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A B S T R A C T

Crossbridge theory, originally developed by A.F. Huxley more than 60 years ago to explain the behaviour of striated muscle, has since evolved to encompass
many different muscle types and behaviours. The governing equations are generally linear hyperbolic partial differential equations, or systems thereof, describing
the evolution of probability density functions. Importantly, the macroscopic behaviour is often described not in terms of these distributions themselves, but rather
in terms of their first few moments. Motivated by this observation, G.I. Zahalak proposed the distribution-moment approximation to describe the evolution of
these moments alone. That work assumed a Gaussian underlying distribution, and was observed to provide reasonable approximation of the moments despite the
non-Gaussian character of the underlying distribution. Here we propose two variations on the distribution-moment approximation: (i) a generalized N-moment
approximation based on the Gram–Charlier A-series representation, and (ii) perhaps the simplest possible approximation based on a uniform distribution. Study of
these variations suggests that Zahalak’s original contention may be correct: approximations based on higher order moments may not be worth their complexity.
However, the simplified variation shows more promise, with similar accuracy in approximating the moments yet reduced complexity in the derivation of the
approximation.
1. Introduction

Mathematical formulation of sliding filament theory for muscle
contraction originated with the seminal work of A.F. Huxley [1] and
has since evolved to encompass many additional types and behaviours
of muscle. In its most basic form, this so-called crossbridge model
is a linear hyperbolic partial differential equation (PDE) describing
the bond distribution; although it admits analytic solutions in a few
(idealized) situations, often numerical solutions must be sought. This is
particularly true in multi-scale modelling in which muscle behaviour is
coupled with that of other structures (at tissue or organ scale, e.g. [2]).
Although some care must be taken to avoid artificial dispersion in the
numerical scheme, in general this can be done by using the method
of characteristics to reduce the governing PDE to a system of ordi-
nary differential equations (ODEs) along the characteristics. (Here the
characteristics essentially describe the changes in muscle length). When
doing so, the size of the system of ODEs, and hence the computational
cost, is determined by the spatial resolution of the bond distribution. In
practice, the system size is often in the hundreds or thousands. Other
numerical schemes are possible as well, for example finite-volume
methods [2].

One approach to reducing this computational cost while retain-
ing the underlying dynamics is the distribution moment (DM) ap-
proximation due to G.I. Zahalak [3]. The central notion is to exploit
the facts that (i) the solution is a distribution and (ii) that the mo-
ments of this distribution are the key quantities of interest. The DM

E-mail address: g.donovan@auckland.ac.nz.
1 Here a ‘‘distribution’’ is not required to have its zeroth moment (or area under the distribution) be 1; thus the third parameter describing a Gaussian, in

addition to the usual mean and standard deviation.

approximation thus derives equations for the evolution of the bond
distribution moments, directly from the original governing PDE, by
making an assumption about the form of the distribution. Zahalak’s
original approach assumes a Gaussian distribution and thus describes
the evolution of the first three moments1 using three ODEs. Despite the
fact that the underlying bond distribution is not close to Gaussian (‘‘a
rather crude model’’, in Zahalak’s phrase [3]), the resulting moment
dynamics generate sufficiently accurate approximations to be useful in
many situations [4–8].

Although this approach is sometimes referred to as the distribution-
moment approximation, it should perhaps instead be thought of as
a distribution-moment approximation. As Zahalak noted, the same
method could be employed with different assumptions about the under-
lying distribution, potentially describing as many moments as desired.
The Gaussian form proposed is thought to offer a reasonable trade-
off in terms of accuracy and complexity of the approximation. In this
manuscript we propose and analyse two additional forms of DM approx-
imation: (i) a generalized N-moment form based on the Gram–Charlier
A-series expansion, and (ii) a simplified three moment approximation
based on the uniform distribution. In doing so we are able to offer
further insights about suitable assumptions for the bond distribution,
and the relevant trade-offs between complexity of the approximation
and its accuracy.
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Fig. 1. Example of bond distribution solutions to Huxley model during constant stretch.
Observe that the solution is neither dispersive, nor particularly close to Gaussian. (Note
that these conditions are identical to those of Fig. 2 in Ref. [3].)

