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Slip Rates and Slip Modes in an Actively Mode-Locked Laser\ast 
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Abstract. Pulses in an actively mode-locked laser can occasionally slip relative to the timing signal, leading to
fluctuations in the pulse repetition rate. Such events happen rarely, however, making it infeasible
to use traditional methods to determine the slip rate. Here, in a model of a soliton-based mode-
locked laser, quantification of the error rate is obtained using importance-sampled Monte Carlo
simulations guided by soliton perturbation theory. Position slips are studied in two distinct cases:
an overdamped regime where they are primarily direct and an underdamped regime where they
typically involve oscillations. Quantification of the slip rate is shown to be more straightforward in
the overdamped regime, but dynamic importance sampling is found to be necessary to accurately
and efficiently capture error rates. Dynamic importance sampling is shown to be more difficult to
implement in the underdamped regime due to the existence of multiple routes by which errors can
occur.

Key words. rare event simulation, Monte Carlo, importance sampling, solitons

AMS subject classifications. 35Q51, 35Q55, 65C05, 65C20, 78A40

DOI. 10.1137/19M1297014

1. Introduction. Mode-locked lasers are a technology with a rich history of application
and study [22, 27, 28]. In recent years, the breadth of applications employing such systems has
grown dramatically, and simultaneously the performance of the underlying lasers has greatly
improved. Optical communications is an oft-cited application [19], but other uses include
optical frequency metrology [8], optical clocks [7, 9, 42, 45], spectroscopy [41], generation of
high harmonics [25], measurement of fundamental constants [14], and optical storage rings
[20].

In many of the above applications, the performance of the system is limited by noise. One
convenient method for determining the effects due to noise is via Monte Carlo (MC) simulation.
Due to the low error rates present in high-accuracy mode-locked systems, however, traditional
MC simulations are intractable, as an unreasonably large number of samples would be needed
to determine error probabilities. An extension known as importance-sampled Monte Carlo
(ISMC) simulation, however, is capable of capturing very low probability events and has been
used previously to study optical systems [4, 5, 11, 15, 24, 29, 30, 35, 36, 44].

Importance sampling involves replacing the probability distribution used to draw random
samples representing noise during simulation with a biasing distribution [37]. The goal is to

\ast Received by the editors November 15, 2019; accepted for publication (in revised form) by L. Billings March 20,
2020; published electronically June 4, 2020.

https://doi.org/10.1137/19M1297014
Funding: This work was supported in part by the National Science Foundation, DMS-1211912.

\dagger Department of Applied Mathematics, McCormick School of Engineering, Northwestern University, Evanston, IL
60201-3125 (nathansanford2013@u.northwestern.edu, kath@northwestern.edu).

\ddagger Department of Mathematics, University of Auckland, 1142, Auckland, New Zealand (g.donovan@auckland.ac.
nz).

1472

D
ow

nl
oa

de
d 

07
/1

5/
20

 to
 1

21
.7

4.
85

.7
5.

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

https://doi.org/10.1137/19M1297014
mailto:nathansanford2013@u.northwestern.edu
mailto:kath@northwestern.edu
mailto:g.donovan@auckland.ac.nz
mailto:g.donovan@auckland.ac.nz


 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

SLIPS IN AN ACTIVELY MODE-LOCKED LASER 1473

pick distributions which give rise to rare events of interest with much higher frequency than
they would occur normally, correcting for the biasing so that correct error probabilities can
be obtained. In soliton-based systems, soliton perturbation theory and rare event simula-
tion provide a framework in which biasing distributions for nonlinear optical systems can be
determined [17, 34]. Soliton perturbation theory allows one to define an ODE system that
approximately describes the evolution of soliton parameters in the presence of deterministic
and stochastic perturbations of the governing nonlinear Schr\"odinger (NLS) equation. The
theory of rare events then allows one to formulate a constrained optimization problem within
this ODE framework whose solutions provide approximate biasing distributions that can be
used to guide numerical solutions of the full problem.

Here, ISMC simulations using biasing distributions obtained in this way are used to de-
scribe ``position slip"" errors and determine the rates at which these slips occur in a mode-locked
laser model involving an active feedback mode-locking mechanism [10, 32]. The active feed-
back mechanism can lead to two fundamentally different modes: a nonoscillatory overdamped
regime and an oscillatory underdamped locking regime. Position slip errors, or errors of pulse
position slippage relative to the mode-locking, are found to occur in both cases but with qual-
itatively and quantitatively different behaviors. We will show that the importance sampling
methods needed to capture error rates in the two cases are somewhat different, and that more
sophistication is needed in the underdamped regime to deal with the more complicated paths
arising due to the oscillations. We believe that this problem illustrates a general issue that
may occur in systems where multiple routes to rare events may be present.

2. Model formulation. We model an actively mode-locked fiber laser as an optical cavity
oscillator including an amplifier, filter, polarization rotator (and polarizer), and phase modu-
lator [10, 32]. This system is represented schematically in Figure 1. Propagation through the
optical fiber is described by the dimensionless nonlinear Schr\"odinger (NLS) equation for the
single polarization optical field envelope u [34]:

(2.1)
\partial u

\partial z
 - i

2

\partial 2u

\partial t2
 - i| u| 2u = F (z, t),

with the right-hand side representing the perturbative effects of the added physical elements
used to provide the active mode-locking and stabilize the optical pulses. Here the dimensionless
time has been scaled by a characteristic time T0 (usually comparable to the width of a pulse,
here assumed to be on the order of 1 ps), and evolution is with respect to a dimensionless
distance z, here scaled by the dispersion length L = T 2

0 /\beta , where \beta is the second-order
dispersion parameter. The field envelope has also been scaled by a characteristic amplitude
[34].

