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Abstract. We describe an iterative method capable of determining large deviations responsible
for rare events of interest in lightwave systems with additive noise. The method makes use of the
singular value decomposition (SVD) to efficiently compute the most important directions in state
space, and a stochastic optimization scheme known as the cross-entropy (CE) method to determine
the most probable manner in which these large deviations arise. Information from the SVD and
CE steps of the method provides a basis for performing importance sampling with Monte Carlo
simulation, allowing one to determine the probabilities of the rare events associated with such large
deviations. We apply the combined method to investigate some of the mechanisms affecting large
amplitude fluctuations in optical systems.
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1. Introduction. In many systems perturbed by noise it is rare events that are
the behaviors of interest, e.g., the formation of a 35 meter rogue ocean wave or severe
volcanic hazards [1]. This is also true of many engineered systems; since they are
designed with “typical” behaviors in mind, system failures are often associated with
deviations that are far from the mean. Because of this, the probabilities of such events
can be difficult to predict.

In this paper we present a new method capable of determining large deviations
and simulating rare events. We demonstrate the method in the context of nonlinear
optical communication systems, but we believe it should be applicable to a wide class
of rare-event simulation problems. This technique employs the singular value decom-
position (SVD) [2, 3] to reduce the overall effective dimensionality of the system, the
cross-entropy (CE) method [4] to locate the most probable regions of state space asso-
ciated with large deviations, and importance-sampled [5, 6] Monte Carlo simulation
to simulate the events and obtain estimates of their associated probabilities. The
result is a method capable of studying rare events under general conditions.

To understand the need for this combination of methods, it is easiest to examine
them in reverse. Importance sampling (IS) works by biasing the distributions used
to select the random variables used in Monte Carlo simulations so that the events of
interest occur much more often than they would otherwise [5, 6]. The typical issue with
IS is in determining proper biasing distributions; this is particularly difficult when the
number of random variables is large. The technique we develop here determines the

∗Received by the editors March 19, 2010; accepted for publication (in revised form) March 8, 2011;
published electronically June 2, 2011. This work was supported by the National Science Foundation
(DMS-0709070).

http://www.siam.org/journals/siap/71-3/78937.html
†Department of Engineering Sciences and Applied Mathematics, Northwestern University. Cur-

rent address: Department of Mathematics, University of Auckland, Private Bag 92019, Auckland
Mail Centre, Auckland 1142, New Zealand (g.donovan@auckland.ac.nz).

‡Department of Engineering Sciences and Applied Mathematics, and Northwestern Institute
on Complex Systems, Northwestern University, 2145 Sheridan Rd., Evanston, IL 60208 (kath@
northwestern.edu).

903



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

904 GRAHAM M. DONOVAN AND WILLIAM L. KATH

biasing distributions using the CE method, a stochastic optimization algorithm [4, 7].
While the CE method is a powerful tool, it cannot easily handle the large number of
random variables found in the lightwave systems that we discuss here. For example,
in such systems the total number of random variables N ≈ NaNf , where Na is the
number of amplifiers in the system (40–100) and Nf is the number of computational
Fourier modes used (≈ 512, 1024, or more). The resulting number of random variables,
easily in the hundreds of thousands, is simply too large to obtain reasonable results
with currently available computing power and the CE method alone.

To simplify the problem we apply the SVD to reduce the effective dimensionality
to a much smaller number consisting of only the most important “modes” of the sys-
tem [8], an approach inspired by approaches to similar problems based upon soliton
perturbation theory (SPT) [9, 10, 11, 12, 13, 14]. In previous approaches, the funda-
mental idea was that the conserved quantities in the system, which are connected to
the invariances of the governing equation by Noether’s theorem [15], provide informa-
tion about the special directions in state space that are most appropriate for biasing
the system; the soliton structure allows analytic calculation of these modes. This is
not true in general situations, of course, but these modes can still be found numeri-
cally by applying the SVD. The important point is that once the number of important
directions in state space has been reduced, the CE method is capable of providing
optimal biasing distributions for importance-sampled Monte Carlo simulations at a
reasonable computational cost.

In this manuscript we focus on the application of this “SVD/CE/IS” method to
optical communication systems, rather than a general formulation, but the restrictions
on applicability are in fact rather modest, and it should be possible to apply our
method to a wide array of problems. The simple constraints are that the system under
consideration must feature a linearizable evolution operator, a discrete stochastic
component, and rare events arising from the sum of small perturbations. These
constraints are discussed in more detail in section 10.

This paper is organized as follows. In section 2 we formulate the optical transmis-
sion system problem that we wish to consider. We then present the necessary material
on essential elements of this iterative, stochastic method used to simulate large devi-
ations and rare events in this system: IS (section 3), the CE method (section 4), and
the SVD (section 5). We then consider in section 6 the linearizations of the optical
transmission problem required by the SVD, followed by a discussion of the use of the
biasing modes, and an overall summary of the method, in section 7. We then present
results of the application of this SVD/CE/IS method to two optical systems prob-
lems in section 9, and conclude with discussion of the method and potential further
applications (sections 10 and 11).

2. The optical transmission system model. For definiteness, we will con-
sider the propagation of a pulse in a nonlinear optical fiber transmission line with
dispersion management [16, 17]. Pulse propagation in this situation is governed by
the nonlinear Schrödinger (NLS) equation,

(2.1)
∂U

∂z
=

i

2
d(z)

∂2U

∂t2
+ iγ |U |2U +

Na∑
k=1

Nk(t)δ(z − kza),

where U is the complex-valued envelope of the optical field, z is the propagation
distance, t is retarded time, and fiber loss and periodic amplifier gain have been
averaged out [16, 17]. Dispersion management in this case means that the dispersion
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coefficient d(z) is a periodic function with period equal to the dispersion map length za;
i.e., it is given by the periodic extension of

(2.2) d(z) = Davg +

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

4sDavg,

∣∣∣∣ zza − 1

2

∣∣∣∣ < 1

4
,

−4sDavg,

∣∣∣∣ zza − 1

2

∣∣∣∣ ≥ 1

4
,

z

za
∈ [0, 1].

