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Abstract. The problem of equation discovery seeks to reconstruct the under-

lying dynamics of a time-varying system from observations of the system, and

moreover to do so in an instructive way such that we may understand these
underlying dynamics from the reconstruction. This article illustrates one type

of modern equation discovery method (sparse identification of nonlinear dy-
namics, or SINDy) in the context of two classic problems. The presentation is

in a tutorial style intended to be accessible to students, and could form a useful

module in undergraduate or graduate courses in modelling, data analysis, or
numerical methods. In this style we explore the strengths and limitations of

these methods. We also demonstrate, through use of a carefully constructed

example, a new result about the relationship between the reconstructed and
true models when a näıve polynomial basis is used.

1. Scope

This article is written in a tutorial style, intended to be accessible to students
with a background in differential equations1, linear algebra, and numerical methods.
Modern equation discovery methods are not standard fare in applied mathematics
teaching, and this is an effort to make them accessible to students, even at the
undergraduate level. It is written in a relatively informal style, with a few notes
to instructors as to how the presentation might be adapted to different student
backgrounds. Code is also available in both MATLAB and python so that students
can begin to use these methods themselves, without having to start from scratch.

2. Motivation

Suppose that, from some observable system x(t) ∈ Rn, we have only a set of
observations of this system at discrete times, denoted x(tk) for k = 1 . . .m. The
problem of equation discovery is: can we reconstruct, from these observations, the
dynamical system which governs the underlying behaviour of this system? Impor-
tantly, we seek not just to predict the future timecourse beyond the observations
(i.e. in a black-box fashion) but to gain understanding of the underlying system;
if we are able to do so, it will also allow prediction of future behaviour, and much
more. See Fig. 1 for a schematic illustration of the concept.

To be more specific, let’s suppose that x arises from a system of ordinary differ-
ential equations

d

dt
x = f(x(t)). (2.1)

1The method can be formulated for difference equations as well, if needed; see also the supple-

mental material to reference [1].
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Figure 1. Schematic illustration of the equation discovery process
and its relationship with prediction and interpolation.

From a set of observations at discrete times, can we “discover” the (hidden) right-
hand side f which governs the dynamics? Moreover, we seek to do so in an infor-
mative way, where the discovered f tells us about the underlying dynamics of the
problem, rather than merely allows extrapolation/prediction from the observations.

Here we will consider equation discovery in the context of two classical problems:

(1) The mutually oscillating populations of predator-prey systems, and the classic
data of the lynx and snowshoe hare from the Hudson bay company in the 19th
and 20th centuries, motivating the famous Lotka-Volterra equations, and

(2) The orbits of Earth and Mars, specifically as reflected in Tycho Brahe’s 16th
century observations and Kepler’s subsequent interpretation of elliptical helio-
centric orbits to explain the observed retrograde motion.

Together these two problems illustrate the interplay between data and the discov-
ery of the underlying dynamics, and provide a series of examples illuminating both
the promise and many of the potential pitfalls of the equation discovery approach.

3. Sparse Idenfication of Nonlinear Dynamics (SINDy)

We will focus on one particular approach to equation discovery, known as sparse
idenfication of nonlinear dynamics (or SINDy) [1]. The central idea is to select a
library of candidate nonlinear functions and attempt to use these to represent the
right-hand side of our dynamical system. Ideally the final representation will be
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sparse (or parsimonious); that is, even though we may have many candidate func-
tions, only a few of the candidate functions will be active in the final representation.

We start with our discrete observations x(tk) for k = 1 . . .m and stack these
observations to construct the observation matrix

X =


xT (t1)
xT (t2)

...
xT (tm)

 =


x1(t1) x2(t1) . . . xn(t1)
x1(t2) x2(t2) . . . xn(t2)

...
...

. . .
...

x1(tm) x2(tm) . . . xn(tm)

 (3.1)

where x =
[
x1 x2 . . . xn

]T
. That is, across the columns we have the different

variables of the system, while down the rows we have the different observation times,
and hence all of our observations are encoded in this matrix. In reality of course,
missing and corrupt data are likely to occur; we will not go into the details here
but methods to deal with this can be found in refs [1, 3].

We will also need the time derivatives of the observations. In some situations
these might be available directly as part of the observations, but more often they
will need to be approximated numerically2. We stack these up into the observed
derivatives matrix in the same way as we did with the observations

Ẋ =


ẋT (t1)
ẋT (t2)

...
ẋT (tm)

 =


ẋ1(t1) ẋ2(t1) . . . ẋn(t1)
ẋ1(t2) ẋ2(t2) . . . ẋn(t2)

...
...

. . .
...

ẋ1(tm) ẋ2(tm) . . . ẋn(tm)

 . (3.2)

Now we choose the library of candidate (nonlinear) functions gi(·) and apply them
to the columns of the observation matrix X to form

Θ(X) =

[
|
1
|

|
g1(X)
|

|
g2(X)
|

. . .

]
. (3.3)

Let’s suppose for now that we select low-order polynomials for our candidate ba-
sis functions. Then g1 gives linear terms, g2 quadratic terms, etc3. In essence, Θ
encapsulates all possible right-hand sides allowed by our chosen library: each col-
umn of Θ represents a possible term in the right-hand side (RHS) of the dynamical
system.