The mode-locking elements are (linear) gain from the amplifier and polarization rotator,
filtering, nonlinear gain (or loss) from the polarization rotator, and phase modulation [27]. A
simple version of the filtering due to frequency dependent gain (or loss) can be described by
the perturbing term a \partial 2u/\partial t2, where a is the filtering strength. A simplified model of excess
linear and nonlinear gain can be described by terms of the form [27]

c1u+ c2| u| 2u+ c3| u| 4u.D
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Figure 1. A schematic of a fiber ring laser where an optical pulse passes through an amplifier, filter,
polarization rotator, and phase modulator on each pass around the ring.

Typically, c1 will be negative, so really this term models a small excess linear loss. In addition,
a simplified model of the active phase modulation is a term of the form ib cos (\omega t)u [32], where
b is the modulation strength and the external modulation frequency is \omega . In what follows, we
will assume \omega = 2\pi /25, i.e., a 25 ps modulation period. It should be noted that, in practice,
all of the above effects are discrete or lumped, i.e., the perturbations are each applied to the
pulse once per pass through the loop. Since the net change to the pulse per pass is small, it is
permissible to replace the lumped effects with their averaged continuous versions as above [26].

In addition, the linear gain provided by the amplifier is also accompanied by amplified
spontaneous emission (ASE) noise. This additional perturbation is modeled as zero-mean,
delta-correlated Gaussian white noise that is added to the pulse as it passes through the
amplifier on every round trip through the fiber ring [34] and takes the form

N\sum 
n=0

fn(t)\delta (z  - n), where(2.2a)

\langle fi(t)\rangle = 0 and(2.2b)

\langle fi(t)f\ast 
j (t

\prime )\rangle = \sigma 2\delta (t - t\prime )\delta ij .(2.2c)

(As written, the noise bandwidth is infinite, but in reality it is merely much larger than
that of the soliton; the bandwidth is finite in numerical simulations, of course [34].) It is
easiest to implement this stochastic perturbation in discrete, random jumps. For simplicity,
we have assumed that the noise is added once per dispersion length; if the fiber ring is shorter
than this, we can combine the noise from multiple passes into a single larger perturbation
once per dispersion length, as long as the total remains small. The noise variance is then
\sigma 2 = [(G - 1)2\eta sp\hbar \omega 0T0\gamma ]/[G lnG| \beta | ] = 2.667 \times 10 - 5 [34], where we have used G = 40 (or
16 dB) as the amplifier gain needed to compensate loss due to the components in the loop,
\eta sp = 2.0 is the ASE (excess noise) factor, \hbar is Planck's constant, \omega 0 = 1.22\times 1015 1/s is the
carrier frequency, T0 = 1 ps, and \beta = 0.2 ps2/km. Thus, the full perturbative term F on theD
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SLIPS IN AN ACTIVELY MODE-LOCKED LASER 1475

right-hand side of (2.1) is

(2.3) F (z, t) = a
\partial 2u

\partial t2
+ ib cos (\omega t)u+ c1u+ c2| u| 2u+ c3| u| 4u+

N\sum 
n=0

fn(t)\delta (z  - n).

When F \equiv 0, the NLS admits the well-known soliton solution

(2.4) us(z, t) = Esech(E(t - T )) exp (i\Omega (t - T ) + i\phi ),

where the soliton parameters E,\Omega , T, and \phi represent, respectively, the amplitude, frequency,
position, and phase of the soliton. This solution is exact for (2.1) with F \equiv 0 when

E(z) = E0, \Omega (z) = \Omega 0,

T (z) = T0 +\Omega z, \phi (z) =
1

2
(E2 +\Omega 2)z + \phi 0,

where E0,\Omega 0, T0, and \phi 0 are the constant initial values of the soliton parameters. Additionally,
we sometimes use the shorthand notation us(z, t) = u0(z, t) exp(i\Theta (z, t)), where

u0(z, t) = Esech(E(t - T )) and \Theta (z, t) = \Omega (t - T ) + \phi .

2.1. Soliton perturbation theory and representative parameter regimes. We first con-
sider (2.1) with the deterministic perturbations in (2.3) (i.e., without the noise). Assuming
the initial solution is a soliton and the perturbative terms are small in magnitude, then the
leading-order effect is to cause the soliton parameters to change slowly. Using soliton per-
turbation theory [2, 21], the evolution equations for the soliton parameters are (ignoring the
phase, as this model is phase-insensitive)

dE

dz
= Re

\int \infty 

 - \infty 
u\ast F dt,(2.5a)

d\Omega 

dz
=

1

E
Re

\int \infty 

 - \infty 
(iu\ast t  - \Omega u\ast )F dt,(2.5b)

dT

dz
= \Omega +

1

E
Re

\int \infty 

 - \infty 
(t - T )u\ast F dt.(2.5c)

Using (2.4) for u to evaluate the integrals to leading order, we obtain

dE

dz
= (2c1  - 2a\Omega 2)E +

\biggl( 
4

3
c2  - 

2

3
a

\biggr) 
E3 +

16

15
c3E

5,(2.6)

d\Omega 

dz
=  - 4

3
aE2\Omega  - \omega 2b\pi 

2E
csch

\biggl( 
\pi \omega 

2E

\biggr) 
sin (\omega T ),(2.7)

dT

dz
= \Omega .(2.8)

First of all, it is seen that for c1 < 0 (excess loss), E = 0 is stable. Strictly speaking,
soliton perturbation theory is not applicable in this limit, but a linear stability analysis showsD
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Figure 2. The continuous dynamics of the soliton ODE system (2.7) and (2.8) are shown in (T,\Omega ) phase
space. Left: the underdamped state with a stable spiral fixed point at (0, 0) and saddles (\pm \pi /\omega , 0) (at bit-slot
boundaries, depicted with red-dashed vertical lines, as defined by the modulation frequency). For a pulse to move
out of its bit-slot, it must escape the basin of attraction of a stable spiral and cross the stable manifold of the
saddle point. Right: the overdamped state where the stable fixed point at (0, 0) is now a nodal sink rather than
a spiral. The parameters for the filtering, modulation, nonlinear gain strengths, and steady-state amplitude Es

in each are the representative values listed in the text.

that u = 0 is stable due to the linear excess damping (the c1 term) and filtering. For c2 > 0
and c3 < 0, there will be a positive stable solution for E when \Omega = 0, which we shall denote
by Es. Because the filtering coefficient a is typically small, the pulse energy will be more or
less independent of \Omega if it is not too large. Since there are two stable pulse energies (E = 0
and E = Es), it is possible for added noise to induce transitions between the two, leading to
either pulse dropouts or the spontaneous creation of new pulses. For the parameters we will
use, however, the probability of either event will be very small [10].