Here Davg is the average dispersion, and the parameter s is a measure of the strength
of the dispersion map. In addition, in (2.1), γ is the nonlinear coefficient, and Nk(t)
is a term representing noise that is added by the amplifiers. Because the noise grows
due to gain from subsequent amplifiers, it is known as amplified spontaneous emission
(ASE) noise [16]. Here, it will be modeled as additive Gaussian white noise added at
the equally spaced amplifiers, with a period equal to that of the dispersion map. The
noise itself is then zero-mean and delta-correlated,

〈Nk(t)〉 = 0,(2.3)

〈Nk(t)N
∗
k (t

′)〉 = σ2(Ga)δ(t− t′),(2.4)

although this is technically incorrect since perfectly delta-correlated noise has an in-
finite bandwidth, which is physically impossible. Typically, however, the noise band-
width is much larger than that of the pulse, and delta-correlated noise is often used
as a shorthand in this situation. In the above, σ2(Ga) is a gain-dependent variance;
σ2(Ga) = ω0nsp(Ga − 1)2/(Ga log

2 Ga), where Ga is the amplifier gain; � is Planck’s
constant; ω0 is the center carrier frequency; and nsp is the spontaneous emission
factor.

In an optical transmission line, one specifies the input to the system, which is
done by giving the pulse profile U(0, t), and one is interested in the output signal
U(zL, t), where zL is the final position of the transmission line. As it can be difficult
to measure optical fields directly, the optical signal is often converted into an electrical
signal with an optical detector. The physics of such devices can be involved, but one
relatively simple detector model is an integrate-and-dump detector [18], for which the
output voltage is given by

(2.5) V =

∫ T/2

−T/2

|UF (zL, t)|2dt.

Here UF (zL, t) is the pulse envelope after optical filtering using a given transfer func-
tion F (ω) in the Fourier domain. Essentially, an integrate-and-dump detector accu-
mulates all of the output light energy within a given bit slot (of width T , here centered
at t = 0). It is also common to filter the signal in the electrical domain; (2.5) repre-
sents only a very simple electrical filter, and we will not consider more sophisticated
electrical filters in the present work.

3. Importance sampling. We begin by discussing the mathematical structure
surrounding the calculation of a single specific rare event in a system perturbed by
noise. While our final interest is in determining the full probability density function
(PDF) resulting from a full set of rare events, it is convenient to first discuss single
events before describing how to combine their individual contributions.

Monte Carlo methods estimate an expected value using random sampling. Con-
sider the problem of estimating E[φ] =

∫
φ(�x)f(�x)d�x, where φ(�x) is a known function
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and f(�x) is a PDF. A traditional Monte Carlo estimator would be

(3.1) ÊN =
1

N

N∑
i=1

φ(�xi),

where the N random samples �xi have been drawn from the distribution f . We are
interested in rare events—that is, situations where E[φ] is small. In such cases, this
estimator may require N > 1/E[φ] samples to provide a good estimate [5, 6], so for
rare events the rate of convergence of standard Monte Carlo sampling may be slow.

IS is a variance reduction technique that can provide a dramatic performance
increase over traditional Monte Carlo simulations [5, 6]. The idea is to concentrate
the random samples in the portion of sample space where these rare events occur. We
introduce a biasing distribution f∗(�x), so that our estimator becomes

(3.2) Ê
∗
N =

1

N

N∑
i=1

φ(�xi)
f(�xi)

f∗(�xi)
=

1

N

N∑
i=1

φ(�xi)w(�xi),

where

(3.3) w(�x) =
f(�x)

f∗(�x)

is known as the likelihood ratio [5, 6, 19], and now we are sampling to determine the
expected value of φ(�x)w(�x) with samples drawn from f∗(�x). The likelihood ratio can
be viewed as a correction factor, appropriately weighting a sample trial as if it had
been drawn from the original distribution, despite having been drawn from a biased
distribution.

If the biasing distribution is chosen properly, so that the majority of samples fall
in regions where φ(�x) is concentrated, a significant reduction in the number of samples
required to obtain a good estimate can be realized. The difficulty with IS, however,
is in choosing the biasing distribution correctly. An ideal biasing distribution does
exist, and it provides an exact estimate with just a single Monte-Carlo sample [5],
but to determine this distribution one must know the desired quantity a priori. At
the same time, a poor biasing distribution can slow convergence.

It is also useful to consider a real-valued performance function P (�x) which depends
on a random vector �x drawn from the PDF f(�x). Suppose we are interested in the rare
event where the performance function is greater than some threshold value: P (�x) ≥ P̂ .
Replacing φ(�x) in (3.1) with an indicator function I{}, which is defined to be 1 if the
argument is true and 0 otherwise, the Monte Carlo estimator for the probability of
this rare event becomes

(3.4) ÎN =
1

N

N∑
i=1

I{P (�xi)≥P̂},

where, as before, the �xi are drawn from the PDF f(�x). The importance-sampled
estimator (3.2) is then

(3.5) Î∗N =
1

N

N∑
i=1

I{P (�xi)≥P̂}
f(�xi)

f∗(�xi)

with the �xi drawn from f∗. This is the formulation we will use in the following section.
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4. The cross-entropy method. The CE method [7] is a stochastic optimiza-
tion algorithm which we will use to solve the biasing problem in a reduced-dimensional
space. We will present only a simplified version of the CE algorithm necessary for
understanding the method developed here; full details may be found in the litera-
ture [7, 20, 21].

The CE method constructs an approximation to the ideal biasing distribution
by considering a parametric family of such distributions and determining the spe-
cific distribution within this family that minimizes the Kullback–Leibler (KL) dis-
tance [4, 21, 22] between it and the optimal distribution, f∗

opt. A stochastic optimiza-
tion program is posed to find the optimal parameter; although the ideal biasing is
not known in closed form, for several classes of probability distributions (including
Gaussians) it is possible to estimate the minimum [4]. In this work, f will be a Gauss-
ian distribution, and the biasing distributions are assumed to belong to a family of
mean-shifted Gaussian distributions with the same variance as f ; this is one of the
cases for which it is possible to estimate the minimum.

In particular, for two functions g(�x) and h(�x) the KL distance is defined as [22]

(4.1) D(g, h) = Eg

[
ln

g(�x)

h(�x)

]
=

∫
ln(g(�x)) g(�x)d�x −

∫
ln(h(�x)) g(�x)d�x.

This is also known as the cross-entropy between two probability distributions. (The
KL distance is not a true metric, however; for example, it is not symmetric.) If we
take g(�x) = f∗

opt(�x) and h(�x) = f∗(�x), the first integral on the right-hand-side of (4.1)
is fixed, and minimizing the cross-entropy between f∗

opt(�x) and f∗(�x) is equivalent to
maximizing

∫
ln(f∗(�x))f∗

opt(�x) d�x. Noting that the optimal biasing distribution is [5]

f∗
opt(�x) ∝ I{P (�x)>P̂}f(�x),

this problem is equivalent to maximizing E[ I{P (�x)>P̂} ln(f
∗(�x)) ].

