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Abstract
Background and objective: The airway smooth muscle (ASM) layer thickens during
development. Identifying the mechanism(s) for normal structural maturation of the
ASM reveals pathways susceptible to disease processes. This study characterized thick-
ening of the ASM layer from foetal life to childhood and elucidated the underlying
mechanism in terms of hypertrophy, hyperplasia and extracellular matrix (ECM)
deposition.
Methods: Airways from post-mortem cases were examined from seven different age
groups: 22–24 weeks gestation, 25–31 weeks gestation, term (37–41 weeks gestation),
<0.5 year, 0.5–1 year, 2–5 years and 6–10 years. The ASM layer area (thickness), the
number and size of ASM cells and the volume fraction of ECM were assessed by
planimetry and stereology.
Results: From late gestation to the first year of life, normalized ASM thickness more
than doubled as a result of ASM hypertrophy. Thereafter, until childhood, the ASM
layer grew in proportion to airway size, which was mediated by ASM hyperplasia.
Hypertrophy and hyperplasia of ASM were accompanied by a proportional change in
ECM such that the broad composition of the ASM layer was constant across age
groups.
Conclusion: These data suggest that the mechanisms of ASM growth from late gesta-
tion to childhood are temporally decoupled, with early hypertrophy and subsequent
proliferation. We speculate that the developing airway is highly susceptible to ASM
thickening in the first year of life and that the timing of an adverse event will deter-
mine structural phenotype.
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INTRODUCTION

There is little doubt regarding the adverse consequences of
airway smooth muscle (ASM) remodelling in asthma and
that this pathology occurs early in the clinical course of dis-
ease. Increased thickness of the ASM layer in asthmaThis study was previously presented at the ERS Annual Congress 2018 and the
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exaggerates airway narrowing to contractile provocation1

and is associated with more severe disease.2 Children with
asthma already exhibit a greater proportion of ASM in air-
way biopsies,3 and similar expansion of the ASM is observed
in pre-school children who go on to develop asthma at
school age,4 that is, remodelling seems to precede diagnosis.
In adult life, thickness of the ASM layer does not change
and is unaffected by the duration of disease.2 If we assume a
tight coupling between airway structure–function, there is
even evidence of airway pathology from the first year of life.
Flow impairment and increased airway reactivity in infancy
predict asthma in later life.5

Much of our understanding regarding the role of ASM
in asthma has been advanced through use of airway tissue
acquired post-mortem or after lung resection surgery. Using
such methods, we have shown that ASM thickening in
asthma is due to both muscle hypertrophy and hyperplasia,
and a proportionate increase in extracellular matrix (ECM).6

Whether the same structural changes account for normal
developmental growth of the ASM layer is not known but is
important to establish as disease processes may interfere
and/or upregulate mechanisms controlling tissue expansion,
thereby contributing to early airway pathology. There is also
no reason to assume that muscle hypertrophy and hyperpla-
sia, and ECM deposition within the ASM layer occur during
the same periods of development and indeed the specific
timing of any disruptive stimulus could contribute to known
phenotypes of ASM remodelling. For instance, hypertrophy
occurs in both non-fatal and fatal asthma, whereas hyper-
plasia is observed in the latter.6 On the other hand, fixed air-
flow limitation seems to be mediated by a disproportionate
increase in ECM within the ASM layer.7

The purpose of this study was to characterize normal
mechanisms of ASM growth in terms of hypertrophy,
hyperplasia and/or ECM deposition. Airway tissue from
different regions of the lung was examined across seven
different age groups, spanning late gestation to child-
hood. Findings demonstrate that the mechanism of ASM
growth is due to early hypertrophy and late hyperplasia,
with proportionate expansion of the ECM within the
ASM layer.