For E = Es, the dynamics of \Omega and T can be underdamped or overdamped [10, 32]. In
both cases, there are stable steady states at (E,\Omega , T ) = (Es, 0, 2n\pi /\omega ) and unstable saddles
at (E,\Omega , T ) = (Es, 0, (2n + 1)\pi /\omega ) where n \in \BbbZ , but the structure of the phase space is
different in the two cases. Phase planes for \Omega and T with E constant are shown in Figure 2.
In the underdamped case, decay to the nonzero equilibrium state is oscillatory, while in the
overdamped case a soliton displaced from equilibrium will be restored smoothly to the steady
state. The relative strengths of filtering and modulation determine the type of dynamics,
with greater filtering leading to overdamping [32]. We will use two representative parameter
sets. For the underdamped regime, we will assume a = 0.002, b = 0.01, c1 =  - 0.01, c2 =
0.034, c3 =  - 0.02 with a stable amplitude of Es = 1.177. For the overdamped regime, we
assume a = 0.015, b = 0.002, c1 =  - 0.01, c2 = 0.04, c3 =  - 0.02 with a stable amplitude of
Es = 1.150.

One effect of the noise is that it adds jitter to the pulse parameters, broadening the laser's
linewidth [1]. A more dynamically interesting event is for a noise-induced position slip error to
occur [32]. Here the noise induces the pulse position to transition from one stable equilibrium
to another. Since the goal of mode-locking is to keep a pulse synchronized to the active
mode-locking signal, noise-induced sliding of a pulse's position is undesirable, as it leads to a
random drift of the mode-locked laser's repetition rate. The rate at which these position slipsD
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SLIPS IN AN ACTIVELY MODE-LOCKED LASER 1477

occur, of course, is directly related to the rate of this random drift. Because the parameters
being considered are such that pulse energy dropouts are very improbable relative to position
slips, in what follows we will assume the amplitude to be fixed at E = Es and only concern
ourselves with position slips. We monitored the pulse energy in simulations to verify that this
assumption holds.

3. Large deviation theory. When considered as the sole perturbation, the effect of the
ASE noise is to cause random walks in the soliton parameters. Since any values of these
parameters produce perfectly valid solutions of the NLS equation [34], it is unable to resist
such random changes. The random walks that result in the absence of the deterministic per-
turbations described in section 2 eventually lead to large deviations in the soliton parameters
even if the noise added at a single amplifier is small. The purpose of the mode-locking terms,
of course, is to limit the growth of perturbations in the pulse parameters. Even in this case,
however, there is a small but nonzero probability for the pulse to experience a large deviation.

To address the question of precisely how likely a position slip is to occur in the presence
of mode-locking, we pose a stochastic exit problem. Specifically, we wish to determine the
most likely way for a pulse starting at equilibrium (\Omega = 0, T = 0) to escape the effective
potential well imposed by the mode-locking and exit a bit-slot by undergoing a position drift
of \pi /\omega = 12.5. (By symmetry, an exit to  - \pi /\omega =  - 12.5 is equally probable.) To answer this
question, we first will derive optimized exit paths using the approximating system of ODEs
for soliton parameter evolution, (2.6)--(2.8).

In a manner similar to the derivation of (2.6)--(2.8), we use soliton perturbation theory
to determine the appropriate stochastic terms that must be added to the soliton parameter
ODEs in the presence of noise [34]. Taking F in (2.1) to be the Gaussian white noise terms
(ignoring the deterministic perturbations for the moment and neglecting changes in E), we
find at leading order

d\Omega 

dz
= Re

\int \infty 

 - \infty 
v\ast \Omega e

 - i\Theta F dt,(3.1a)

dT

dz
= \Omega +Re

\int \infty 

 - \infty 
v\ast T e

 - i\Theta F dt,(3.1b)

where the adjoint modes of the linearized NLS operator v\Omega and vT are given by

v\Omega =  - i

E

\partial u0
\partial t

,(3.2a)

vT =
1

E
(t - T )u0.(3.2b)

Since the noise is added as a jump in u when a pulse reaches an amplifier, integrating (3.1)
in z across an amplifier gives the corresponding jumps in the soliton parameters,

\Delta \Omega n = Re

\int \infty 

 - \infty 
v\ast \Omega e

 - i\Theta fn dt,(3.3)

\Delta Tn = Re

\int \infty 

 - \infty 
v\ast T e

 - i\Theta fn dt.(3.4)
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When the noise fn is given by (2.2), \Delta \Omega n and \Delta Tn are zero-mean Gaussian random
variables with variances [34]

E[\Delta \Omega 2
n] = \sigma 2

\Omega = \sigma 2E/3,(3.5)

E[\Delta T 2
n ] = \sigma 2

T = \pi 2\sigma 2/(12E3) .(3.6)

3.1. Derivation of optimal exit paths. Equations (2.7) and (2.8) with added random
jumps given by (3.3) and (3.4) form an approximate version of the soliton dynamics in the full
model, (2.1) with (2.3). This system is, lettingA =  - 4aE2/3 andB =  - \omega 2b\pi csch(\pi \omega /2E)/(2E),
explicitly given by

d\Omega 

dz
= A\Omega +B sin (\omega T ) +

N\sum 
n=0

\Delta \Omega n\delta (z  - n),(3.7a)

dT

dz
= \Omega +

N\sum 
n=0

\Delta Tn\delta (z  - n).(3.7b)