Suppose that, as we will do here, the potential biasing distributions for �x are
selected from a parameterized family {f∗(�x;�v)}, where �v is a vector of parameters,
and let the unbiased distribution be denoted by f∗(�x;�v0) = f(�x). In this case one
must look for the member of this family that is closest to the optimal distribution.
Based on the above discussion, one must then maximize the integral

(4.2) D(�v) =
∫
I{P (�x)>P̂} ln(f

∗(�x;�v))f(�x) d�x.

This usually must done numerically, i.e., by using Monte Carlo sampling. Because the
optimal biasing distribution is typically far from the unbiased distribution, however,
the member of the family that is closest to optimal is also likely to be far from f(�x).
Thus, determining the best choice for �v also becomes a rare event simulation. The
problem, of course, is that the region of interest in sample space where rare events
occur is generally far from the region in sample space where the unbiased distribution
f(�x) is large.

The solution to this problem is to avoid attempting to jump directly to the region
where rare events occur, but rather to determine a sequence of intermediate regions
that reach the desired region in a series of steps, e.g., regions where the performance
function P (�x) is greater than intermediate values P̂j . In addition, one employs an

importance-sampled version of (4.2). Let Dj(�v) be the integral in (4.2) with P̂ re-

placed by P̂j . Starting with the unbiased distribution, one uses Monte Carlo sampling
to minimize the CE distance between the parameterized distribution and the optimal
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distribution that reaches P̂1. This step, which is done by finding the maximum of
D1(�v) over this first set of samples, will give a parameter vector �v1. One then uses
this value to define a biasing distribution, and performs an IS-Monte Carlo simulation
with this distribution to minimize the CE distance between the parameterized distri-
bution and the optimal distribution that reaches a second level P̂2 > P̂1. Of course,
since a biasing distribution is being used, each step of the procedure is an importance-
sampled Monte Carlo (ISMC) simulation of a stochastic optimization program. That
is, at step j, one must compute

(4.3) �vj+1 = argmax
�v

D̂j(�v),

where

(4.4) D̂j(�v) =
1

M

M∑
m=1

I{P̂ (�x)>P̂j} L(�x
(m)) ln(f∗(�x(m);�v)),

�x(1), . . . , �x(M) are i.i.d. samples generated according to f∗(�x;�vj), and L(�x(m)) is the
likelihood ratio f(�x)/f∗(�x;�vj). The optimal biasing distribution then can be adap-
tively determined by performing the following steps [20].

Algorithm 1.
1. Set j = 0 and the initial parameter vector �v0.
2. Generate ISMC samples according to f∗(�x;�vj) (j = 0 is unbiased).
3. Solve (4.3) to find �vj+1.

4. If the iteration has converged (e.g., the final value of P̂ has been reached;
see [20] and below), stop; otherwise increase j to j + 1 and reiterate from
step 2.

Once the iteration has converged, one can then perform ISMC simulations using the
biasing distribution f∗(�x;�vfinal).

The regions determined by the values P̂j can also be defined in terms of sample
quantiles of some quantity of interest [20]. For example, if the goal is to produce
large values of voltage V , at each iteration we can define the region as those parts
of sample space that produce the largest fraction, e.g., 1%, of all of the randomly
generated voltage samples. In this way the iteration systematically moves to larger
and larger values of voltage. The iteration is then considered to have converged when
the sample quantiles cross some predefined voltage threshold, or, alternatively, when
the probability associated with the voltage value is sufficiently small.

A major issue associated with the above algorithm is obviously how to accomplish
step 3. Solving (4.3) can be complicated in general. However, if the function D(�v) is
convex and differentiable, the solutions of (4.3) can be obtained by solving a system
of equations [20]:

(4.5)
1

M

M∑
m=1

I{P (�x)>P̂j}L(�x
(m);�v0, �v)∇�v ln f

∗(�x(m);�v) = 0.

For many standard distribution families this can be solved analytically. This is the
case here, since Gaussian random variables are being used.

An alternative way of updating the biasing distributions is with sample moments
[21]. Regardless of which updating method is used, the process is repeated until the
target threshold is exceeded with the current biasing distribution. This distribution
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then solves the stochastic optimization problem to minimize the KL distance, and
thus becomes the biasing distribution used in the importance sampled estimator (3.5)
for the rare event of interest, P (�x) ≥ P̂ .

The above demonstrates how to simulate one particular rare event using ISMC
and the CE method. We are interested in simulating full PDFs, however, which often
requires taking into account several biasing distributions, since the overall distribution
may depend upon the contributions from several regions of sample space. We refer to
each of these specific regions as biasing targets, and for each individual biasing target
a corresponding optimal biasing distribution is found, as above. Each optimal biasing
distribution can then be used in ISMC simulations, and the results are combined
into a single resultant PDF by the use of the balance heuristic [6, 23]. The balance
heuristic stipulates that each sample should be combined in the overall statistics with
a multiplicative weighting factor,

(4.6) wj(�x
(m)
j ) =

f∗
j (�x

(m)
j )∑K

k=1 f
∗
k (�x

(m)
j )

,

whereK optimal biasing distributions f∗
k are used (and the sample �x

(m)
j is drawn from

the jth distribution f∗
j ). Note that samples are weighted according to the relative

probability that they are generated from that particular distribution. In the above it
is assumed that an equal number of samples are drawn for each biasing target, as is
the case in what follows. In this way, the results of simulations using multiple biasing
distributions are combined into a single output PDF.

5. The singular value decomposition. As mentioned earlier, the goal is to
reduce the effective dimensionality of the problem by finding the most important
“modes” or directions in state space and by biasing only in these particular directions.
In previous work, it has been shown that this can be done by (1) finding the most
probable noise-induced change at each amplifier leading to a given deviation in a
measured quantity at the output and (2) finding the most probable combination of
these changes across all amplifiers [9, 10, 11, 12, 13, 14]. A key observation is that
although the overall deviation at the output can be large, the change induced at each
amplifier remains small—it is only when the many small changes combine together in
concert that the overall deviation becomes large.

Because the change at each amplifier remains small, the deviation at the output
resulting from that change can be determined by linearizing the equation about the
unperturbed solution. Once the equation has been linearized, the SVD can be used
to efficiently determine the most important modes in the system [8, 24], i.e., those
changes that lead to large deviations at the output.