What remains to be done is to figure out how much each of these possible terms
contributes to the observations. To do so we create parameter vectors ξi for each
variable i = 1 . . . n which determine the activity of each possible term, and the ξi
can be determined through our observation matrices. We also stack the parameter
vectors up into a matrix

Ξ =
[
ξ1 ξ2 . . . ξn

]
(3.4)

2For the moment, imagine approximating the derivative using finite differences. However, there
are subtleties when noise is present, and this is not actually a good approach in practice most of
the time; see Appendix A.
3Selection of these functions is important; more on this later. We will also write the form of Θ

out explicitly in the next section.
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which allows us to set up a linear system relating the observed derivatives, candidate
functions applied to the observations, and coefficients as

Ẋ︸︷︷︸
observed derivatives

= Θ(X)︸ ︷︷ ︸
library of RHS terms

coefficients︷︸︸︷
Ξ . (3.5)

Take a moment to consider the dimensions of this system. We have n dimensions
in the dynamical system, m discrete time observations from that system, and p li-
brary functions for the possible RHS. Thus Ẋ is m-by-n, Θ(X) is m-by-p, and Ξ is
p-by-n. We require n < p < m, and typically p � m, so this is an overdetermined
linear system (for each column of Ẋ and Ξ). As such we expect no unique solu-
tion, but instead undertake regression (for each column) to determine the best-fit
solution. We hope to obtain from the regression

(1) that the reconstructed system using the candidate functions (i.e. d
dtx =

ΞTΘT (x)) adequately reproduces the observations, which is to say that the
“true” underlying dynamics can be captured by our library functions, and

(2) that Ξ is sparse, meaning that only a few of the candidate functions are active
(most terms have coefficient zero).

If successful, the first means that we have captured the dynamics, and the second
means that we have done so usefully in the sense of being able to understand the
system through the action of a small number of terms. To achieve this, we need
not just a standard regression of the overdetermined linear system, but instead a
sparse regression method.

Briefly, to understand the idea of sparse regression, consider a regression problem
b = Aξ where the linear system is overdetermined. If we are thinking of this as
being a column of Eq. 3.5, then b ∈ Rm, A ∈ Rm×p, and ξ ∈ Rp with p � m. In
order to obtain a sparse regression, one option is to impose a so-called regularisation
term (with coefficient λ) so that

ξ = argmin
y

(
||Ay − b ||2︸ ︷︷ ︸

least-squares residual

+

regularisation term︷ ︸︸ ︷
λ||y||1

)
. (3.6)

This method is called least absolute shrinkage and selection operator (LASSO) [16].
The first term to be minimised is the usual sum-of-squares of the residual; thus
setting λ = 0 gives traditional least squares regression, and solutions will typically
not be sparse. By increasing the parameter λ we can increase the sparsity in the
regression at some cost to the accuracy (in terms of the traditional least-squares
residual.) However, note that as we increase λ, eventually the solution is ξ = 0 (and
the “reconstruction” is the trivial solution). Thus the selection of λ is a trade-off,
sacrificing accuracy for sparsity.

It is worth noting here that LASSO is often not used in practice, largely because
of its computational cost. An alternative to LASSO, used here and in ref [1],
is the sequential thresholded least-squares algorithm, which also provides a sparse
regression, controlled by the sparsity parameter λ. In order not to dwell over-long
on these differences here, details of the algorithm are given in Appendix B.
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Figure 2. Left panel: the classic Hudson Bay Company lynx-hare
population data (thousands). Right panel: predator-prey model
trajectory with parameters α = 2/3, β = 4/3, δ = 1, and γ = 1.

4. Predator-Prey Systems

We begin with an example of the classical predator-prey system. We give a
relatively brief presentation here, though for more detail the reader is referred to
reference [13].

The interactions between predator and prey species are often motivated by the
classic dataset of furs sold to the Hudson Bay Company between the mid 19th
and mid 20th centuries. The two species involved are hares (snowshoe hare, Le-
pus americanus) and lynx (Canada lynx, Lynx canadensis), and assuming the fur
numbers as a proxy for population, show both populations apparently locked in
periodic cycles of roughly 10 year duration; see Fig. 2, left panel.

The canonical model of predator-prey interaction is given by the Lotka-Volterra
equations4

dx

dt
= αx− βxy (4.1)

dy

dt
= δxy − γy (4.2)

where x denotes the population of the prey species and y the predator species. In
this form the model makes a number of assumptions, including (but not limited
to):

• in the absence of predators, the prey population grows exponentially without
bound (dxdt = αx when y ≡ 0).

• in the absence of prey, the predator species dies out, i.e. has no other food
source (dydt = −γy when x ≡ 0).

4Alfred Lotka proposed the model in the context of chemical reactions in 1910 [11], and Vito
Volterra arrived at the same model in 1926 when studying fish stocks [19]. Neither was motivated
to do so by the lynx and hare data, which was still in the process of being collected, but let’s not

have facts get in the way of a good story.
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• the interaction (predation) between the populations takes a simple product
form (the −βxy and +δxy terms).

A typical solution trajectory from this model is shown in the right panel of Fig. 2,
showing qualitatively similar population cycles – note that the parameter values
α = 2/3, β = 4/3, δ = 1, and γ = 1 are chosen to be “nice” and not to fit the data.

Ultimately we would like to discover the governing equations directly from the
data, potentially bypassing the model entirely. However, we will start by taking
snapshots from the model system (known as synthetic data) and attempting to
reconstruct the underlying dynamics (which, conveniently we already know.) While
in some sense this is clearly cheating, using the synthetic data when the real data
is sitting right there, it will help to illustrate a number of useful points.

Using 1000 discrete observations over the period from t = 0 to t = 90, we have
timestep ∆t = 0.09 and m = 1000 observations. We thus stack up our m-by-
n observation matrix X, which in this case is 1000 × 2, and the corresponding
derivative observation matrix Ẋ of the same size.