In particular, these equations approximately describe the dynamics of a position slip error and
allow us to derive exit paths for such an event. The most probable series of parameter kicks
\Delta \Omega n and \Delta Tn are those which have the lowest combined weighted L2 norm, as the underlying
noise is Gaussian. Let the functions \eta \Omega (z) and \eta T (z) be continuous functions that stand in
for the discrete parameter kicks (this continuum approximation is justified, as the length scale
on which the deterministic dynamics work in the system is much longer than the amplifier
spacing, here \Delta z = 1). Then the constrained optimization problem needed to be solved for
an optimal exit path is to minimize [33, 34, 39]

(3.8) min
\eta \Omega ,\eta T

S = min
\eta \Omega ,\eta T

2

\sigma 2

\int zL

0
C\eta 2\Omega +D\eta 2T dz

subject to

d\Omega 

dz
= A\Omega +B sin (\omega T ) + \eta \Omega ,(3.9a)

dT

dz
= \Omega + \eta T ,(3.9b)

where C = 1/\sigma 2
\Omega = 3/(E\sigma 2) and D = 1/\sigma 2

T = 12E3/(\pi 2\sigma 2). We want the final soliton

position to be T (zL) = \^T (the one that gives a position slip), so we have three boundary
conditions: T (0) = T0, \Omega (0) = \Omega 0, and T (zL) = \^T . Here the idea is to the minimize the
probability associated with a particular set of deviations. This is equivalent to finding the
Freidlin--Wentzell least action path [17] (as elucidated in more detail in section 4) and related
methods [3, 16, 38]. Following standard variational calculus methods for optimization with
differential side constraints, we construct a constrained functional using Lagrange multipliers
[18]
(3.10)\int zL

0

\biggl\{ 
C\eta 2\Omega +D\eta 2T + \lambda 1(z)

\biggl[ 
d\Omega 

dz
 - A\Omega  - B sin (\omega T ) - \eta \Omega 

\biggr] 
+ \lambda 2(z)

\biggl[ 
dT

dz
 - \Omega  - \eta T

\biggr] \biggr\} 
dz.
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Figure 3. Two representative solutions for the exit path in the overdamped parameter regime showing four-
part solutions with different propagation distances, zL. The lower panels show the biasing path coefficients for
the frequency and position modes, and the upper panels show the expected frequency and position trajectories
under biasing. The solutions were computed numerically using the MATLAB boundary value problem solver
BVP4C.

Taking variations with respect to the unknown functions \eta \Omega , \eta T ,\Omega , and T , we find

\delta \eta \Omega \rightarrow 2C\eta \Omega  - \lambda 1 = 0,(3.11a)

\delta \eta T \rightarrow 2D\eta T  - \lambda 2 = 0,(3.11b)

\delta \Omega \rightarrow  - A\lambda 1  - \lambda 2  - 
d\lambda 1

dz
= 0,(3.11c)

\delta T \rightarrow  - B\omega \lambda 1 cos (\omega T ) - 
d\lambda 2

dz
= 0 .(3.11d)

We use (3.11a) and (3.11b) to specify the Lagrange multipliers \lambda 1 = 2C\eta \Omega and \lambda 2 = 2D\eta T
giving

d\eta \Omega 
dz

=  - A\eta \Omega  - D

C
\eta T ,(3.12a)

d\eta T
dz

=  - B\omega C

D
\eta \Omega cos (\omega T ) ,(3.12b)

which along with (3.9a) and (3.9b) form a boundary value problem with four boundary con-
ditions: T (0) = T0, \Omega (0) = \Omega 0, T (zL) = \^T , and \eta \Omega (zL) = 0. The last condition is a natural
boundary condition arising from the free boundary for \Omega (zL) [18].

3.2. Exit path behaviors. The solution of the boundary value problem given by (3.9)
and (3.12) with T0 = 0, \Omega 0 = 0, and \^T = 12.5 gives an optimal exit path after propaga-
tion through \lfloor zL\rfloor amplifiers. This boundary value problem is solved numerically with the
MATLAB BVP4C package. Representative numerical solutions are shown in Figures 3 and
4 for the underdamped and overdamped regimes, respectively. The exit paths for the over-
damped regime have a similar character for all system lengths, as the optimal way to resistD
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Figure 4. Two representative solutions for the exit path in the underdamped regime showing four-part
solutions with different propagation distances, zL. The lower panels show the biasing path coefficients, and
the upper panels show the expected soliton parameter trajectories under biasing. The solutions were computed
numerically using the MATLAB boundary value problem solver BVP4C. For a long distance, such as the solution
shown on the right, the biasing path is oscillatory, but for a short distance (left) it is not.

-2 0 2 4 6 8 10 12 14

T

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

0.1

z
L
 =150

z
L
 =300

z
L
 =450

z
L
 =600

z
L
 =750

-6 -4 -2 0 2 4 6 8 10 12 14

T

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

z
L
 =150

z
L
 =300

z
L
 =450

z
L
 =600

z
L
 =750

Figure 5. Computed biasing path trajectories visualized in (T,\Omega ) phase space for different system lengths in
the overdamped and underdamped regimes. Left: the overdamped regime. All paths monotonically approach exit
and do not change qualitatively as the system length increases. For longer propagation distances, less frequency
driving is necessary to force an exit. Right: the underdamped regime. As zL increases, the biasing paths undergo
more and more oscillations before exiting due to the oscillatory dynamics near the critical point.

the overdamped mode-locking is to monotonically push the pulse toward its exit. However,
the exit paths in the underdamped regime exhibit significant qualitative differences as the
system length is increased. For a sufficiently large propagation distance, zL, the optimal path
takes advantage of the oscillatory dynamics inherent in the mode-locking and wraps around
the spiral before exiting, with the number of oscillations (or ``loops"") dependent on the overall
propagation distance. Figure 5 shows the qualitative behavior changes in the exit paths in
both regimes as the system length is varied.