METHODS

Study participants

Tissue is stored in the Airway Disease Biobank at Sir Charles
Gairdner Hospital. Airways examined in the present study
were sourced from post-mortem studies of asthma based in
Perth (1), London (24), Sydney (13) and S~ao Paulo (13). As
shown in Table 1, airways from post-mortem cases
were available from seven a priori classified age groups:
22–24 weeks gestational age (GA; n = 8), 25–31 weeks GA
(n = 8), term (37–41 weeks GA; n = 8), <0.5 year old
(n = 8), 0.5–1 year old (n = 8), 2–5 years old (n = 8) and
6–10 years old (n = 3). Information regarding the history of

asthma (and cause of death) was sought from next-of-kin,
hospital files, coroner files, police reports and the subjects’
usual medical practitioners. Reported causes of death varied
(see Appendix S1 in the Supporting Information) and
include still birth, respiratory distress, infection, tumours
and trauma. Two cases of death were undetermined, and
one case was not recorded. Subjects from 2 years old
onwards had no history of asthma or other lung disease.
The proportion of males and females was similar across age
groups (chi-square analysis; p = 0.6).

Tissue preparation

For subjects up to 5 years of age, a random section of lung
tissue was fixed and embedded in paraffin. Tissue prepara-
tion and subsequent measurement followed protocols opti-
mized to reduce variability and error.8 In the 6–10 years
group, airways were sampled according to a systematic
design,9 and also fixed and embedded in paraffin. From each
case, two sections of tissue were cut: a thin section (0.5 μm,
Masson’s trichrome technique) for estimation of tissue vol-
ume fractions (ECM or smooth muscle) within the ASM
layer, and a thick section (30 μm, haematoxylin) to estimate
ASM cell number and size.

Airway measurements

The median (interquartile range) number of visually trans-
verse airway sections studied per case was 7 (6–10). The

TAB L E 1 Group characteristics

Group Age Sex (M:F)

22–24 weeks GA 23 � 0.3 weeks GA 4:4

25–31 weeks GA 27 � 0.7 weeks GA 6:2

Term 40 � 0.5 weeks GA 4:4

<0.5 year 0.17 � 0.04 year 4:4

0.5–1 year 0.7 � 0.06 year 3:5

2–5 years 2.1 � 0.17 years 2:6

6–10 years 7.5 � 1.0 years 2:1

Note: Values are mean � SEM.
Abbreviations: F, female; GA, gestational age; M, male.

SUMMARY AT A GLANCE

A period of rapid hypertrophic airway smooth mus-
cle growth occurs in the first year of life, representing
a critical window for disruption by disease processes
and/or opportunity for clinical intervention.
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reticular basement membrane perimeter (Pbm, the index of
airway size10) and area of the ASM layer (ASMarea)

6 were
measured by planimetry on thick sections. Thickness of the
ASM layer was calculated from ASMarea divided by Pbm. The
same thick section was used to measure numerical density
of ASM cells (NV) using the optical disector approach (ΣQ/
(a � h � ΣP)), where Q is the number of cells counted per
disector, a and h are the area and height of the disector,
respectively, and P is the number of disectors counted per
section.11 For the very smallest of airways (arbitrarily
defined as <0.6 mm Pbm), all ASM cells within the layer
were counted and NV was calculated as: ΣQ/(ASMarea � h).
As the depth of the thick section effectively equates to air-
way length, the total number of ASM cells per millimetre
length of airway (NL) was calculated as: NL = NV (cells/
mm3) � ASMarea (mm2). An increase in NL has previously
been used to reflect hyperplasia in the context of asthma
diagnosis.6 Mean ASM cell volume (VC) was calculated as
the inverse of NV, corrected for VVASM (see below): VC = 1/
[NV � VVASM].

6

To assess volume fractions within the ASM layer, two
airways per case were randomly selected. Volume fractions
of ASM (VVASM), ECM (VVECM) and ‘Other’ (VVOTHER, the
space between tissues, non-muscle cells and vascular

structures) within the ASM layer were estimated by point
counting.6

Statistical and data analyses

Primary outcomes were ASM thickness (ASMarea/Pbm), VC,
NL, VVASM, VVECM and VVOTHER. For parameters not
dependent on airway size (VC, VVASM, VVECM and
VVOTHER), a case mean was determined by averaging across
all measured airways. As ASM thickness and NL are depen-
dent on airway size (Pbm), which varies with anatomical
location and maturation, we used a method based on Pas-
coe et al.12 to generate a representative and scaled airway
for each case across all age groups: (1) ASM thickness and
NL were first shown to follow a power law = c � (Pbm)

b,
where b describes how the parameter varies with Pbm and
c the value at size Pbm = 1 mm (referred to as ‘normalized’
ASM thickness, NL or WAt), and (2) to estimate absolute
changes in ASM thickness and NL, Pbm growth curves
(Figure 1A) were established from computed tomography
(CT)-derived tracheal lumen dimensions,13,14 assuming
that intraparenchymal airways grow in proportion to the
trachea. Growth curves (changes in Pbm from late gestation