We then need to select our library of nonlinear functions from which to recon-
struct the RHS of the dynamical system. Choosing polynomial terms up to order
2, we have for this two-dimensional system x = [x y]T and so

Θ(X) =

[
|
1
|

|
x
|

|
y
|

|
x2

|

|
xy
|

|
y2

|

]
(4.3)

and hence we have p = 6 possible RHS terms (recall that we have arranged the
discrete snapshots “down” the columns). Computing this matrix and then the
sparse regression, we obtain the parameter values such that the sparse reconstructed
system is, explicitly written out,

dx

dt
= 0 +0.6621x +0y +0x2 −1.3254xy +0y2 (4.4)

dy

dt
= 0 +0x −0.9887y +0x2 +0.9907xy +0y2. (4.5)

Comparing this with the original system (which we know, because we’re cheating
and using synthetic data)

dx

dt
=

2

3
x−4

3
xy (4.6)

dy

dt
= xy − y (4.7)

we see that we have reconstructed the true underlying dynamics very closely, with
parameter values within 2% or so, and importantly with zero coefficients for the
inactive terms. Given the quality of this reconstruction, we expect the reconstructed
system to reproduce the data very well, and indeed it does, as shown in Fig. 3.

Flushed with this success, one might ask: what about the real data? Did we
need Lotka and Volterra, or could SINDy have discovered this model directly from
the data? So, we repeat the process, but now with the 91 datapoints of the real
Hudson Bay Company dataset, and ∆t = 1 yr. Again constructing the snapshot
matrices and using the same polynomial basis we have n = 2 dimensions in the
system, p = 6 possible RHS terms and m = 91 observations, so even with an order
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Figure 3. Reconstruction of synthetic predator-prey data. Left
panel: prey (x); right panel: predators (y). The snapshot data are
given by the blue circles and the reconstruction by the red lines.

of magnitude fewer samples, we still have our overdetermined system. Constructing
the sparse regression we find

dx

dt
= −6.2767 +0x +0.1324y +0x2 +0xy +0y2 (4.8)

dy

dt
= 13.8098 −0.4690x +0y +0x2 +0xy +0y2. (4.9)

The regression is sparse, with only 4 active terms, but does not correspond to the
Lotka-Volterra model. And checking the reconstruction (Fig 4), we find that the
reconstructed system does a very poor job indeed of reproducing the data. Oh dear
– maybe we do need modellers after all.

So, our effort to reconstruct the (assumed) underlying predator prey dynamics
from the lynx and hare data failed. Why? Perhaps the most obvious potential
problem is the quality of the data, both in terms of the number of observations,
and the degree of noise present. There is also a more subtle potential problem.
Let’s return to the synthetic data case to understand what’s gone wrong.

In order to understand the problems with the quality of data, we will use again
our synthetic predator-prey data (Fig. 3) but now degrade that data (again syn-
thetically) in order to see how this affects our ability to reconstruct the underlying
dynamics. The two obvious things to do are to add noise, and to reduce the number
of observations (increase the timestep). Once we are adding noise stochastically,
we’ll need to repeat the simulation and look at the probability of convergence, and
we can do this for a range of noise levels and timesteps. As we vary the noise
level and the timestep of the snapshot data, how often do we discover the correct
underlying dynamics? The results are shown in Fig. 5. The original, non-degraded
synthetic data (Fig. 3) corresponds to a timestep multiplier of 1 and a noise level
of 0. In this lower-left region of Fig. 5, with a relatively small timestep and low
noise level, SINDy virtually always converges to the “true” underlying dynamics.
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Figure 4. Failed reconstruction of Hudson Bay lynx-hare data.

However, as we increase the noise level and/or the timestep, we transition through
a region of partial convergence (that is, it works sometimes) into the black zone in
which the method almost never finds the true underlying dynamics. So we can see
that there are clear requirements in terms of data quality to recover the underlying
dynamics, even with synthetic data. Where would the actual lynx/hare data lie on
this figure? The timestep multiplier is about 10 (roughly an order of magnitude
fewer observations) and the noise level, at a rough estimate, is at least 100 if not
larger. So data of this quality lies very far from the convergence zone, and it is
unsurprising that we are unable to reconstruct the underlying dynamics directly
from the lynx-hare data.

On the basis of data quality alone, you may be convinced that we shouldn’t
expect this approach to work. But let’s consider also a further subtlety: in the above
analysis we implicitly assumed that the lynx-hare data is actually, undernearth all
that noise, governed by Lotka-Volterra dynamics. What if, although the basic
idea may be correct, the details are somewhat different? For example, a variation
(or perhaps successor) to the Lotka-Volterra model is the Rosenzweig-MacArthur
model5[14] where now

dx

dt
= rx

(
1− x

K

)
− sxy

1 + sτx
(4.10)

dy

dt
= d

sxy

1 + sτx
− cy (4.11)

still with x being the prey population and y the predators, and now with parameters
r,K, s, τ, c and d. Comparing with Eq. 4.1-4.2 we see some similarities (the −cy
term playing the same role as the −γy term for predator decay, and the rx and
αx terms for prey growth) but also differences. One change is the logistic-type
carrying capacity introduced by −rx2/K which introduces a carrying capacity K

5Technically, with a Holling type-II functional response [17].
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Figure 5. Reliability of SINDy reconstruction of degraded syn-
thetic data as noise level and timestep are varied. Colour shows
the observed convergence fraction. Note the log-scale on the verti-
cal axis; noise level is the standard deviation of additive Gaussian
white noise. Convergence is defined as coefficient reconstruction
within 1% of the true model parameters.

for the prey species6. The other change to note is that the functional form of the
predation terms has changed: where previously we had interaction terms ∝ xy
we now have terms of the form xy

1+x . Now, as a thought experiment: what if the
underlying dynamics for the lynx-hare data arise from the Rosenzweig-MacArthur
model instead of the Lotka-Volterra model?