It is best to understand the bifurcating oscillatory paths in the underdamped regime as
different modes of exit. As the system length increases, an infinite cascade of biasing pathsD
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Figure 6. Bifurcation diagram showing biasing paths in the underdamped regime with different numbers of
oscillations or loops numerically continued by varying zL and measured in terms of their action according to
(3.8). The oscillatory biasing paths are conjectured to arise through a bifurcation at infinity, and each have a
critical propagation distance at which they disappear (visualized here as folds in the bifurcation diagram). The
black-dashed lines are conjectured extensions of computed solution families.

occur which are each local minima in the least action problem equations (3.9) and (3.12).
Continuing the paths in the right panel of Figure 5 shows that multiple paths of exit from
the fixed point with different numbers of oscillations, or loops, coexist at all distances past
zL = 206. Figure 6 shows a bifurcation diagram continuing these paths in the propagation
distance, zL, with the path action equation (3.8) as the dependent variable. Additionally, the
bifurcation diagram demonstrates that there are multiple system lengths zL for which there
are two types of paths that are roughly equal in action (e.g., see the region 205 < zL < 220).

4. Numerical simulations. To quantify the probabilities of position slips happening in
this system, MC simulations were performed. The full NLS equation, (2.1), was integrated
numerically with different noise realizations many times, and statistics were computed based
on the final results. Each sample in the MC simulations was solved numerically using the
split-step Fourier method [40] with 256 Fourier modes, a computational window in time t of
width 80, and a propagation stepsize of dz = 0.05. The initial condition was a soliton with
the stable amplitude for the parameter regime being simulated, as given in section 2.1.

Position slip probabilities due to the mode-locking can be quite small, so the MC simula-
tions were augmented with importance sampling (ISMC). In these simulations, the underlying
probability distribution in the problem (Gaussian white noise) is replaced with a biasing dis-
tribution from which samples are drawn. Then the correct probabilities are computed using
the likelihood ratio, which is the ratio between the original and the biased probabilities used
to generate that sample [34]. Here the Gaussian biasing distributions utilized means ob-
tained from solutions to the system of equations (3.9) and (3.12) using coefficients v\Omega and vT ,D
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respectively, as described previously [34].
In particular, previous work has shown that the noise should be mean shifted at each

amplifier by an amount that is proportional to the adjoint mode associated with the quantity
being biased (multiplied by ei\Theta , so that it is in phase with the soliton), rather than the
forward mode, a somewhat counterintuitive result [34]. This is equivalent to saying that the
Freidlin--Wentzell least action minimizer for a prescribed soliton change after passage through
one amplifier is in the direction of the adjoint modes of the linearized NLS equation [34].
In this case, the relevant modes that should be biased at each amplifier are the position
and frequency adjoint modes, the latter being included since frequency perturbations become
position perturbations upon propagation. Explicitly, the mean shift at the nth amplifier due
to the biasing is

(4.1) fn(t) =

\biggl( 
\eta \Omega (zn)

v\Omega 
| | v\Omega | | 2

+ \eta T (zn)
vT

| | vT | | 2

\biggr) 
ei\Theta ,

where \eta \Omega and \eta T are the biasing coefficients that give the magnitude of the shift in the
direction of each mode (where the modes and total phase of the soliton are computed at
the amplifier). These biasing coefficients are the same as the functions used in (3.9a) and
(3.9b). With this formulation, the functional minimized in the optimization problem (3.8)
to maximize the probability of an exit path is the L2 norm of (4.1) (note that there is no
cross term since the modes are orthogonal with respect to the inner product associated with
the linearized NLS operator) [34]. The normalization constants are chosen so that the mean
shift at each amplifier equation (4.1) agrees with (3.9a) and (3.9b) after evaluating the jump
conditions (3.3) and (3.4). The constants C and D in (3.8) are then seen to be related to the
adjoint mode norms

\sigma 2

2
C = | | v\Omega | |  - 2 =

3

2E
,(4.2a)

\sigma 2

2
D = | | vT | |  - 2 =

6E3

\pi 2
(4.2b)

and are solely dependent on E(z) \approx Es and therefore treated here as constants. (An overall
multiplicative factor does not affect the minimization, of course.)

Taking the biasing coefficients resulting from the solutions of (3.9) and (3.12) in section
3.1 and incorporating them into (4.1) allows us to bias the noise to optimally produce a desired
position slip. The simulation process to create a biased sample is to solve the deterministic
part of (2.1) until an amplifier is encountered. The split-step solver is then stopped, and the
mean shift equation (4.1) is computed using the precomputed biasing coefficients (extracted by
fitting a soliton through the noisy pulse) and the soliton's current parameters (for construction
of the adjoint modes and total phase). After adding the biased noise using this mean shift,
the split-step solver is then restarted and the process is repeated until the simulation is
terminated. Thousands of samples are typically generated, and the final pulse position is
binned to estimate its probability distribution. Additionally, in order to form full probability
density functions (P.D.F.s) of pulse position that resolve positions throughout a bit-slot and
into neighboring bit-slots, multiple biasings were used. That is, to cover larger regions, biasingD
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Figure 7. ISMC simulations of soliton position in the overdamped regime for three system lengths. Top
panel: the probability density function (P.D.F.) of soliton position T after propagation through zL ampli-
fiers. Eleven position targets were included throughout the domain (evenly spaced between T (zL) =  - 12.5 and
T (zL) = 12.5) with 100, 000 total samples. Middle panel: the coefficient of variation (C.V.) indicates simulation
convergence: a smaller and smoother C.V. indicates better convergence. We see that convergence is generally
good for moderate propagation distances and worse for very short or long distances. Bottom panel: the raw
relative frequency histogram of sample location for each simulation. Fewer samples reach the bit-slot boundary
for the longer-distance simulations.

paths with different position targets \^T = T (zL) were included in multiply importance-sampled
Monte Carlo (MISMC) simulations and then combined using the balance heuristic [44], which
weights contributions from each biasing distribution by the likelihood that each particular
sample came from that distribution. Thus, distributions producing low numbers of samples
in specific regions are downweighted when others producing larger numbers of samples are
available.