F I G U R E 1 Predictive change in Pbm (A) and ASM thickness (B) with age and exemplar images (<24 weeks gestational age, C; 6–10 years, D). Arrows
indicate ASM. Black circles and line, proximal airways; red circles and line, medial airways; blue circles and line, distal airways. The dashed lines indicate that
predictions were based on limited data. ASM, airway smooth muscle; Pbm, perimeter of basement membrane; yr, year(s)
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to childhood) were generated for an arbitrary distal
(Pbm = 0.63 mm), medial (Pbm = 1.11 mm) and proximal
airway (Pbm = 1.58 mm) at 22–24 weeks GA to model
changes across different airway sizes. Absolute ASM thick-
ness and NL could then be calculated from the normalized
data (see ‘1’ above), multiplied by Pbm.

Based on data distribution, parameters were analysed
using one-way ANOVA (Holm Sidak’s post hoc test) or
Kruskal–Wallis one-way ANOVA on ranks (Dunn’s post
hoc test) using SigmaPlot (version 13, Chicago, IL, USA).
Prism (version 7, San Diego, CA, USA) was used for graphi-
cal analyses. Post hoc comparisons were compared with the
term group, an appropriate reference for examining in utero
and/or postnatal changes. Due to the lower sample size, the
6–10 age group was not included in any categorical statisti-
cal analysis. p < 0.05 was defined as statistical significance.

RESULTS

Figure 1B indicates predictive ASM growth from late gesta-
tion to childhood, which is supported by exemplar images
(Figure 1C,D) chosen so that Pbm as a proportion of the tra-
chea was matched across groups. Normalized ASM thick-
ness was positively correlated with age (p = 0.041,
r = 0.297; Figure 2A). When comparing the a priori classi-
fied age groups, much of the growth occurred up until
<0.5 year age (p = 0.003; Figure 2B). Similar changes were
observed in total wall thickness (p = 0.042; Figure 2C).

Growth of the ASM layer can initially be accounted for
by hypertrophy (p < 0.001; Figure 3A). The VC at 0.5–1 year
was greater than term (p = 0.005). Changes in VC likely cau-
sed a reduction in normalized NL (p = 0.003; Figure 3B),
that is, an increase in ASM cell size naturally reduces the
number of cells that can be accommodated along a given
mm length of airway (i.e., NL). There was no increase in VC

after 0.5–1 year of age.
The VVASM (p = 0.158) and VVECM (p = 0.150) were

not significantly different from pre- to postnatal life. Given
that ASM thickness increases with age, constant volume
fractions support a proportionate increase in the ECM and
muscle within the ASM layer during maturation (Table 2).
There was an overall main effect of age on VVOTHER

(p = 0.007; Table 2), but no differences between groups after
post hoc analysis.

As indicated above, ASM hypertrophy directly impacts
the measurement of NL which we used to assess hyperplasia.
To isolate hyperplasia opposed to hypertrophy (assuming a

F I G UR E 2 Normalized ASM thickness plotted against continuous age
(A) or presented in stratified age groups (B). Normalized total wall
thickness presented in stratified age groups (C). Data are median
(interquartile range). ASM, airway smooth muscle; GA, gestational age;
WAt, total wall thickness; yr, year(s). *Significantly different from
term (p < 0.05)

4 WANG ET AL.



proportionate increase in ECM as the muscle components
expand), we modelled the effects of ASM thickening occur-
ring solely due to hypertrophy (Figure 4). Hypertrophic
growth of the ASM layer (dotted lines) was compared with
the empirical data (solid/dashed lines). Results indicate that
while ASM growth is entirely explained by ASM hypertro-
phy up and until 0.5 year of age, thereafter, it does not
account for ASM thickening, and hyperplasia must be
occurring until at least early childhood.