5.1. Numerical implementation of the SVD. Suppose M is an m×n matrix
representing the discretized version of the linear operator mapping the change at an
amplifier to the change in the output. Then the SVD is a factorization of the form
M = PΣQ∗, where

• Q is n× n and contains the orthonormal input basis vectors,
• P is m×m and contains the orthonormal output basis vectors, and
• Σ is an m× n matrix with the singular values along the diagonal.

We will also use the facts that the squares of the nonzero singular values ofM are equal
to the nonzero eigenvalues of M∗M and that the columns of Q are the eigenvectors
of M∗M [3]. Rather than finding all of the elements of the matrix M , we interpret
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it as a linear operator and employ an iterative eigendecomposition algorithm to the
action M∗M . As a result, it will not be necessary to form the matrix M at all. For
this, we use the implicitly restarted Arnoldi method as implemented in the package
ARPACK [25].

We are then interested in the largest singular values and their corresponding input
basis vectors. For the largest singular values, we refer to these input basis vectors as
the SVD-determined modes of the linear operator.

6. Linearized NLS equation. The first part of the operator M arises from the
discretized version of the linearized NLS equation. If in (2.1) we let U = u0 + εΔu
and keep only terms of O(ε), we obtain

(6.1)
∂Δu

∂z
=

i

2
d(z)

∂2Δu

∂t2
+ iγ(2Δu|u0|2 +Δu∗u2

0),

where the nominal solution u0 is the noiseless propagation of the initial pulse gov-
erned by the NLS equation. We can split this linearized complex equation into real
and imaginary parts and deal with a vector system, so that determining the adjoint
becomes straightforward. We define Δu = u1 + iu2 and u2

0 = ξ + iυ to obtain the
vector evolution equation
(6.2)

∂

∂z

[
u1

u2

]
=

⎡
⎢⎣ −γυ −1

2
d(z)

∂2

∂t2
− 2γ|u0|2 + γξ

1

2
d(z)

∂2

∂t2
+ 2γ|u0|2 + γξ γυ

⎤
⎥⎦
[

u1

u2

]
.

We will also define the propagation operator L as the linear operator that maps a
change �u = [u1 u2]

T from z = zc to z = zL via (6.2), where zc is the current amplifier
location.

An alternate representation of the operator L arises by rewriting (6.2) in more
general form as

d�u

dz
= A(z, t)�u.

The solution to this linearized problem can be written in terms of the matrix Green’s
function [26] as G(z, t; z0, t0),

(6.3) �u(z, t) =

∫
G(z, t; z0, t0)�u(z0, t0)dt0,

where

(6.4)
d

dz
G(z, t; z0, t0) = A(z, t)G(z, t; z0, t0)

with G(z0, t; z0, t0) = Iδ(t− t0) and where I is the identity matrix.
To obtain the adjoint operator L†, we consider the adjoint Green’s function.

Because the differential operators in the matrix in (6.2) are self-adjoint, computing
the adjoint evolution operator is relatively simple:
(6.5)

− ∂

∂z

[
u1

u2

]
=

⎡
⎢⎣ −γυ

1

2
d(z)

∂2

∂t2
+ 2γ|u0|2 + γξ

−1

2
d(z)

∂2

∂t2
− 2γ|u0|2 + γξ γυ

⎤
⎥⎦
[

u1

u2

]
.
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Then the adjoint propagation operator L† is found by solving (6.5) in the reverse
direction, from z = zL to z = zc.

Numerically, these linearized propagators are solved using an integrating factor
fourth-order Runge–Kutta method [2], while the solution to the full nonlinear problem
is obtained via the split-step Fourier method [27]. Note that it is desirable to have
the linear solver z-step size be an integer multiple of the nonlinear solver step size,
because at each solution point for the linear solver, the nonlinear solution must be
available (ideally, precalculated and stored).

As discussed in section 2, we are interested in determining large deviations in the
output voltage detected at the end of the transmission line. As such, we must also
linearize the detector in addition to the propagation equation: we need the lineariza-
tion of the full nonlinear mapping from a change at an amplifier to the output voltage
V . Details of this calculation can be found in the appendix.

7. Biasing with the SVD modes. As mentioned in section 2, when loss is
compensated by periodic amplification, the signal gain is accompanied by amplified
spontaneous emission noise [16], which is modeled as Gaussian white noise added at
each amplifier. Let us suppose for simplicity that the amplifiers are equally spaced
throughout the system and that the distance between amplifiers is za. That is, if
there are Na amplifiers, the system begins at z = z0 and ends at z = z0 +Naza, with
the signal amplified at the intermediate points z = z0 + jza for j = 1, . . . , Na. If we
are using Nf Fourier modes in our computational scheme, then the simulated system
employs N = NaNf random variables for the noise components; i.e., at each amplifier
we have

(7.1) U(z0 + jz+a , t) = U(z0 + jz−a , t) + F−1

⎡
⎣ Nf/2∑
ω=−Nf/2

r̃ω,je
iωt

⎤
⎦ ,

where the r̃ω,j are the random noise components. Note that these noise components
are complex; i.e., both the real and imaginary parts are zero-mean Gaussian random
variables. The Fourier domain is usually the most natural one in which to consider
adding the random noise, but this is true only in the unbiased case; hence, in what
follows, we will revert to the time domain in order to develop the biasing by the SVD
modes. The equivalence of the two approaches will be discussed at the end of the
section.

As described in section 5, the SVD is applied to the lightwave system to reduce the
noise dimensionality. At each amplifier, the SVD determines the input singular modes
which produce the largest changes in the output; this results in the most probable
way to produce the desired change from that amplifier forward. Suppose that we use
nm 	 Nf SVD modes at each amplifier; call these modes ui,j(t) for i = 1, . . . , nm

and j = 1, . . . , Na; i.e., ui,j(t) is the ith mode at the jth amplifier. The next step is
to determine the amount of each mode that should be added in order to provide the
proper biasing for the ISMC simulations.

This biasing problem is posed in the following way: suppose there is only a single
SVD mode and at each amplifier location, z = z0 + jza; we add to our solution
U(z0 + jza, t) a multiple of this SVD mode with the amount determined by a biasing
coefficient ηj , i.e.,

(7.2) U(z0 + jz+a , t) = U(z0 + jz−a , t) + ηjuj(t).