4.1. Importance sampling in the overdamped regime. We performed ISMC to assess
pulse position probabilities in the laser model using the overdamped parameters given in
section 2.1. P.D.F.s of the soliton's position after propagation through varying values of zL
amplifiers are included in Figure 7.

The bit-slot boundaries are indicated in red, and we see that the probability of a large
position shift is greatly increased as the system length grows. Included in these figures is the
coefficient of variation (C.V.), or the measure of the intrabin standard deviation divided by the
bin's overall probability, which provides one way of assessing convergence of the simulations,
even when probabilities are small. In all simulations, the samples converge well for regions
at or near equilibrium but not necessarily in the tails. This is disadvantageous, as the tails
are precisely the regions where position slips occur. For very short distances and very longD
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1484 N. L. SANFORD, G. M. DONOVAN, AND W. L. KATH

distances, the simulations do not converge well in the tails (as in the left and right panels
of Figure 7). However, for intermediate distances, the simulations converge well. For short
distances, the probabilities that we are attempting to capture are extremely low, so it is natural
that convergence is slower, but for long distances the poor convergence requires additional
explanation since the probabilities are larger.

The poor convergence for long system lengths can be understood by examining the bottom
panel of Figure 7. The relative frequency histogram indicates the spread of samples in the
standard ISMC simulations, which were conducted with 11 position targets spread evenly
throughout the bit-slot and at the left and right boundaries. The samples are evenly spread
throughout the interior of the bit-slot for all distances, but fewer samples are clustered around
the boundaries as the system length increases. For zL = 600 (light blue), too many simulations
either get ahead of or behind the biasing, and end up either exiting early or getting pushed
to the center of the neighboring bit-slot, or they get pushed back into the current bit-slot (a
situation which is shown in Figure 8).

This issue can be ameliorated by using dynamic importance sampling [12]. This method,
alternately known as targeted ISMC [15] or state-dependent ISMC [6], recomputes the biasing
path midsimulation while a sample is being drawn. A demonstration of this scheme is shown
in Figure 8. Equations (3.9) and (3.12) are resolved during the simulation by changing the
left-hand boundary conditions to be the soliton's current frequency and position, as shown in
the bottom left panel of Figure 8. The biasing path expects the pulse to be at the position
of the blue pulse, but due to accumulated noise the pulse is actually that indicated in green.
Therefore, we correct the biasing path by solving the biasing boundary value problem using
the frequency and position of the soliton shown with blue dashes, which is the best-fit soliton
to the noisy pulse, and use the resulting biasing path throughout the rest of the simulation
or until the path is dynamically recalculated again. The criterion used to decide when to
recalculate the pulse can be varied; one can recalculate the path after passage through a fixed
number of amplifiers or when the deviation between the expected and computed positions is
larger than some prescribed tolerance, for example. Here we choose to retarget periodically
with a specific number of amplifiers between recalculations in order to precisely control how
many times the boundary value problem needs to be solved since computing its solution is
expensive relative to the computational costs of the Fourier split-step solver. The convergence
benefits of dynamic ISMC typically come from more tightly clustering samples around a
desired target [13, 15]. Here dynamically recalculating the optimal path improves the number
of samples that finish in the vicinity of the bit-slot boundary. This can be seen for zL = 600
simulations in Figure 9; using dynamic ISMC eliminates the fluctuations in the C.V. near
T (zL) = \pm 12.5.

Overall, performing ISMC in the overdamped region is mostly straightforward, as the bi-
asing paths are typically similar in character and solving (and resolving) the biasing boundary
value problem is simple. Accumulated deviations from biasing paths cause poorer convergence
for exit probabilities at longer distances, but this can be counteracted by the use of dynamic
ISMC. Short simulation distances have very low exit probabilities and require a large num-
ber of samples to be resolved irrespective of the amount of recalculation. Dynamic ISMC
typically provides notable convergence benefits with a relatively low amount of recalculation.
Performing many path recalculations provides diminishing returns in convergence, however,D
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Figure 8. A single sample trajectory with zL = 600 showing the effects of dynamic path recalculation on
pulse position. Top panels: a pulse and its trajectory computed using ISMC without path recalculation. The
pulse lags behind the optimal sampling path (blue in the right-top panel) and approaches the saddle from a
direction which causes it to be forced back to the left, away from the exit target of \^T = 12.5. Bottom panels:
the same noise realization as in the top panels is used in a sample drawn with recalculation of the path every
200 amplifiers. Bottom left: the biasing path recalculation at z = 400 showing the computed pulse, the pulse
originally expected by the biasing path, and the pulse used for biasing after the path is recalculated. Bottom
right: the sample trajectory in phase space again showing the parameter random walk and the expected biasing
path, which is now piecewise-smooth due to the periodic recalculation. The pulse now exits the specified interval
and ends up much closer to the intended position target.

and greatly increases the computational cost. Performing simulations to track the probability
of exit directly as a function of system length zL confirms these characteristics. These simu-
lations are important, as they directly address the formulation of the position slip as an exit
problem, and are shown in Figure 10, which go out to zL = 600 with 1,000,000 total samples.
The figure shows the overall exit probability, i.e., the probability that T \geq \^T vs. zL. For
an accurate exit probability estimate, the P.D.F. for T (zL) must be computed accurately at
and just beyond the exit point. The nondynamic ISMC simulations (blue) produce smooth
estimates for intermediate distances and experience variance fluctuations for longer distances.
Dynamic ISMC with one path recalculation greatly improves the convergence, eliminating the
fluctuations and generally lowering the C.V. with the same number of samples. Recalculating
the path twice slightly lowers the C.V. level relative to one recalculation, but recalculatingD
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Figure 9. ISMC simulations for the overdamped case showing different amounts of dynamic recalculation,
and their effects on convergence, for zL = 600 simulations. In addition to the blue, which has no recalculation,
curves showing simulations where the path was recalculated once (at z = 300) or twice (at z = 200 and z = 400)
are shown. Dynamic ISMC concentrates more samples in the region of the bit-slot boundary and improves the
convergence there. The improvement in convergence between recalculating the path twice versus once is small.
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Figure 10. ISMC simulations of soliton exit simulations in the overdamped case with varying amounts of
dynamic recalculation. Top: the P.D.F. of pulse exit probability as a function of distance. Bottom: the C.V.
shows improved convergence for the dynamic simulations compared with the regular ISMC, with additional but
saturating benefit as more recalculation is used.

further does not provide any noticeable additional benefit.