2. Models

2.1. The Huxley crossbridge model

Here we provide a brief overview of the Huxley crossbridge model
[1] for context. Much has been written on this subject and its exten-
sions, and we make no attempt to be exhaustive on the subject; for
additional details the reader is referred to [1,3,9].

The bond distribution 𝑛(𝑥, 𝑡) describes the fraction of attached cross-
bridges at time 𝑡 and displacement 𝑥. Under the assumption of simple
first-order kinetics with attachment rate 𝑓 (𝑥) and detachment rate 𝑔(𝑥),
we have
𝜕𝑛
𝜕𝑡

− 𝑣(𝑡) 𝜕𝑛
𝜕𝑥

= 𝑓 (𝑥) − [𝑓 (𝑥) + 𝑔(𝑥)] 𝑛 (1)

where 𝑣(𝑡) is the muscle shortening velocity, 𝑓 (𝑥) is the binding (for-
ward) rate, and 𝑔(𝑥) is the unbinding (backward) rate. The binding
and unbinding rate functions 𝑓 and 𝑔 are typically piecewise linear.
In what follows, generalization to piecewise polynomial binding rate
functions is simple, and other adaptations will be discussed later. A
typical solution to the Huxley model during constant stretch (e.g. 𝑣(𝑡) =
onstant) is shown in Fig. 1, as solved by the method of characteristics
ith 500 points in the spatial resolution of the distribution (and hence
00 ODEs).

Importantly, the quantities of interest arising from this equation are
ot the bond distribution 𝑛 itself, but rather macroscopic properties
uch as the force, which is proportional to ∫ ∞

−∞ 𝑥𝑛(𝑥, 𝑡) 𝑑𝑥 and hence the
irst moment of 𝑛, and the stiffness, proportional to the zeroth moment.

.2. Distribution moment approximation of the Huxley model

Here we provide a brief synopsis of Zahalak’s DM approximation
ethod [3]. Defining the raw moments

𝜆(𝑡) = ∫

∞

−∞
𝑥𝜆𝑛(𝑥, 𝑡) 𝑑𝑥 (2)

or 𝜆 = 0, 1,… , we begin by multiplying Eq. (1) by 𝑥𝜆 and integrating
o obtain

∫

∞

−∞
𝑥𝜆 𝜕𝑛

𝜕𝑡
𝑑𝑥 − 𝑣(𝑡)∫

∞

−∞
𝑥𝜆 𝜕𝑛

𝜕𝑥
𝑑𝑥

= ∫

∞

−∞
𝑥𝜆𝑓 (𝑥) 𝑑𝑥 − ∫

∞

−∞
𝑥𝜆 [𝑓 (𝑥) + 𝑔(𝑥)] 𝑛(𝑥, 𝑡) 𝑑𝑥. (3)

Integrating the second term on the left-hand side by parts, and
defining the constants 𝑏𝜆 = ∫ ∞

−∞ 𝑥𝜆𝑓 (𝑥) 𝑑𝑥, we find

𝑀 ′
𝜆 + 𝑣(𝑡)𝜆𝑀𝜆−1 = 𝑏𝜆 − ∫

∞

−∞
𝑥𝜆 [𝑓 (𝑥) + 𝑔(𝑥)] 𝑛(𝑥, 𝑡) 𝑑𝑥. (4)

At this point no approximation has been made. In order to evaluate
the integral term on the right-hand side we make an assumption
 (

2

about the form of 𝑛(𝑥, 𝑡). In the following section we describe Zaha-
lak’s method based on a Gaussian assumption, before proceeding to
generalizations (and simplifications). However it is useful to note at
this point the general requirements: we seek to write this integral
in terms of the moments 𝑀𝜆. Under the assumption that 𝑓 and 𝑔
are piecewise polynomial, the integral can be expanded to terms of
the form ∫ 𝑐2

𝑐1
𝑥𝑚𝑛(𝑥, 𝑡) 𝑑𝑥 for 𝑚 ∈ Z≥0, and their limits as 𝑐1 → −∞

and/or 𝑐2 → ∞. Thus useful assumed forms of 𝑛 will allow for explicit
evaluation of these integrals in terms of the moments 𝑀𝜆.

