistent in terms of disease state, airway
remodeling, ASM tone, or variations between animal models.
Even for the larger airways, a simple linear notion of compli-
ance is probably insufficient (15).

So, is asthma predominately a disease of the large or small
airways? Perhaps the answer is “none of the above”. Asthma
is a disease of the airways, and the airways function not in
isolation but integrated into a complex system whose behav-
ior cannot be readily inferred as the sum of its isolated parts.
This may be true not just for asthma as a whole, as a hetero-
geneous syndrome with multiple subtypes, but even within
those subtypes. This leads to different questions, not just
about individual airways, but also the interrelationships
between the airways. Returning to the role of airway struc-
ture, for example, it may not be sufficient to simply know
that there is airway remodeling; instead, perhaps the ques-
tions that we should be asking relate to the topographical
distribution and correlations of structure, and how it
varies with airway size. The answers to these questions are
not as tidy as the division between large and small air-
ways, but may ultimately prove to be more informative.
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Figure 1. Illustration of concept that appa-
rently distinct functional phenotypes may
arise from relatively subtle mechanical dif-
ferences, in this case altered airway com-
pliance. Insets show patterns of flow (see
Ref. 24). Airway compliance was altered
by linearly scaling the selection of compli-
ance curves between orders by 50%; for
example, an order 10 airway would be
made more compliant by using an order 5
compliance curve, or less compliant by
using an order 15 curve. All other aspects
of the simulation remained fixed.
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