The key thing to remember is that we were seeking system reconstructions in
which the right-hand side of the dynamical system could be represented by low-
order polynomial terms. For the Lotka-Volterra model, this works fine, because the
underlying dynamics are low-order polynomial terms. What about the Rosenzweig-
MacArthur model? Well, the carrying capacity term presents no problem, because
it’s just quadratic in x and so fits neatly in our low-order polynomial basis. The
new form of the predation terms, however, is more problematic: what are dynamics
of the form xy

1+x going to do to our attempted polynomial reconstruction?
Well, bad things. But what, exactly? To understand this, we need to know about

Taylor series, and multivariate Taylor series. If you immediately feel comfortable
with the concept, feel free to skip to Eq. 4.14; if not, here is a brief primer.

6While previously in the absence of predators the prey increased without bound, they now equili-

brate at the carrying capacity K. If you are not familiar with the logistic growth model, set y ≡ 0

and you will see that we now have a fixed point at x = K in addition to the one at x = 0.
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4.1. Crash course in multivariate Taylor series7. You will be aware that some
functions can be represented as sums of polynomials, for example the exponential

ex =

∞∑
n=0

xn

n!
= 1 + x+

x2

2!
+
x3

3!
+
x4

4!
+ . . . (4.12)

This is an example of Taylor series, which may allow us to express a function as
an infinite sum, with coefficients in terms of the derivatives of the function:

F (x) =

∞∑
n=0

F (n)(a)

n!
(x− a)n = F (a) +

F ′(a)

1!
(x− a) +

F ′′(a)

2!
(x− a)2 + . . . (4.13)

where F (n) denotes the nth derivative. If we truncate the infinite sum to a finite
number of terms (say N terms), then the resulting Taylor polynomial is a polyno-
mial of degree N and gives us an approximation to F near the point x = a.

What does this have to do with our reconstruction of the lynx-hare data? Well,
we are seeking reconstructions of the dynamics in terms of low-order polynomials.
So if the dynamics are non-polynomial, but we ask for a polynomial reconstruction,
what we will get (if it works) might be the Taylor polynomial which approximates
the dynamics. The concept is complicated somewhat by the fact that we are not
working in one dimension, and the non-polynomial interaction term is not just a
function of a single variable, but of both x and y. Fortunately, the concept of Taylor
series extends naturally to several variables. In two dimensions, about the point
(0, 0) for simplicity, we have

F (x, y) = F (0, 0) + Fx(0, 0)x+ Fy(0, 0)y

+
1

2

[
Fxx(0, 0)x2 + 2Fxy(0, 0)xy + Fyy(0, 0)y2

]
+ . . . (4.14)

where the subscripts on F denote the partial derivatives8. So if we try to represent
non-polynomial dynamics on a polynomial basis, we might expect our reconstruc-
tion will look like the Taylor polynomial (of the order of the basis we have chosen),
and the error in the reconstruction will depend on the accuracy of the Taylor ap-
proximation. However, even assuming that the approximation is reasonably good,
this presents another problem: recall that we seek sparse (or parsimonious) solu-
tions in which most coefficients are zero, with the aim of having only a few active
terms whose action we can readily understand. If we are capturing instead a Taylor
polynomial arising from approximation of non-polynomial dynamics, we have two
potential issues:

(1) If the Taylor coefficients are not sparse, our reconstruction will not be sparse.
And there is no reason to expect them to be so in general.

(2) Even if (1) is satisfied, our ability to interpret the reconstruction usefully is
limited by the less-intuitive Taylor polynomial form.

7This section can be adapted, amended, or omitted depending on the background of the students.
It is written here to give an intuitive feel for the effect of the Taylor expansion on this method for

students without background in Taylor series, but of course many subtleties are omitted.
8For an audience not familiar with partial derivatives, the following development can instead
utilise the simple y-dependence of the predation term and hence the single-variable expansion of

x/(1 + sτx).
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To see this, consider the Taylor expansion for our Rosenzweig-MacArthur predation
term:

sxy

1 + sτx
= sxy − s2τx2y + s3τ2x3y − s4τ3x4y + s5τ4x5y + . . . (4.15)

Where would we truncate this expansion? How useful would a reconstruction of
this form be? This emphasises that the selection of the candidate functions for
representing the dynamics is important, and that naive expansion in terms of low-
order polynomials may not be suitable.

4.2. Relationship between truncated and reconstructed model. This sec-
tion explores in more detail the relationship between the truncated Taylor series
model and the reconstructed SINDy model using a polynomial basis9.

It is often assumed that, when using a polynomial basis for SINDy reconstruc-
tion, even if the true dynamics are non-polynomial, the reconstruction will be the
truncated Taylor series of the true model. In this section we demonstrate that this
assumption is an oversimplification, and that the relationship between the trun-
cated model and the reconstructed model is more complicated than simple Taylor
truncation.

Consider again the Rosenzweig-MacArthur model, which for this section we take
to be the true model

dx

dt
= rx

(
1− x

K

)
− sxy

1 + sτx
(4.16)

dy

dt
= d

sxy

1 + sτx
− cy. (4.17)

If we expand this as a Taylor series and truncate the series at third order, we
obtain the so-called truncated model

dx

dt
= rx− r

K
x2 − sxy + s2τx2y (4.18a)

dy

dt
= dsxy − ds2τx2y − cy. (4.18b)

Note that, if we take τ → 0 and K →∞, we recover the Lotka-Volterra system.
In particular, we are interested here in the role of the parameter τ , which controls
the extent to which the dynamics are non-polynomial10. The idea, then, is to
use τ as a homotopy parameter : by varying τ we can transition from polynomial
dynamics (τ = 0, the Lotka-Volterra system) through systems which are “close”
to polynomial (τ small) and finally systems which are strongly non-polynomial (τ
large). However, simply varying τ alone is not a satisfactory solution, because we
wish to maintain the periodic solutions as τ is varied.