2.2.1. Zahalak’s Guassian DM approximation
The original version of the DM approximation from [3] assumes a

Gaussian distribution for 𝑛(𝑥, 𝑡). Despite the fact that the bond distribu-
tions are often not close to Gaussian (see Fig. 1), this can result in a
surprisingly accurate approximation. Although full details are given in
Ref. [3], we provide a brief review here to the extent that it motivates
the generalized and simplified approaches presented in the following
sections.

In order to evaluate the integral on the RHS of Eq. (4) we expand
in terms of the form ∫ 𝑐2

𝑐1
𝑥𝑚𝑛(𝑥, 𝑡) 𝑑𝑥. Assuming a Gaussian form for 𝑛

yields

∫

𝑐2

𝑐1
𝑥𝑚𝑛(𝑥, 𝑡) 𝑑𝑥 = ∫

𝑐2

𝑐1
𝑥𝑚𝑒−(𝑥−𝑝)

2∕2𝑞2 𝑑𝑥 (5)

where the parameters 𝑝 and 𝑞 describe the Gaussian distribution.
Consider then a series of integrals of the form

𝐼𝑘(𝜂) =
1

√

2𝜋 ∫

𝜂

−∞
𝑥𝑘𝑒−𝑥

2∕2 𝑑𝑥. (6)

ntegrating by parts yields the recurrence relation

𝑘+1(𝜂) = 𝑘𝐼𝑘−1(𝜂) + 𝜂𝑘𝐼1 (7)

ith

0(𝜂) =
1

√

2𝜋 ∫

𝜂

−∞
𝑒−𝑥

2∕2 𝑑𝑥 = erf(𝜂) (8)

here erf(⋅) denotes the usual error function [10], and

1(𝜂) = −𝑒−𝜂
2∕2∕

√

2𝜋. (9)

This then allows expression of the partial moments of the standard
Gaussian. We rescale to account for the distribution parameters 𝑝 and
𝑞 as follows. Beginning with

𝐽𝑘(𝜉) =
1

√

2𝜋𝑞 ∫

𝜉

−∞
𝑥𝑘𝑒−(𝑥−𝑝)

2∕(2𝑞2) 𝑑𝑥 (10)

e apply the change of variables 𝜁 = (𝑥 − 𝑝)∕𝑞 and 𝜂 = (𝜉 − 𝑝)∕𝑞 to
rrive at

𝑘(𝜂) =
1

√

2𝜋𝑞 ∫

𝜂

−∞
(𝑝 + 𝑞𝜁 )𝑘𝑒−𝜁

2∕2 𝑑𝜁. (11)

y expanding the polynomial (𝑝+𝑞𝜁 )𝑘 and use of the recurrence relation
7) these can then be expressed in terms of 𝐼0 … 𝐼𝑘. The first few are
iven by

0(𝜂) =
1

√

2𝜋𝑞 ∫

𝜂

−∞
(𝑝 + 𝑞𝜁 )0𝑒−𝜁

2∕2 𝑑𝜁 = 𝐼0(𝜂)

1(𝜂) =
1

√

2𝜋𝑞 ∫

𝜂

−∞
(𝑝 + 𝑞𝜁 )1𝑒−𝜁

2∕2 𝑑𝜁 = 𝑝𝐼0 + 𝑞𝐼1

2(𝜂) =
1

√

2𝜋𝑞 ∫

𝜂

−∞
(𝑝 + 𝑞𝜁 )2𝑒−𝜁

2∕2 𝑑𝜁 = 𝑝2𝐼0 + 2𝑝𝑞𝐼1 + 𝑞2𝐼2

= 𝑝2𝐼0 + 2𝑝𝑞𝐼1 + 𝑞2(𝐼0 + 𝜂𝐼1) = (𝑝2 + 𝑞2)𝐼0 + (2𝑝𝑞 + 𝑞2𝜂)𝐼1

ubsequent terms can be expanded and simplified by recursion in the
ame way; ultimately all 𝐽𝑘(𝜂) are expressible in terms of 𝐼0 and 𝐼1
along with polynomial terms in 𝑝, 𝑞 and 𝜂).
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Now we can approximate the original integral of interest
∞