The goal is to determine the ηj by the CE method. We do this by solving the
constrained optimization problem, i.e., find the coefficients ηj to reach a target voltage
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V̂ in the most probable way. Because ηjuj(t) can be thought of as a possible realization
of a Gaussian white noise source, maximizing the probability of this specific event’s
actually occurring is then equivalent to minimizing

(7.3)
∑
j

∫
|ηjuj(t)|2dt =

∑
j

η2j

(here we have assumed that the norm of the SVD mode is unity), subject to the
constraint that

(7.4) V =

∫ T

−T

|UF (zL, t)|2dt ≥ V̂ .

The performance function for the CE method, P (�x), is then given for this system as
P = V = V (�η), where we explicitly write the dependence on the biasing parameters
�η = [η1, η2, . . . , ηN ], and these biasing parameters are equivalent to the general CE
method parameter vector �x. Selecting the target voltage V̂ (or set of target voltages)
is an important step in building a set of biasing distributions. In general, it may be
necessary to use several values of V̂ which cover the areas of system state space which
one is interested in simulating. If the desired simulation result isn’t an entire voltage
PDF, but merely the probability that a specific output voltage is exceeded, it may be
possible to use only one biasing target and set the value of V̂ to correspond to this
specific condition.

Because we have connected the biasing coefficients of the SVD modes with the
probability of these modes occurring, when determining the biasing distributions the
system is noiseless aside from the biasing coefficients; these coefficients are, of course,
randomly assigned by the CE method. The performance function therefore depends
only upon �η, reflecting the significant and necessary reduction in dimensionality. As
far as the CE method is concerned, however, this is a black box procedure—the
N randomly drawn biasing coefficients determine the output, and the goal is to find
the most probable combination of coefficients that produces a desired output voltage.

In the general case where more than one SVD mode is required at each amplifier,
one has instead

(7.5) U(z0 + jz+a , t) = U(z0 + jz−a , t) +
nm∑
i=1

ηi,jui,j(t).

Here the CE method need control only nmNa random variables, a dramatic decrease
from the total possible number, NfNa. This reduction makes the problem compu-
tationally feasible, and we are able to generate the appropriate biasing distributions
using this formulation. The number of SVD modes required is problem-dependent.
Soliton perturbation theory, from which this method evolved, suggests that a maxi-
mum of four modes might be required for each pulse when simulating optical systems;
physical arguments for specific systems (phase invariance, for example) might reduce
this further, although this is not strictly necessary. Alternatively, an ad hoc decision
can be made based on the relative magnitude of the computed singular values. Note
that computing extra SVD modes involves only modest additional computational cost
in the SVD itself, but this also increases the number of random variables under CE
method control and thus the number of samples required in the biasing process.

Once the biasing coefficients have been determined and the goal is to perform
ISMC simulations, the noise addition is modified. While the reduced problem is
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appropriate for generating the biasing distributions, the full simulations require full
noise in each Fourier mode for complete accuracy. The simulation is biased toward
the rare events of interest by using using the SVD modes, multiplied by the now-fixed
biasing coefficients, to shift the means of the added Gaussian noise. The addition of
biased full-bandwidth noise thus appears as a combination of two terms, i.e.,

(7.6) U(z0 + jz+a , t) = U(z0 + jz−a , t) +
nm∑
i=1

ηi,jui,j(t) + F−1

⎡
⎣ Nf/2∑
ω=−Nf/2

r̃ω,je
iωt

⎤
⎦ .

Here the ηi,j are the biasing coefficients as determined via the CE method; these no
longer change. The r̃ω,j are Gaussian white noise coefficients, drawn from distribu-
tions with 0 mean. The noise terms of (7.6) can also be rewritten as

(7.7)

nm∑
i=1

ηi,jui,j(t) + F−1

⎡
⎣ Nf/2∑
ω=−Nf/2

r̃ω,je
iωt

⎤
⎦ = F−1

⎡
⎣ Nf/2∑
ω=−Nf/2

R̃ω,je
iωt

⎤
⎦ ,

where R̃ω,j are Gaussian white noise terms in the Fourier domain, mean-shifted by
the Fourier transform of the SVD modes multiplied by the biasing coefficients. Mean-
shifted normal distributions allow for a particularly simple likelihood ratio calculation,
though in principle much more general distributions could easily be used [28]. All that
remains, then, is to collect the desired statistics at the end of the transmission line
and apply the correction for the biasing via the likelihood ratio.

8. Summary overview of the methodology. A schematic of the overall
method is presented in Figure 8.1. Here the dashed lines represent connections or
processes which are executed multiple times to collect statistics, due to their stochas-
tic nature. The solid lines represent connections or processes which are performed
only once, based upon the aggregation of the stochastic trials.

The method is divided into two parts: a biasing stage and a simulation stage,
which occur separately. The output of the biasing stage is required to start the
simulation stage. In the biasing stage, given a performance threshold and a small
number of modes determined by the SVD, the CE method solves an optimization
problem to determine the most probable combinations of these modes, in terms of the
biasing coefficients, that can achieve this performance threshold. The CE method is
stochastic and iterative, and many realizations of this reduced-dimensionality system
are required to obtain the optimal coefficient values.

When the CE method converges, the optimal mode biasing coefficients are inter-
preted as mean shifts of the original, full-dimensionality noise PDFs. These mean-
shifted distributions thus provide the biasing distributions required for ISMC simula-
tions of the full system. Here, because the mean shifts are specified in terms of the
SVD-determined modes, during the simulation it is necessary to reapply the SVD to
determine these mode shapes. Because the simulated statistics are corrected using the
likelihood ratios, one obtains realistic probability estimates of the simulated system
with much-reduced simulation variance. In particular, accurate tails of the probability
distributions associated with quantities of interest can be determined.

As can be seen from Figure 8.1, the components of the method depend little upon
the details of the system under consideration. Furthermore, the requirements imposed
by the SVD/CE/IS scheme are quite modest; these will be discussed in detail in the
context of the specific application.
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Fig. 8.1. Schematic of the overall method: Dashed lines represent stochastic elements repeated
many times. Solid lines represent elements executed only once. The SVD is employed to reduce the
noise dimensionality of the simulated problem to a tractable level for the CE method. The left portion
of the diagram represents the biasing stage of the method, and the right portion the simulation stage.

9. Results.

9.1. Application to a dispersion-managed system. As a demonstration and
validation of the SVD/CE/IS method, we will apply it both to a previously studied
problem in rare-event simulation and to a problem that has not been solved before.
For the first problem, we simulate a sample system with large amplitude pulse dis-
tortions in a dispersion-managed communication system [12]. This problem has been
studied using a semianalytic method to generate the biasing distributions needed for
ISMC simulations, and thus results are available for comparison purposes. Note, how-
ever, that these previous results were obtained using an averaged, nonlocal governing
equation, the dispersion-managed nonlinear Schrödinger equation (DMNLS) [12]. The
DMNLS is an averaged approximation to the NLS equation with variable coefficients.
We will apply the SVD/CE/IS method to the full NLS equation with variable coeffi-
cients, however, since this equation is more fundamental.