4.2. The underdamped regime and the problem of multiple paths. ISMC simulation
in the underdamped regime is more difficult due to the oscillatory nature of the biasing
paths. The numerical solution of the biasing problem equations (3.9) and (3.12) involves
making an initial guess and then iterating to find a solution. While this works well in theD
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Figure 11. ISMC simulations of soliton position in the underdamped regime at three system lengths. Top
panel: the P.D.F. of soliton position T after propagation through zL amplifiers. Eleven position targets were
included throughout the domain (evenly spaced between T (zL) =  - 12.5 and T (zL) = 12.5) with 100, 000 total
samples. Middle panel: the C.V. provides an estimate of simulation convergence. Bottom panel: the raw
relative frequency histogram of sample location for each simulation.

overdamped case, in the underdamped regime a generic initial guess (for example, a constant
or linear function) and use of the MATLAB boundary value solver BVP4C do not always
converge to a proper solution at every distance. When optimal biasing solutions can be
found, simulations for the pulse position P.D.F. can be completed; examples are shown in
Figure 11. As before, the general trend is that ISMC simulations converge better for shorter
than for longer distances. The distances with good convergence are much shorter than before,
however; by zL = 300, the C.V. near the bit-slot boundaries exhibits significant fluctuations
and we see that progressively fewer samples fall in the proper range as system length increases,
as shown in the bottom panel of Figure 11.

The reasons behind this behavior can be explored by considering Figures 6 and 12. In
particular, the convergence of the exit probability simulations is good up until zL \approx 200,
but past that point the convergence degrades. Furthermore, multiple locally optimal paths
with similar actions appear soon after this, at zL \approx 206. Multiple importance sampling and
other similar variants [37] predict that all events with similar probabilities must be included
in ISMC simulations, and omitting one or more similarly likely paths has been shown to
lead to convergence problems for the results [39]. This issue is observed here if one performs
ISMC simulations for the position P.D.F. at zL = 210, since this distance has three distinct
paths with similar action values, as shown in Figure 13. Simulations were performed to find
the P.D.F. using the least action path, the two paths with the smaller actions, and all three
paths. One of the results was obtained using only the path with the smallest action (theD
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Figure 12. ISMC simulations of soliton exit simulations in the underdamped regime. Top: the P.D.F. of
pulse exit probability as a function of distance. Bottom: the C.V. shows good convergence for only the shortest
system lengths.

largest probability), and it is seen that this can substantially misestimate the P.D.F. near
the target. The simulation with one path converged to a significantly lower estimate for the
probabilities, while the simulations with two and three paths converged to the same values.
None of the three simulations converged quickly (as measured by the C.V.), however, with
the single path simulations having the worst convergence.

Applying dynamic ISMC in the underdamped case is also more difficult than before, again
due to problems solving the biasing boundary value problem. Performing dynamic simulations
for the full P.D.F. (i.e., with multiple position targets) for even intermediate distances does not
succeed, as the boundary value solver fails to converge to a usable path sufficiently frequently.
The problem is not so severe for simulations of only the region around the exit point (i.e., a
single position target) and can be shown to be effective in some cases (e.g., Figure 14), but
the boundary value solver failure rate is an impediment for relatively long distances (such
as zL = 600) and there are many distances where dynamic ISMC appears to not improve
convergence.

With additional effort, dynamic MISMC simulations can be used to improve the results for
the P.D.F. at distances just past the point at which multiple paths appear, e.g., zL = 210. Note
that combining MISMC with dynamic recalculation requires simultaneously recalculating,
using the same intermediate position, both the path currently being used to generate samples
and all of the other paths since dynamically updated versions of the latter are needed for
proper implementation of the balance heuristic [5, 37, 44]. The results at zL = 210 using one,
two, or three paths, taken in order from highest to lowest probability, are shown in Figure 15.
The results again show that convergence is best when all paths are included and that using
just one path is not sufficient; the one-path simulation still converges to a substantially lowerD
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Figure 13. MISMC in the first region of multiple paths. Left top: a zoomed version of the bifurcation
diagram. Left bottom: the three paths and their actions. Right: MISMC results using the three paths. The
blue curve uses only the global minimum curve, the red uses the two paths with least action, and the green uses
all three. The P.D.F. of pulse position shows that using multiple paths provides a substantial correction to the
probability in the tail, though the convergence in the C.V. is not very good, regardless of how many paths are
used.

probability, and the C.V. is markedly worse. The C.V. for the two-path simulation is also not
improved relative to the nondynamic simulation (shown in black), while only the three-path
simulation shows the improved convergence expected with path recalculation. It is also worth
noting that in this case, once the remaining distance shrinks sufficiently, the three different
paths all merge and become identical.

Not all simulation distances past the onset of the oscillatory paths require the use of
multiple paths in the simulation, however. Examination of Figure 6 indicates that between
roughly 250 < zL < 350 the path with one oscillation dominates the exit probability, for
instance.