−∞
𝑥𝜆 [𝑓 (𝑥) + 𝑔(𝑥)] 𝑛(𝑥, 𝑡) 𝑑𝑥. (12)

or concreteness we will use the ‘‘standard’’ forms [1,3] of 𝑓 (𝑥) and
(𝑥)

(𝑥) =

⎧

⎪

⎨

⎪

⎩

0, 𝑥 < 0
𝑓1𝑥, 0 < 𝑥 < 1
0, 𝑥 > 1

(13)

nd

(𝑥) =

⎧

⎪

⎨

⎪

⎩

𝑔2, 𝑥 < 0
𝑔1𝑥, 0 < 𝑥 < 1
𝑔1𝑥 + 𝑔3(𝑥 − 1), 𝑥 > 1

(14)

ut it is simple to adapt to other piecewise polynomial formulations.
ften the spatial variable is scaled everywhere as 𝑥∕ℎ; here for conve-
ience we have set ℎ = 1. Throughout we use Zahalak’s ‘‘unmodified’’
arameter values 𝑓1 = 43.3 s−1, 𝑔1 = 10 s−1, 𝑔2 = 209 s−1 and
3 = 0 [3]. Now we have 𝑛(𝑥, 𝑡) = 𝑀0

√

2𝜋𝑞
𝑒−(𝑥−𝑝)2∕2𝑞2 with 𝑝 = 𝑀1∕𝑀0

and 𝑞 =
√

𝑀2∕𝑀0 − (𝑀1∕𝑀0)2 and Eq. (12) becomes

𝜙𝜆 ≡ ∫

∞

−∞
𝑥𝜆 [𝑓 (𝑥) + 𝑔(𝑥)]

𝑀0
√

2𝜋𝑞
𝑒−(𝑥−𝑝)

2∕2𝑞2 𝑑𝑥

= 𝑀0𝑔2 ∫

0

−∞
𝑥𝜆𝑒−(𝑥−𝑝)

2∕2𝑞2 𝑑𝑥 +𝑀0(𝑓1 + 𝑔1)∫

1

0
𝑥𝜆+1𝑒−(𝑥−𝑝)

2∕2𝑞2 𝑑𝑥

+ 𝑀0(𝑔1 + 𝑔3)∫

∞

1
𝑥𝜆+1𝑒−(𝑥−𝑝)

2∕2𝑞2 𝑑𝑥 −𝑀0𝑔3 ∫

∞

1
𝑥𝜆𝑒−(𝑥−𝑝)

2∕2𝑞2 𝑑𝑥.

These integrals can now be expressed in terms of 𝐽𝑘(𝜂) by taking
appropriate intervals and differences yielding

𝜙𝜆∕𝑀0 = 𝑔2𝐽𝜆(−𝑝∕𝑞) + (𝑓1 + 𝑔1)
(

𝐽𝜆+1

(

1 − 𝑝
𝑞

)

+ 𝐽𝜆+1(−𝑝∕𝑞)
)

+ (𝑔1 + 𝑔3)
(

𝛬𝜆+1 − 𝐽𝜆+1

(

1 − 𝑝
𝑞

))

− 𝑔3

(

𝛬𝜆+1 − 𝐽𝜆

(

1 − 𝑝
𝑞

))

here 𝛬𝑚 = lim𝜂→∞ 𝐽𝑚(𝜂). Note that lim𝜂→∞ 𝐼0(𝜂) = 1 and lim𝜂→∞
𝐼1(𝜂) = 0.

Finally we have

𝑀 ′
𝜆 + 𝑣(𝑡)𝜆𝑀𝜆−1 = 𝑏𝜆 − 𝜙𝜆(𝑀0,𝑀1,𝑀2) (15)

and the system of three equations to define the time evolution of the
moments 𝑀0,𝑀1,𝑀2 of the Gaussian is

𝑀 ′
0 = 𝑏0 − 𝜙0(𝑀0,𝑀1,𝑀2)

𝑀 ′
1 + 𝑣(𝑡)𝑀0 = 𝑏1 − 𝜙1(𝑀0,𝑀1,𝑀2)

𝑀 ′
2 + 2𝑣(𝑡)𝑀1 = 𝑏2 − 𝜙2(𝑀0,𝑀1,𝑀2)

where 𝜙𝜆 is defined in terms of 𝐽𝜆 and 𝐽𝜆+1 as above, which in turn are
expressed in terms of 𝐼0 and 𝐼1 and hence ultimately in terms of the
error function.