DISCUSSION

Age-dependent changes in airway and lung function are well
established15 and naturally impact the onset and severity of
respiratory disease. This study concerned normal growth of

the ASM layer, a structure that is prominent in asthma due
to its increased thickness, promoting exaggerated constric-
tion of the airway lumen.1 Through morphological and ste-
reological examination of human airway tissue, we show
that the thickness of the ASM layer increases from late ges-
tation to early childhood, in general agreement with previ-
ous findings,16 but importantly is initially due to
hypertrophy and subsequently hyperplasia. Most notably,
during the first year of life, there is rapid and

F I G U R E 3 The ASM cell volume (A) and NL (B) presented in stratified age groups. Data are median (interquartile range). ASM, airway smooth muscle;
GA, gestational age; NL, total number of ASM cells per millimetre length of airway; VC, mean ASM cell volume; yr, year(s). *Significantly different from term
(p < 0.05). ‘Main effect’ indicates an overall effect of age on NL; there were no differences after post hoc analysis

T A B L E 2 Proportion of VVASM, VVECM and VVOTHER within the ASM
layer

Group VVASM VVECM VVOTHER
a

22–24 weeks GA 0.82 � 0.08 0.11 � 0.11 0.08 � 0.10

25–31 weeks GA 0.84 � 0.14 0.10 � 0.07 0.07 � 0.12

Term 0.83 � 0.11 0.12 � 0.08 0.06 � 0.10

<0.5 year 0.84 � 0.19 0.10 � 0.11 0.07 � 0.10

0.5–1 year 0.84 � 0.19 0.08 � 0.11 0.08 � 0.12

2–5 years 0.87 � 0.13 0.11 � 0.08 0.02 � 0.05

Note: Values are mean � SEM.
Abbreviations: ASM, airway smooth muscle; GA, gestational age; VVASM, volume
fraction of ASM; VVECM, volume fraction of extracellular matrix; VVOTHER, volume
fraction of other.
aSignificant main effect of age on VVOTHER (p < 0.05). There was no difference after
post hoc analysis.

F I G UR E 4 Modelled effects of ASM thickening occurring solely due
to isotropic growth of ASM cells without hyperplasia (hypertrophy only;
dotted lines) compared with predicted ASM growth (outputs are the same
as those presented in Figure 1B). Hypertrophy cannot account for ASM
growth beyond 0.5 year. Black circles and lines, proximal airways; red
circles and lines, medial airways; blue circles and lines, distal airways. ASM,
airway smooth muscle; yr, year(s)
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disproportionate ASM growth, marking a period for disease
susceptibility and potentially therapeutic intervention.

Morphometric indices of the airway wall are dependent
on both airway size and anatomical location (e.g., segmental
or sub-segmental bronchus). In adult subjects, the conven-
tional approach is to match airways based on Pbm, an
accepted marker of airway size.10 In the context of an ontog-
eny study, it is perhaps more appropriate to match based on
anatomical location, as Pbm will increase as the airway
grows. Random sampling of airways (for most cases) meant
that anatomical matching was not possible. Our approach
was to establish a single representative airway for each
human case based on the relationship between Pbm and
ASM thickness as described by a power law. This regression
analysis enabled us to scale each representative airway to a
fixed arbitrary size of 1 mm Pbm and effectively remove the
complication of airway size (referred to as normalized ASM
thickness). The final step in the analysis was to estimate
changes in intra-parenchymal airway size from late gestation
to childhood through interpolation and extrapolation of the
available CT-derived tracheal dimensions.13,14 These studies
also support proportional growth across generations (our
inherent assumption), at least for conducting sized airways.

Results demonstrate two clear phases of ASM growth.
Immediately after birth for �1 year, there is disproportion-
ate thickening of the ASM layer (and also total airway wall)
relative to airway size (Pbm), reflected by an increase in nor-
malized ASM thickness, that is, the ASM layer grows more
rapidly than the airway lumen dimension. Growth of the
ASM layer during the first phase is entirely explained by
hypertrophic growth (increased cell volume), as modelled in
Figure 4. Under these circumstances, the parameter NL

becomes less informative and insensitive to hyperplasia as
the number of cells that can be contained within a given
length of airway is reduced as the volume of each cell unit
expands, and hence NL tends to fall with age. The second
phase of ASM growth is marked by proportionate ASM
growth that occurs without any further change in ASM cell
volume, and therefore must be due to hyperplasia (assuming
no shift in the proportion of ECM; see below). The increased
number of ASM cells will be deposited radially as the circum-
ference of the airway increases with age, and also transversely
so that the normalized thickness of ASM remains constant.