9For use as a tutorial, depending on the level of the students it may be advisable to skip this
section and proceed directly to the next example (Sec 5).
10While the carrying capacity term is also new, because it is of polynomial form it presents no
particular difficulties.
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Stability analysis of the Rosenzweig-MacArthur model (e.g. [15]) provides the
conditions we need to stay within the regime of periodic solutions as

d > cτ, (4.19)

K >
d+ cτ

sτ(d− cτ)
(4.20)

and thus we select r = 2
3 , s = 3

4 , c = 1, d = 4
3 > cτ , and K = K(τ) = d+cτ

sτ(d−cτ) + 1

to maintain these solutions for τ ∈ (0, 1].
Now we can vary τ freely within this range in order to explore the relationship

between the true model, the truncated model, and the (SINDy) reconstructed model
using a näıve polynomial basis (when the polynomial basis and the truncated model
are of the same order, in this case up to cubic terms). When τ = 0, we expect all
three to be essentially identical, because the true model is reduced to polynomial
form. However, as τ increases, the changes are instructive; Fig. 6 shows several
measures of the models as τ is varied. The top panel shows the error between the
true model and the reconstructed model, i.e. the basic measure of the method’s
effectiveness. The second and third panels show the relationships with the truncated
model, first between the truncated model and the reconstructed model in the second
panel, and the true model and truncated model in the third. Finally, the bottom
panel shows the minimum and maximum of each solution.

For small values of τ , as expected, all three models are essentially identical11.
As τ is increased, all errors increase gradually at first, as might be expected given
that we are making the true model increasingly “non-polynomial” while still using
a polynomial basis for the reconstruction. However, note the point at which the
truncated model undergoes qualitative change from periodic to equilibrium solution
(the vertical, dashed grey line is a visual aid); at this point the true model and
the truncated model diverge, and the reconstructed model tracks the former and
not the latter. Thus the intuitive explanation about using a polynomial basis to
reconstruct non-polynomial dynamics – namely, that one obtains the truncated
Taylor series of the non-polynomial model – is, at best, incomplete. However, a
complete understanding of this relationship remains an area of future work.

5. The Orbit of Mars

Our second example is that of the orbits of the planets, as studied by Tycho
Brahe and Johannes Kepler in the late 16th and early 17th centuries. Between 1582
and 1600, Tycho Brahe collected meticulous observational data on the declination12

of Mars, shown in Fig. 7. The characteristic “retrograde” motion is clear to see,
in which Mars occasional appears to reverse course briefly, before returning to
its previous trajectory. This retrograde motion could be partially explained by
Copernicus’ heliocentric model, but because that model assumed circular orbits
about the sun rather than elliptical, there were large prediction errors. In 1593
the error between observation and Copernican prediction reached 5 degrees, and
caused sufficient shock to be referred to as a “catastrophe”.

11Values of τ smaller than 10−2 were computed but are not shown for clarity.
12What, precisely, is declination? For the moment it is sufficient to have a vague notion that it is
some sort of angle of Mars as observed from Earth; the precise definition will become important

later on but it is not particularly informative to delve into the details now.
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Figure 6. Relationship between true model, truncated model,
and reconstructed model as the homotopy parameter τ is varied.
Note that as τ → 0 the true model is of polynomial form and hence
identical to the truncated model. The vertical, dashed grey line is
a visual aid to indicate the location of the divergence between the
reconstructed model and the truncated model. Top panel: obser-
vation error between the true model and the reconstructed model;
second panel: observation error between the truncated model and
the reconstructed model; third panel: observation error between
true model and truncated model; bottom panel: minimum and
maximum of each solution. Note that this panel is in a linear
scale, as opposed to the logarithmic scale in the upper panels.

Upon Tycho Brahe’s death in 1601 these observations passed to Kepler, whose
subsequent analysis allowed the formulation of Kepler’s famous three laws of plane-
tary motion. Although these are based on geometry and not the underlying physics,
they established the elliptical orbits, solved the Martian catastrophe, cemented the
heliocentric view, and paved the way for Newton’s later solution in physical rather
than geometric terms. This makes an instructive example for our efforts to recon-
struct the underlying dynamics from observational data. What can we reconstruct
from Tycho Brahe’s original observations? Can we discover from these data any of
the underlying dynamics?
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Figure 7. Tycho Brahe’s original observations of the declination
of Mars, collected between November 1582 and March 1600. To
avoid difficulties with calendar systems time is expressed in days
since 1 AD.