It is worth observing that the key benefit of the Gaussian here is
the ability to express the partial moments explicitly in terms of the raw
moments, e.g. that 𝜙𝜆 can be written in terms of 𝑀0,𝑀1,𝑀2.

2.2.2. N-moment Gram–Charlier A-series approximation
A generalized approximation can be constructed by using the Gram–

Charlier A-series to represent the bond distribution as an infinite sum
in terms of its moments. Using this representation, we write

�̂�(𝑥) =
∞
∑

𝑗=0
𝑐𝑗𝐻𝑗 (𝑥 − �̂�1)𝛼(𝑥 − �̂�1) (16)

where the coefficients 𝑐𝑗 can be expressed in terms of the moments
about the mean �̂�0 … �̂�𝑗 , 𝐻𝑗 (⋅) are the Hermite polynomials, and 𝛼 is

the standard normal distribution [11]. c

3

This a true distribution, whereas the bond distribution is allowed
its zeroth moment to differ from 1, so we scale as 𝑛(𝑥, 𝑡) = 𝑀0(𝑡)�̂�(𝑥, 𝑡).

onceptually it is clear that the same techniques that were used for the
aussian assumption should apply in the case of this representation:
ecause 𝑓 , 𝑔 and 𝐻𝑗 are polynomial or piecewise polynomial in 𝑥,
nd 𝛼 is a Gaussian, ultimately everything can be expressed as partial
oments of a Gaussian distribution.

Truncating the Gram–Charlier expansion at 𝑁 terms yields, for 𝜆 =
, 1

̂𝜆 ≡ ∫

∞

−∞
𝑥𝜆 [𝑓 (𝑥) + 𝑔(𝑥)]𝑀0(𝑡)

𝑁
∑

𝑗=0
𝑐𝑗𝐻𝑗 (𝑥 − �̂�1)𝛼(𝑥 − �̂�1) 𝑑𝑥 (17)

nd for 𝜆 ≥ 2

̂𝜆 ≡ ∫

∞

−∞
(𝑥 − 𝜇1)𝜆 [𝑓 (𝑥) + 𝑔(𝑥)]𝑀0(𝑡)

𝑁
∑

𝑗=0
𝑐𝑗𝐻𝑗 (𝑥 − �̂�1)𝛼(𝑥 − �̂�1) 𝑑𝑥 (18)

here 𝜇1 is the first moment of 𝑛(𝑥, 𝑡) and �̂�𝑘 are the moments about
he mean of �̂�. The two are related by 𝜇𝑘 = 𝑀0�̂�𝑘. We expand explicitly
or 𝑁 = 3, e.g. capturing the first four moments

̂𝜆 =

∫

∞

−∞
(𝑥 − 𝜇1)𝜆 [𝑓 (𝑥) + 𝑔(𝑥)]𝑀0(𝑡)𝛼(𝑥 − �̂�1)

×
[

1 + 1
2
(�̂�2 − 1)𝐻2(𝑥 − �̂�1) +

1
6
�̂�3𝐻3(𝑥 − �̂�1)

]

𝑑𝑥

here 𝐻2(𝑥) = 𝑥2 − 1 and 𝐻3(𝑥) = 𝑥3 − 3𝑥 are the usual Hermite
olynomials. Despite the more complicated appearance, this can be
andled in the same way as previously: 𝛼 is a Gaussian, and all other
erms are piecewise polynomial; thus everything can be expanded and
xpressed in terms of partial moments of a Gaussian. Following this
rocedure produces

𝜇′
0 = 𝑏0 −𝛷0

𝜇′
1 + 𝑣(𝑡)𝜇0 = 𝑏1 −𝛷1

′
2 + 2𝑣(𝑡)𝜇1 − 2𝜇′

1𝜇1 = 𝑏2 − 2𝜇1𝑏1 + 𝜇2
1𝑏0 −

[

𝛷2 − 𝜇1𝛷1 + 𝜇2
1𝛷0

]