When assessing expansion of the ASM layer, either in
the context of normal or abnormal growth, changes in ECM
opposed to ASM tissue require consideration. It is feasible
that an increase in ASM thickness occurs through expansion
of matrix components rather than contractile elements, as
has been observed in patients with fixed airflow limitation.7

Volume fractions of ASM and ECM are estimated by use of
ultrathin sections (0.5 μm), preventing overlap with tissue
viewed in a different plane. Expansion of ECM in preference
to ASM would be reflected by an increase and decrease in
VVECM and VVASM, respectively. The VVASM and VVECM

were however constant over the age range, with only a small
deviation in VVOTHER (not significant after post hoc analy-
sis), the parameter most likely to be impacted by histological

artefact (i.e., spaces between tissue). Therefore, the composi-
tion of the ASM layer was not affected by age, suggesting
that ASM (contractile elements) and ECM increase concom-
itantly and proportionally with age.

Structural modelling (as opposed to pathological
remodelling) of the ASM layer with maturation is expected
to alter ASM force production and airway narrowing. Longi-
tudinal data show that in children without asthma, airway
responsiveness to contractile stimuli decreases from infancy
to age 11 years.17 Similarly, in other species, airway respon-
siveness is increased in the immature compared with the
mature animal.18,19 On the surface, an increase in the thick-
ness of the ASM layer with age is discordant with a decrease
in airway responsiveness, although the structure–function
relationship is modified by numerous age-dependent factors
including subject and airway size,20 contractility (force per
cross-sectional area) of the ASM layer,21 airway–parenchymal
tethering,22 bronchodilatory response to breathing stresses23

and mechanical loads opposing bronchoconstriction.24,25 In
particular, while there is a directly proportional relationship
between ASM thickness and tension, according to the Law of
Laplace, for a given increase in ASM tension, there will be
greater collapse pressure in a smaller immature airway com-
pared with a large mature airway.

It is our assertion that understanding the structural
mechanism of normal ASM growth provides insight into the
pathophysiology of airway remodelling in respiratory dis-
ease. Thickness of the ASM layer is increased in asthma,2

sudden infant death syndrome (SIDS)26 and chronic
obstructive pulmonary disease.27 In asthma, remodelling of
the ASM layer is observed in early life3 which implicates
maturational time points as the critical window for disrup-
tion by disease processes. Appreciating the central role of
ASM remodelling in increasing airway narrowing capacity,1

rapid and disproportionate growth of the ASM layer in the
first year of life will likely increase the probability of an
asthma diagnosis. This speculation is supported circumstan-
tially by the association between increased airway respon-
siveness in the first year of life and subsequent asthma
development.5

Access to rare human airway tissue is difficult and there
is a scientific compromise, in particular the unknown effects
of various uncontrolled extraneous factors such as cause of
death and relative maternal health. Reported causes of death
were varied and incomplete, which at the very least would
have increased the variability within and between age groups.
Infants dying from SIDS have increased ASM compared with
non-SIDS infants26 and were therefore not included in this
study. There is also a compelling argument that maternal
health affects foetal lung growth and increases the susceptibil-
ity to airway disease.28–30 Adverse foetal lung growth could
certainly extend to the ASM layer. For example, maternal
hypoxia in mice restricts foetal growth and increases ASM
thickness.31 The above confounders are acknowledged, albeit
there is no reason to suggest that random error affects the
trajectory and mechanism of ASM growth, and therefore the
conclusions drawn from the present study.
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In summary, this study described several phases of ASM
development that account for the increase in ASM thickness
from late gestation to childhood. Specifically, we observed
early ASM hypertrophy and subsequent hyperplasia, and an
accompanying expansion of the ECM, such that the overall
composition of the ASM layer remained unchanged. Char-
acterizing these structural mechanisms governing normal
ASM growth helps advance our understanding on the
impact of perinatal influences on airway development and
the onset of variable or fixed airflow obstruction in child-
hood and later life.
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