We consider a system with a total propagation distance zL = 4000 km, an average
dispersion Davg = 0.15 ps2/km, and a dispersion map period za = 100 km. The
nonlinear coefficient is γ = 1.7(W−km)−1, and the fiber power loss rate is 0.21 dB/km.
The noise spontaneous emission factor is nsp = 1.5, and the amplifier gain Ga is set to
exactly compensate the fiber loss. The initial condition used is a dispersion managed
soliton (DM soliton) with amplitude λ = 2 and full-width, half-max power pulsewidth
17 ps computed numerically [12], and the DM map strength is s = 4. Simulations are
performed in a 100 ps wide computational window using 128 Fourier modes, and a
50 ps wide detector window. In addition, just before the detector a 10 GHz Gaussian
optical filter is used (see the appendix). The CE method parameters are 20,000 trials
per iteration, with a maximum of 6 iterations, and the best-performing 10% of trials
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Fig. 9.1. Amplitude mode computed with filter and detection: The normalized amplitude mode
(solid curves) overlaid with the underlying pulse shape (dashed curves) when the mode is extracted
from a system with optical filtering and an integrate and dump detector. Both real (black) and
imaginary (gray) parts displayed.

are used to determine the subsequent biasing coefficients (see Algorithm 1, section 4).
The subsequent ISMC simulations used 100,000 trials.

Figure 9.1 shows the normalized amplitude mode from a sample trial in the filtered
system, along with the (unfiltered) pulse shape at the amplifier where the mode was
computed. For illustration purposes both the pulse and the mode have been phase-
shifted so that the phase at pulse center is zero; modes and pulses used in the actual
computations are not phase-shifted, of course. This perturbation produces the largest
change in V when it is propagated to the output. Note that this pulse and mode
are from a biasing trial, so full-bandwidth noise is not present but rather only the
noise projected in the direction of the SVD mode. In the “pure” soliton regime
(infinite domain, no detector), the adjoint amplitude mode is simply the pulse itself
(i.e., see [11]). While here the corresponding numerical mode clearly has a similar
character, the optimal direction does deviate significantly from the pure mode.

We use the SVD/CE/IS method to compute the amplitude PDF for this system,
as described previously [12]. First, using the CE method, we generate the biasing
coefficients for one SVD-determined mode, which we have referred to as the amplitude
mode. A total of seven biasing targets, corresponding to different specific rare-event
outcomes, are used: three biasing distributions which result in progressively larger
increases in output voltage; three biasing distributions which result in progressively
larger decreases in output voltage; and one unbiased target resulting in the nominal
output voltage. Simulations using the full set of optimal biasing distributions are
combined using the balance heuristic. The comparison with previous results is shown
in Figure 9.2, and the agreement is seen to be very good. The coefficient of variation
(the sample standard deviation divided by the mean) is shown in the lower panel to
allow the statistical convergence of the simulations to be assessed. These results show
clearly that, even though none of the specific mathematical structure of DM solitons
has been employed, the SVD/CE/IS method is capable of simulating rare events in
this system with a high degree of accuracy.
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Fig. 9.2. Simulated PDF for DM soliton system: Top, the full simulated PDF for the DM
soliton system (black, solid) compared with the same PDF generated previously [12] (gray, dashed).
Bottom, the coefficient of variation of the current simulations.
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Fig. 9.3. Comparison of pulse shapes: The two pulse shapes used in the different dispersion-
managed systems. The DM soliton shape is the solid curve, and the raised cosine shape is the dashed
curve.

9.2. Beyond analytically tractable problems. As a more practical problem
we now consider a 50% duty-cycle, raised cosine initial pulse shape

(9.1) U0 =
1 + cos(π sin (πt/100 ps))

2cDM
.

Here the total pulse power is matched to that of the DM soliton via the normalization
factor cDM, numerically determined from the DM soliton. Although we could select
any pulse shape, the selected pulse shape is of interest in practical systems (i.e.,
see [29]). The pulse shapes are compared in Figure 9.3. Note that by eye the difference
in pulse shape is not overly dramatic, and there is no difference in pulse power. In
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Fig. 9.4. Pulse shape and computed amplitude mode from sample trial: The pulse shape
at the final amplifier (dashed) from the sample trial in Figure 9.5, along with the SVD-computed
amplitude mode at that location (solid). Both real and imaginary parts displayed, in black and gray,
respectively.
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Fig. 9.5. Sample biasing trial for the raised-cosine pulse: Left panel: a sample Monte Carlo
trial from the biasing stage of the method for the raised-cosine initial pulse shape. For this trial, a
biasing target exhibiting an increase in pulse energy at the detector is chosen. Right panel: noiseless
propagation of the raised-cosine pulse with no biasing or perturbation, for comparison.

terms of system behavior, however, the change is more noticeable. Without the DM
soliton initial condition, the nominal solution is no longer stroboscopically stationary;
i.e., it no longer returns to the same pulse shape after each dispersion map period.

We apply the SVD/CE/IS method precisely as before—only the initial condition
is changed. In particular, the SVD amplitude mode is computed numerically at each
amplifier as before. As an example, Figure 9.4 shows the amplitude mode and the
underlying pulse shape at the last amplifier. As before, this mode is the perturbation
producing the largest change in output energy for this specific pulse, from this point
forward.

When these most probable perturbations are added to the pulse at each amplifier
in turn, a specific example exhibiting a large change in output energy is obtained.
A single sample trial from a biasing (reduced noise dimensionality) run is shown in
the left panel of Figure 9.5. This particular sample trial is biased toward an increase
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Fig. 9.6. Comparison of amplitude PDFs associated with the two pulse shapes: Full simulated
PDFs obtained from the SVD/CE/IS method applied to the dispersion-managed system with the
DM soliton shape (solid) and the raised-cosine pulse shape (dashed). The coefficient of variation
for each simulation is given in the lower panel.

in output detector energy. The noiseless, unbiased propagation of the raised-cosine
pulse shape is given for comparison in the right panel of Figure 9.5.

As before, we generate the biasing distributions and then use them to simulate
the full output energy PDF for this new initial pulse shape. With the SVD/CE/IS
method, adapting to the new, modified system is straightforward, something that is
impossible with previous methods based upon the soliton pulses.