It will perhaps not surprise you, having read the previous section on lynx and
hare, to learn that a naive reconstruction of the declination of Mars in terms of
low-order polynomials is not productive: the reconstruction is neither accurate nor
sparse, and certainly not informative as to the true underlying dynamics. In order
to understand why this is so, we will use a series of simpler examples. Let’s start
with the so-called Kepler problem for the orbit of a single planet in polar coordinates
about the sun, given by

r̈ =
L2

m2r3
− k

mr2
(5.1)

θ̇ =
L

mr2
(5.2)

with parameters L,m, and k for angular momentum, mass, and a constant of
gravitational attraction, respectively. You may have noticed the presence of the
inverse square law, i.e. that the force of the attraction varies as the inverse square
of the distance. The usual procedure is to change independent variable from t to
θ, and then apply the transformation u = 1/r, solving the resulting quasi-linear
equations to obtain the orbits in terms of conic sections. We will not use that
procedure here, but instead to maintain consistency with our previous framework,
we will reduce the system to first order as

ṙ = ρ (5.3)

ρ̇ =
L2

m2r3
− k

mr2
(5.4)

θ̇ =
L

mr2
. (5.5)

Thus the system is explicitly in the form of Eq. 2.1 with x = [r ρ θ]T .
As before, we generate some synthetic data from this system (using very simple

“nice” parameters k = L = m = 1), and then try to infer the underlying dynamics
from that, using a polynomial basis. The resulting reconstruction is shown in Fig. 8,



EQUATION DISCOVERY FROM DATA 41

Figure 8. Kepler problem reconstruction from synthetic data
with naive polynomial basis. Left: snapshots, right: reconstruc-
tion.

and the reconstructed equations are13

ṙ = 1.0000ρ (5.6)

ρ̇ = 1.9469− 1.3549r − 3.0172ρ2 + 0.1590r2 (5.7)

θ̇ = 4.0907− 3.1496r − 2.2220ρ2 + 0.6163r2. (5.8)

So this has not worked particularly well – the orbits are drifting, and our recon-
struction does not match the true underlying system. What has gone wrong? The
obvious thing is that our true dynamics are not in the polynomial basis which we are
trying to use for reconstruction, so perhaps we are getting Taylor approximations
to the 1/r2 and 1/r3 terms (in Eqs. 5.4 and 5.5) which are not particularly accu-
rate or informative. (The simple polynomial form ṙ = ρ is reconstructed without
difficulty.)

Of course, we can “fix” this by tailoring our library of nonlinear basis functions.
We chose them to be low order polynomials, but we can choose them to be some-
thing else; what if we include some 1/rq terms? If we do, this recovers the true
governing equations almost exactly, with resulting excellent reconstruction (Fig. 9)
and reconstructed equations

ṙ = 1.0000ρ (5.9)

ρ̇ = −1.0000
1

r2
+ 1.0000

1

r3
(5.10)

θ̇ = 1.0000
1

r2
. (5.11)

But, how did we know to do this? Only because we knew the answer already – in
essence, that we already know that the inverse square law is in there! We can’t
even include all of the 1/xq type terms without causing problems because the 1/ρq

13In the previous section we wrote out all of the coefficients explicitly, but now we omit the zero

coefficient terms.
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Figure 9. Kepler problem reconstruction from synthetic data
with polynomial basis augmented with 1/rq terms. Left: snap-
shots, right: reconstruction.

terms blow up (when ρ passes through 0), so in order to make this work we really
do need to know specifically about the 1/rq terms.

Even with just a single planet, and synthetic data, we have already been forced
to augment our naive polynomial basis in way which may not have been obvious
a priori, and we are still some way from even being able to attempt to capture
declination. In order to get closer, let’s now consider a system with two planets:
two copies of what we had above, with variables rA, θA and parameters kA, LA and
mA for planet A, and corresponding B subscripts for planet B. So far, then, we have
a six-dimensional system: (rA, ρA, θA, rB , ρB , θB). To get closer to declination, we
will also add in an observation for the relative observation angle of planet B from
planet A, as

φ = acos

(
r2
B − r2

A − a2

−2rAa

)
(5.12)

where a =
√
r2
A + r2

B − 2rArB cos(θB − θA) (5.13)

thus giving a seventh variable. (This isn’t yet Earth, Mars, and declination, but
it’s a toy problem working in that direction.)

Again we generate synthetic data from this system and attempt a reconstruction
based on that, including not just our polynomial library functions but also the 1/rqA
and 1/rqB terms. The parameters are still conveniently idealised with kA = LA =
mA = kB = LB = 1 and mB = 1/2. Attempting reconstruction of this system
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Figure 10. Attempted reconstruction of idealised two-planet sys-
tem, using a polynomial basis augmented with 1/rqA and 1/rqB
terms. Blue curves are snapshot data, and dashed red is the re-
construction.

yields Fig. 10 and

ṙA = 1.0001ρA

ρ̇A = −0.9984
1

r2
A

+ 0.9980
1

r3
A

θ̇A = −0.7493 +−0.9982ρ2
A + 1.9992

1

rA
ṙB = 1.0000ρB

ρ̇B = −1.9974
1

r2
B

+ 3.9934
1

r3
B

θ̇B = 1.9990
1

r2
B

φ̇ = 4.6009× 103 − 697.3503ρA − 310.4976rA − 174.4954θA − 201.9708ρB − 972.0965rB

+ 305.3059θB − 91.5882φ− 57.4168ρ2
A + · · · − 5.5448× 103 1

r2
B

+ 3.7874× 103 1

r3
B

where terms coloured red match the known underlying dynamics (within 1%), and

the rest either do not match (in the case of θ̇A) or we don’t yet know the true under-

lying form (φ̇)14. In terms of the orbits themselves, we have obtained a reasonable
reconstruction, although it is imperfect in the sense that we have not obtained the
correct expression for θ̇A (even though the θA dynamics are reconstructed well over
this observational period.) The relative angle φ has proved much more problematic:
not only is the reconstruction poor, except perhaps for very short times, but the
coefficients are not sparse (in fact they’re all nonzero) and the reconstruction is not
informative in any way.