Dynamic ISMC is still difficult to implement at longer distances, however, and the fraction
of failed samples due to nonconvergence in the boundary value problem solver is a persistent
issue, particularly for zL > 300. In a nonconvergent sample, the boundary value problem
solver, using the remaining portion of the previously computed biasing path as an initial
guess, fails to converge to a prescribed tolerance. The convergence rate of the boundary value
problem solver can be considerably improved, however, by updating the optimal path using
a series of intermediate steps between the previously computed path and the current location
in (T,\Omega ) phase space if the path recalculation initially fails (implementing a simple homotopy
algorithm in this case). While this approach is computationally expensive, the rate at whichD
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Figure 14. ISMC simulations of soliton position in the underdamped regime at zL = 160 comparing tail-
only simulations using recalculation every 40 amplifiers with simulations without recalculation. Top: the P.D.F.
of soliton position T after propagation through zL amplifiers. Bottom: the C.V. reports simulation convergence,
showing that convergence is improved by very tight targeting at the bit-slot boundary.

8 9 10 11 12 13 14 15 16 17

10-15
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Underdamped timing jitter at z
L
=210 with 10
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C.V.

Figure 15. Dynamic MISMC with three paths. Dynamic MISMC is implemented starting from each of the
three paths from Figure 13 with the three-path simulation without recalculation shown in black for comparison.
For each dynamic simulation, three-path recalculations were performed for each sample. The one-path simu-
lation still converges to a lower probability than the two- or three-path simulations, while only the three-path
simulation shows improved convergence relative to nondynamic MISMC.
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Figure 16. Dynamic ISMC computed for zL = 330. Top: Regular ISMC, dynamic ISMC, and homotopy-
assisted dynamic ISMC simulations were performed with 10 path recalculations per sample for the dynamic
simulations. This level of recalculation results in a very narrow spread of samples around the intended target at
the bit-slot boundary. Bottom: The C.V. compares the three methods. Dynamic ISMC at this distance results
in 50.3\% of samples failing due to BVP4C nonconvergence, while the homotopy-assisted method fails in only
3.5\% of samples (failed samples were discarded for the purposes of computing the ISMC estimates). This failure
rate limits the effectiveness of dynamic ISMC, but the much lower failure rate of the homotopy-assisted method
allows the convergence of dynamic ISMC to be significantly improved.

samples experience a failed recalculation can be cut by an order of magnitude, as shown in
Figure 16. The lowered failure rate makes dynamic ISMC effective in this longer propagation
regime.

It is possible for even more demanding situations to arise, however. Figure 17 shows a
possible trajectory constructed by examining solutions of the exit problem in specific (T,\Omega , zL)
regions. In this situation, the starting point has a unique exit trajectory, but as the solution
evolves and is pushed away from the optimal path by noise, a second path becomes possible
(the dashed curves in the figure). Eventually, the first path disappears and only the second
path remains. Performing dynamic ISMC simulations for cases of this type presents a new
level of difficulty, of course, as multiple importance sampling requires enumerating the different
paths and keeping track of the likelihood ratios for each of them. A general method capable of
tracking such situations properly would require combining a continuation/bifurcation method
with dynamic MISMC simulations. Such a combined method is beyond the scope of the
present work.

5. Discussion. We have shown that multiple importance sampling techniques based on
soliton perturbation theory can be extended to be a useful tool for the study of rare events
in mode-locked laser systems, which are of particular interest due to recent technological
developments in optical frequency metrology that depend on high-performance laser sources.
This rare event simulation method allows fast and accurate simulation of these rare eventsD
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Figure 17. A situation where the number of exit paths increases midsample. A single exit path, with
one oscillation (solid red), exists at the outset of the sample with zL = 330, but the sample trajectory (green)
propagates into a region of (T0,\Omega 0, zL) phase space where a nonoscillatory path is most likely (solid blue). The
point at which the two paths are equally likely (dashed curves) is also depicted in between these two points. This
situation can be anticipated by considering numerically computed solutions of the exit problem.

and their statistics, which are difficult to compute with traditional MC methods. While the
method does depend on the mathematical structure of the equations and being able to use
soliton perturbation theory to derive appropriate approximate biasing schemes, many laser
systems do in fact use soliton or near-soliton pulses.

We have also shown that dynamic importance sampling is a useful addition to multi-
ple importance sampling techniques in situations where system dynamics make the tails of
probability distributions especially difficult to sample. In the laser model, we considered two
parameter regimes where dynamic importance sampling was used to target a saddle point in
order to determine the probability of a position slip. In the overdamped regime, computing
biasing paths was relatively simple and dynamic ISMC was straightforward to implement.
In the underdamped regime, computing biasing paths was considerably more difficult due to
the oscillatory character of the biasing paths. In order to sample the tails, we had to both
target the saddle and escape from an oscillatory well, leading to biasing paths with differing
numbers of oscillations coexisting at various propagation lengths. We implemented dynamic
ISMC both in regions where multiple paths have roughly equal probability and at relatively
long distances by using a homotopy method to recompute optimal paths. This approach is
computationally intensive, but it is a tractable resolution to the inherently difficult problem
of performing dynamic ISMC when multiple paths exist in phase space. We anticipate that
the methods used here to resolve these difficulties can be a guide to others when rare events
arising from multiple paths are possible.

The approach we have used here relies on solving a boundary value problem in order to
find optimal biasing paths for the ISMC simulations. This boundary value problem comesD
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from the minimization of an approximate action functional (from (3.8)) using calculus of
variations, guided by the projection of the deterministic and stochastic perturbations into the
NLS soliton modes. It may be possible, of course, that other more general methods, such
as the geometric minimum action method (GMAM), could be used to minimize the action
directly, without appeal to the specific structure of solitons [23, 31, 43]. Such methods have
been shown to be robust over a large class of problems (see [32]); their disadvantage is that
they are inherently much higher dimensional than lower-dimensional approximate methods
employing soliton perturbation theory and are therefore more computationally expensive.
This additional computational expense would be magnified significantly, of course, if one were
to attempt to use such methods in combination with dynamic ISMC or when multiple optimal
paths are present.
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