The comparison between the simulated PDF for the raised-cosine pulse shape
and the previous DM soliton pulse shape is given in Figure 9.6. It is immediately
apparent that changing the initial pulse shape has significantly altered the overall
system performance. Recall that the input pulse energy has been matched. In this
case, one might argue that the two PDFs agree reasonably well in the low-voltage
portion, with similar slopes and only a normalization shift between the two curves.
As shown, however, the probability of a given output energy differs between the two
systems by as much as two orders of magnitude in some energy ranges. This result
could not have been inferred a priori. The ability to easily capture the differences in
system performance induced by such changes is one of the benefits of the SVD/CE/IS
method, in that proposed modifications in system design can be tested quickly and
with minimum effort.

9.3. Probing system dynamics. An additional benefit of the SVD/CE/IS
method is the ability to probe the underlying system dynamics. This provides a way
to improve system design by illuminating the rare-event mechanisms at work. To
demonstrate this, we observe that in Figure 9.6 the raised-cosine and DM soliton
systems have a particularly large difference in probability at a 30% increase in output
energy, and we seek to investigate this difference.

To do this, we examine the optimal biasing distributions for reaching this output
energy in each system, and graph three quantities for each system as a function of
distance: the normalized energy (computed as if the detector were at this distance),
the local biasing strength, and the total biasing strength. These are shown for both
systems in Figure 9.7. In the top panel, the normalized output energy is given as
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Fig. 9.7. Probing system dynamics: Top panel: normalized output energy as a function of
propagation distance, observed stroboscopically: raised-cosine pulse (grey squares), DM soliton (black
circles). Middle panel: local biasing coefficients (ηn). Lower panel: the total biasing strength up to
a given location.

a function of propagation distance, observed stroboscopically (once per dispersion
map period). The oscillatory route taken by the raised-cosine pulse (grey squares)
contrasts with that taken by the DM soliton (black circles), which in the unbiased case
is stroboscopically stationary. The middle panel gives the local biasing coefficients (ηn)
which optimally target this energy increase. The lower panel gives the total biasing
strength up to a given location as the partial sum

∑k
n=1 η

2
n, where z = nza. At the end

of the transmission line, the total amount of biasing required in the raised-cosine case
is much greater, reflecting the decreased probability of reaching this state, relative to
the DM soliton system.

We observe that the oscillations in the dynamics of the raised-cosine pulse signifi-
cantly affect its optimal biasing. After being launched, this pulse appears to naturally
broaden (and thus the amount of energy in the detection window decreases). The op-
timal biasing determines that, to increase the amplitude of the pulse significantly, this
initial pulse broadening and accompanying amplitude decrease (at z ∼ 1000 km or
so) must be strongly counteracted. After this point, the amount of biasing returns to
roughly the same as that for the DM soliton. The DM soliton pulse has no such oscil-
lations, and the local biasing is approximately constant with propagation distance, in
agreement with previous results [30]. In general, of course, the precise dynamics are
complex, which is exactly why the SVD/CE/IS method is necessary: if the dynamics
were immediately obvious, the optimal IS biasing distributions could be determined
a priori. Because the SVD/CE/IS method is divided into biasing and simulation
stages, however, the optimal biasing coefficients appear explicitly. These coefficients
provide information about the manner in which large deviations arise. This ability to
probe the underlying dynamics is an additional benefit of the SVD/CE/IS method.

10. Beyond lightwave systems. Up to this point we have formulated and
demonstrated the SVD/CE/IS method in the context of lightwave communication
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systems, the area of interest that originally inspired this work. The details of the
method are not strongly restricted by the context of this particular application, how-
ever, and thus should be useful to a much wider range of problems. For example,
it certainly should be possible to apply the method with little modification to the
complex Ginzburg–Landau equation that governs ultrashort optical pulses in a mode-
locked laser. We also expect that this can be applied to any nonlinear evolution
operator that can be linearized, e.g., another type of partial differential equation or a
system of ordinary differential equations.

With the current formulation, the main restriction is that the stochastic compo-
nent be added discretely, rather than continuously, as the solution evolves. Of course,
applications requiring continuous noise might be accommodated by a discrete noise
approximation, and so even this restriction might be relaxed. Thus, it is possible that
the method can be applied to a wide class of problems substantially beyond the scope
of the lightwave systems considered here.

11. Discussion. In this paper we have formulated the SVD/CE/IS method, a
new rare-event simulation method, and demonstrated results in the context of opti-
cal communication systems. We first demonstrated good agreement with rare-event
simulation results obtained previously by an alternate method, and then showed the
applicability of the method to a problem unable to be solved by such earlier methods.

This SVD/CE/IS method has evolved from the earlier, semianalytic methods used
in previous studies [9, 11, 12, 14, 31]. The previous methods are highly effective for
problems where they can be applied, i.e., in those cases where soliton pulse shapes
occur. While solitons have great mathematical appeal, such pulses are not often
employed in practice. The SVD/CE/IS method moves beyond soliton pulse shape
restrictions, so that rare events can be studied in much broader classes of problems.
We have demonstrated that the SVD/CE/IS method is extremely useful for this task.

In terms of computational effort, the method as presented here is still fairly inten-
sive, though not intractably so. Each complete set of simulations took approximately
three days to compute on an 8-core Xeon X5355 2.66GHz workstation. Iterative cal-
culation of the SVD, involving repeated solution of the linearized evolution equations,
was the primary computational bottleneck.