In order to see why, consider what we are attempting to reconstruct: φ̇. We
haven’t written this out explicitly (and won’t do so!) but consider that we could,

14We omit the rest of the quadratic terms. All the coefficients are nonzero, but you already get

the point about this reconstruction without writing them all out!
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and what would be involved. We would start by taking Eq. 5.12 and differenti-
ating with respect to time, substituting 5.13 and 5.3–5.5 as required. In the first
step, differentiating acos(·) gives us −1√

1−(·)2
, so we’re clearly not in a nice polyno-

mial basis, and things only get worse from there as we chain out all of the other
dependencies. It’s not even informative to try to write it all out, except to say
that it’s horrendous, and so we shouldn’t be surprised when we get a non-sparse
approximation to it which is neither accurate nor informative.

So things are not looking good in our quest to outdo Kepler using equation
discovery, and we are still missing a few things:

(1) We’ve so far just used nice, made-up parameters and initial conditions, rather
than the actual physical parameters of the system, which has glossed over some
potential issues.

(2) We still don’t actually have a measure of the declination of Mars, just a fab-
ricated angle which is qualitatively similar but quantitatively quite different.

(3) We are using a synthetic system which includes observations of the positions
of the planets, not just the declination on its own.

(4) We are using clean, noise-free synthetic data with very frequent observations,
as opposed to the real data, which is both noisy and infrequent15.

Obtaining reasonably accurate parameters and initial conditions for our orbit-
ing planets isn’t too difficult: NASA’s Jet Propulsion Laboratory (JPL) provides
the publicly and freely available JPL Horizons service with a wealth of data [7],
including historical predictions. Recall that our period of interest is 1582–1600; in-
triguingly, and perhaps not coincidentally, JPL Horizons provides data for Earth’s
orbit back to 1583 and Mars’ back to 160016. Thus we can ascertain that at
1600-Jan-02 00:00 Mars’ configuration was at r = 1.639672647881 AU (astro-
nomical units) and ṙ = 1.2000278 km/s, where 1 AU is approximately the average
distance from the Earth to the sun, and specifically 1 AU = 149, 597, 870.700 km.
Notice the mismatch of the magnitude in these units! So, what units should we
use? Does it matter?

The answer is that it does. Up to this point we have implicitly assumed that our
non-zero reconstruction coefficients are of the same magnitude. Consider again our
sparse regression method and the parameter λ (Eq. 3.6). We are in effect penalising
parameters which would be “small” in a traditional least-squares regression, and
instead forcing them to be zero. Obviously this relies on the true values not being
small. Thus if we choose our system scaling such that some variables (and their
coefficients) are much larger (or smaller) than others, this will cause difficulties
with appropriate enforcement of sparseness; we run the risk of either zeroing out
“true” small coefficients, or keeping spurious fit-error coefficients which should be
eliminated17.

15Relatively speaking, of course. Tycho Brahe was an amazingly good observer and the data is

renowned for its accuracy in a historical context.
16This is actually sufficient, as with this model we can run the orbits backwards in time just as
well as forwards by changing t→ −t. Of course we are not really using a good orbital model, just
one sufficient to illustrate this method.
17This can be at least partially addressed by normalising the columns of Θ. It is also worth

noticing that in practice, LASSO is sometimes not used, due to computational cost, in favour of
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Figure 11. Attempted reconstruction of the two-planet system
from synthetic data, using a polynomial basis augmented with 1/rqA
and 1/rqB terms. Blue curves are snapshot data, and dashed red is
the reconstruction. Declination is expressed in radians.

To cut a long story short, we’ll choose units of AU, Earth years, and Earth masses
(5.97×1024 kg) to ensure that our target coefficients are of the same magnitude, at
least for the orbits themselves. That leaves the thorny question of how to calculate
declination. First, we need to say what it actually is. From the perspective of
an observer on Earth, the concept is relatively straightforward. In the same way
that positions on the Earth’s surface can be described by latitude and longitude,
positions in the sky (the ‘celestial sphere’) are described by declination, which in
this analogy corresponds to latitude, and right ascension, which corresponds to
longitude. Latitude is expressed relative to the equator, and similarly declination
is expressed, usually in degrees, relative to the celestial equator. Thus one can see
from Tycho Brahe’s data in Fig. 7 that the declination of Mars varied from about 30
degrees above the celestial equator to about 30 degrees below during the 1582–1600
observation period.

Thus declination is a natural measurement from the perspective of an Earth-
based observer. It is not, however, nice to express in terms of heliocentric polar
coordinates, which is the nice way to express the orbits. In order to calculate
declination from the positions of the planets, the usual procedure is to change from
heliocentric polar (or spherical) coordinates to geocentric Cartesian coordinates,
taking into account the axial tilt of the earth and the orbital angle of Mars (it’s not
quite in-plane with the Earth’s orbit), before changing back to geocentric spherical
coordinates. With the changes of coordinate system is is not even easy to write
as an expression akin to the observational angle (Eq. 5.12) that we used in our
toy model. That said, we can calculate it, and so it can be used in our synthetic
snapshot data.

Using then something close to the real orbital parameters of Earth and Mars,
and calculation of declination, we can again generate synthetic data and attempt
to reconstruct the underlying dynamics, resulting in Fig. 11 and the “discovered”
equations

an alternative sparse regression method known as sequential thresholded least-squares [1] in which

the sparseness parameter λ itself is dimensional; in this case the scaling is all the more important.
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ṙA = 1.0003ρA

ρ̇A = 1.2418rA + 4.2957rB − 88.4075
1

rA
+ 55.3138

1

r2
A

+ 7.2831
1

r3
A

+ 57.7100
1

rB
− 57.4511

1

r2
B

+ 21.4183
1

r3
B

θ̇A = 6.3729
1

r2
A

ṙB = −12.8429rA + . . .

ρ̇B = 292.9121rA + . . .

θ̇B = 53.3507rA + . . .