Another rare-event simulation technique is the multicanonical Monte Carlo
(MMC) method, which has been shown to be an effective method for the study of a
number of lightwave systems (i.e., see [32, 33, 34, 35]). MMC is an iterative procedure
which, like SVD/CE/IS, converges toward the optimal IS biasing distribution while
requiring little a priori knowledge of the system. The principal distinction is that
MMC makes no reduction of the dimensionality of the underlying problem and uses
the Metropolis algorithm to do the biasing computationally via a directed random
walk. Because of this, it is not straightforward to obtain the specific biasing informa-
tion underlying the simulations, and consequently it is more difficult to obtain insight
from the simulations about how rare events can arise. MMC also complicates er-
ror estimation due to strong bin-to-bin and sample-to-sample correlations, although
a bootstrap technique has been developed to obtain accurate error estimates [32].
SVD/CE/IS simulations do not have the same issues, because of the two-stage ap-
proach. For purposes of error analysis of collected statistics, the standard techniques
for IS can be used [28]. Recall that in stage 1, the optimal biasing distributions are
found, and in stage 2, they are employed in ISMC simulations. As such, if the biasing
distributions are in fact suboptimal, the standard methods for assessing the quality
of ISMC simulations apply.
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We also note that the SVD/CE/IS method could potentially be applied to prob-
lems that are quite different from those arising in optical communication systems—
the focus on lightwave systems here was merely because these problems motivated
its development. The formulation presented here is for a system with additive noise,
although it is possible that it could be extended to other types of noise. The use
of linearization and the SVD does introduce some limitations, in that each individ-
ual perturbation should be small enough for the linearization to be valid. For the
systems considered, the perturbations at each noise-addition location are small, and
large deviations result from the sum of many small perturbations, so that linearization
is appropriate. In a nonlinear system with fewer larger perturbations, however, this
may not be the case. In such a case it is possible that the CE method will simply fail
to converge to an optimal biasing distribution satisfying the rare-event conditions, in
which case the failure would be readily apparent. A more likely scenario, however,
is that the biasing solution produced by the CE method would be suboptimal. In
this case the problems typically associated with poorly chosen IS distributions would
apply: the Monte Carlo simulations would converge slowly and would exhibit ab-
normally large values of the coefficient of variation in regions of the PDF where the
biasing is suboptimal.

Another limitation arises from the computational cost of applying the SVD. The
dimensionality reduction provided must be sufficient to justify the cost of the SVD.
In the problems studied this reduction is large, e.g., two to three orders of magnitude,
and thus the cost of the SVD is well justified. This aspect must be considered when
gauging the applicability of the method to other problems. Although it is not a
major bottleneck in the problems considered here, computing the adjoint may be a
significant computational issue in other applications; checkpointing algorithms [36]
may help alleviate this difficulty. In systems of the type studied here, however, the
SVD/CE/IS method is clearly a highly effective rare-event simulation technique.

Appendix. Linearization of the detector. For an integrate-and-dump de-
tector at z = zL given by

(A.1) V =

∫ T/2

−T/2

|UF (zL, t)|2dt,

we can linearize by U = u0 + εΔu and obtain

(A.2) ΔV = 2Re

∫ ∞

−∞
W (t) [(F ∗ u0)(t)]

∗
[(F ∗Δu)(t)] dt,

where F (t) = F−1[F (ω)] and W (t) is a windowing function which has value 1 in
[−T/2, T/2] and 0 otherwise. Splitting into real and imaginary parts, i.e.,

F ∗ u0 = UF1 + iUF2,(A.3)

F ∗Δu = uF1 + iuF2,(A.4)

we have

(A.5) ΔV = 2

∫ ∞

−∞
W
[
UF1 UF2

] [ uF1

uF2

]
dt.

Because we wish to employ an iterative method for finding the SVD, however, we also
require the adjoint operator M∗ so that we can calculate the action M∗M . One way
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to obtain the adjoint is to first construct an appropriate inner product. Since we are
working with vectors with each component a function of time, we therefore double
this equation and think of each element as a constant function of time on the interval
(−T/2, T/2):

(A.6)

[
ΔV
ΔV

]
= 2

∫ ∞

−∞
W

[
UF1 UF2

UF1 UF2

] [
uF1

uF2

]
dt = K[u].

Then, using the inner product

(A.7) 〈�v, �u〉 =
∫ T/2

−T/2

�v
T

(t′)�u(t′)dt′,

we have

(A.8) 〈�v,K[�u]〉 =
∫ T/2

−T/2

�v
T

(t′)
{
2

∫ ∞

−∞
W (t)

[
UF1(t) UF2(t)
UF1(t) UF2(t)

] [
uF1(t)
uF2(t)

]
dt

}
dt′.

Defining

(A.9) X(t) = 2W (t)

[
UF1(t) UF2(t)
UF1(t) UF2(t)

]
= 2W (t)

[
1

1

] [
UF1(t) UF2(t)

]

and

(A.10) F(t) =

[
F1(t) −F2(t)
F2(t) F1(t)

]
,

where F = F1 + iF2, the matrix X represents the filtered, windowed, unperturbed
(nonlinear) solution, and F is the (complex-valued) filter in (real) matrix form. Then
we can calculate the adjoint by

〈�v,K[�u]〉 =
∫ T/2

−T/2

∫ ∞

−∞
�v

T

(t′)X(t)

(
F ∗
[

u1

u2

])
(t) dt dt′

=

∫ T/2

−T/2

∫ ∞

−∞
�v

T

(t′)X(t)

∫ ∞

−∞
F(t−τ)

[
u1(τ)
u2(τ)

]
dτ dt dt′

=

∫ ∞

−∞

{∫ T/2

−T/2

∫ ∞

−∞
F
T(t−τ)X(t) dt �v(t′) dt′

}T [
u1(τ)
u2(τ)

]
dτ

=

∫ ∞

−∞

{∫ T/2

−T/2

[
F
T(−t) ∗XT(t)

]
�v(t′) dt′

}T [
u1(τ)
u2(τ)

]
dτ.(A.11)

Thus we obtain

K†[�v] =
∫ T/2

−T/2

[
F
T(−t) ∗XT(t)

]
�v(t′) dt′

= F
T(−t) ∗

(
2W

[
UF1(t)
UF1(t)

])∫ T/2

−T/2

[ 1 1 ] �v(t′) dt′.(A.12)
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This can be simplified further by noting that the filter used in the simulations is real
and even; specifically, it is

(A.13) F (ω) = exp

(
− 2 ln (2)ω2

(2π5/TL)
2

)
,

where TL is the length of the computational domain, here expressed in picoseconds
[37]. In this case, F is even and symmetric, and then

(A.14) K†[�v] = 2F ∗
(
W

[
UF1(t)
UF2(t)

])∫ T/2

−T/2

[v1(t
′) + v2(t

′)]dt′.

The adjoint of the linearized detection operator thus has a particularly simple form: it
is a simple projection of its “input” (i.e., the “output” of the direct linearized problem)
that multiplies the windowed and filtered version of the vector [UF1(t) UF2(t) ]

T

(which is the full nonlinear filtered solution at the end of the transmission line).
Other detectors can be handled in very much the same way, although in general the
nature of the adjoint as a projection which then multiplies the nonlinear solution
does not hold. Of course, the full action M∗M is given by L†K†KL, where the linear
propagators L and L† remain unchanged. Note in particular that this means that the
full adjoint operator involves the propagation of the function obtained in (A.14) back
to the specific amplifier location using the adjoint linearized equation.
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