δ̇ = 9.4484ρA − 5.5540× 103rA − 11.0393θA + 2.6393× 103rB + 19.5811θB

− 1.4895× 104 1

rA
+ 3.1831× 103 1

r2
A

+ 988.7002
1

r3
A

+ . . .

where δ is the declination and (. . . ) omits many incorrect and unpleasant terms.
Suffice it to say, this reconstruction is neither accurate nor informative as to the
underlying dynamics, and this is in a synthetic case where we have given our-
selves every opportunity to succeed. By using synthetic data, we gave ourselves
high-frequency observations where the data is low-frequency and sporadic; we have
noiseless data where the true observations are not; we gave ourselves additional ob-
servational variables, and augmented our polynomial basis with 1/rq terms, both
of which were implicitly informed by the fact that we know the underlying physics.
Even with all of these advantages, there is no overcoming the fact that declination
does not have a “nice” expression in heliocentric coordinates, and we’re trying to
reconstruct something which just doesn’t exist.

6. Additional Examples and Code Availability

For readers interested in more examples, it is useful to note that the supplemental
material from reference [1] has more useful examples, if not exactly presented in a
tutorial style. Software implementations are available both as MATLAB code [1]
and a python implementation [5].

7. Discussion

Using two classic examples we have explored the potential for equation discov-
ery to reconstruct unknown underlying dynamics from snapshot data. The method
has potential as a powerful tool, but also has substantial limitations, as we have
explored with these examples. The first caveat is that equation discovery is only
suitable for problems with lots of very high-quality data, both in terms of the fre-
quency of observations and the levels of noise. However, it is worth noting that the
state-of-the-art is being pushed back in this regard; two recent variations, ensemble
SINDy [6] and uncertainty quantification SINDy [8] both are able to reconstruct
something close to Lotka-Volterra dynamics from the Hudson Bay dataset, at least
under certain assumptions.

The more subtle difficultly is that equation discovery cannot really operate suc-
cessfully in situations in which we know nothing about the underlying dynamics
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and expect the discovery process to give us everything. The reasons for this are
that choosing the right basis requires at least some insight into the system under
consideration; naively applying a low-order polynomial basis to whatever set of
observations comes immediately to hand will only result in a useful reconstruction
with a great deal of luck. On the other hand, if we know enough about the un-
derlying dynamics of the system, then we don’t really need equation discovery at
all – we can just model the system in the usual way18. So there is something of
a Goldilocks effect, where we need to know the right amount about the system:
not too little (because we’ll fail) and not too much (because then there is no real
need). In some situations one can use an auto-encoder to select an appropriate ba-
sis transformation [2], but this comes at the cost of sacrificing the interpretability
which, to these authors at least, is at the heart of the equation discovery problem.

The version of SINDy used here is not precisely the latest and greatest; these
methods are under continuing development. For example, SINDy-PI [10], where
PI stands for the ‘parallel implicit’, offers several improvements. It relaxes the
data quality requirements, and so goes some way to addressing our first caveat.
The implicit formulation also allows more naturally for rational basis functions.
Other more recent developments include ensemble- and uncertainty quantification-
SINDy (mentioned above) as well as a weak formulation with reduced data require-
ments [12]. There are also issues around data filtering which we have not discussed
here but can be important in practice [1]. These methods, however, are beyond the
desired scope of this article.

Appendix A: Numerical Differentiation

In many cases, snapshot observational data will not contain direct information
about the time derivative and it is necessary to approximate the derivative nu-
merically. One might suppose that it is sufficient to use a simple finite difference
approach, i.e. given observations x(ti) and x(ti+1), we can approximate

ẋ(ti) =
x(ti+1)− x(ti)

∆t
+O(∆t) (7.1)

where O(∆t) indicates the approximation error terms. In the absence of noise, this
approach is often adequate, but of course real data always has at least some noise.

But suppose we have noise in our observations: that is, we might observe not
the “true” values (x(ti) and x(ti+1)) but only noisy observations x̃(ti) = x(ti) + ηi
and x̃(ti+1) = x(ti+1) + ηi+1. In that case, when we attempt to approximate the
derivative using 7.1 we would have

˙̃x(ti) ≈
x(ti+1) + ηi+1 − (x(ti) + ηi)

∆t
(7.2)

=
x(ti+1)− x(ti)

∆t
+
η(ti+1)− η(ti)

∆t
(7.3)

= ẋ(ti) +O(∆t) +
η(ti+1)− η(ti)

∆t
. (7.4)

18Indeed, if we know enough about the system to constrain our library to contain only the active

terms, then we are essentially just parameter fitting.
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That is, we now have an additional error term arising from the noise, and in fact
this can be very large, at least relative to the first two terms – to the point that
this method often produces total nonsense. So, in the presence of noise, we have to
do something more sophisticated. For further details, see e.g. [18, 9, 4].

Appendix B: Sequential Thresholded Least-Squares Algorithm

In practice, the LASSO sparse regression method (see Eq. 3.6) is often not used
due to computational cost in favour of the sequential thresholded least-squares al-
gorithm due to [1]. The idea is relatively simple: any regression coefficients < λ
are set to zero, and the associated basis functions are removed; then the regression
is repeated onto the reduced basis. As an algorithm, this is:

obtain Ξ by least-squares regression of Ẋ onto Θ.
for number of thresholding iterations do

for j from 1 to n (number of state variables) do
set any elements of ξj < λ to zero

remove the associated basis functions to obtain the reduced basis Θ̃
obtain an updated ξ̃j by regression of Ẋj onto the reduced basis Θ̃j

end for
end for
return Ξ̃

See also the supplemental material to reference [1] for a MATLAB implementa-
tion.
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