′
3 + 3𝑣(𝑡)𝜇2 − 3𝜇′

1𝜇2 = 𝑏3 − 3𝜇1𝑏2 − 3𝜇2𝑏1 − 𝜇3
1𝑏0

−
[

𝛷3 − 3𝜇1𝛷2 + 3𝜇2
1𝛷1 − 𝜇3

1𝛷0
]

here

𝜆 = 𝑀0

[

�̂�3
6
𝜙𝜆+3(1, �̂�1, 1 + �̂�2

1) +
1
2
(�̂�2 + �̂�1�̂�3 − 1)𝜙𝜆+2(1, �̂�1, 1 + �̂�2

1)

+
(

�̂�3
2
(�̂�2

1 − 1) − �̂�1(�̂�2 − 1)
)

𝜙𝜆+1(1, �̂�1, 1 + �̂�2
1)

+
(

1 +
�̂�2 − 1

2
(�̂�2

1 − 1) +
�̂�3
6
(3�̂�2

1 − �̂�3
1)𝜙𝜆(1, �̂�1, 1 + �̂�2

1)
)]

and 𝑏𝜆 and 𝜙𝜆 are as previously defined for the Gaussian case. Note that
this now involves terms up to 𝛷3, hence up to 𝜙6 and 𝐽7; these can be
expanded and simplified following the same method as in Section 2.2.1.
The expansion truncated at 𝑁 = 2 terms can be obtained from this
by setting �̂�3 ≡ 0. We have opted to express this system in terms of
he moments about the mean 𝜇𝑘 rather than the raw moments 𝑀𝑘,
owever it is simple to covert between the two, or the system can also
e formulated in terms of the latter.

.2.3. Three-moment uniform approximation
In the previous section we derived a generalized approximation

ccounting for the first N moments based on a truncated Gram–Charlier
series expansion. Here we consider a simpler approach: motivated by

ahalak’s observation that the Gaussian DM approximation is effective
t approximating the moments despite the underlying bond distribu-
ions being substantially non-Gaussian, we also consider the simplest
ossible assumption: that the bond distribution is uniform. Allowing
he zeroth moment to vary gives a three parameter distribution which

an be explicitly parameterized in terms of the first three moments.
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m
o
c

The potential advantage arises from the fact that all terms are now
piecewise polynomial, with no need to expand the partial moments of
the Gaussian in terms of the error function.

Hence we take

𝑛(𝑥, 𝑡) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑀2
0

2
√

3
√

𝑀0𝑀2−𝑀2
1

, 𝑥 ∈
[

𝑀1
𝑀0

−
√

3
𝑀0

√

𝑀0𝑀2 −𝑀2
1 ,

𝑀1
𝑀0

+
√

3
𝑀0

√

𝑀0𝑀2 −𝑀2
1

]

,

0, otherwise

(19)

or which ∫ ∞
−∞ 𝑥𝜆𝑛(𝑥, 𝑡) 𝑑𝑥 = 𝑀𝜆(𝑡) for 𝜆 = 0, 1, 2. Then we can write the

artial moments in terms of
𝑐2

𝑐1
𝑥𝜆𝑛(𝑥, 𝑡) 𝑑𝑥 = 1

𝜆 + 1
𝑀2

0

2
√

3
√

𝑀0𝑀2 −𝑀2
1

[

𝑥𝜆+1
]

|

|

|

𝑚𝑎𝑥(𝑚𝑖𝑛(𝑥0+𝛥,𝑐2),𝑥0−𝛥)

𝑥=𝑚𝑖𝑛(𝑚𝑎𝑥(𝑥0−𝛥,𝑐1),𝑥0+𝛥)

(20)

≡ 𝐽𝜆
(

𝑀0,𝑀1,𝑀2; 𝑐1, 𝑐2
)

(21)

where 𝑥0 =
𝑀1
𝑀0

and 𝛥 =
√

3
𝑀0

√

𝑀0𝑀2 −𝑀2
1 and so

�̄�𝜆 = 𝑔2 ∫

0

−∞
𝑥𝜆𝑛 𝑑𝑥 + (𝑓1 + 𝑔1)∫

1

0
𝑥𝜆+1𝑛 𝑑𝑥

+ (𝑔2 + 𝑔3)∫

∞

1
𝑥𝜆+1𝑛 𝑑𝑥 − 𝑔3 ∫

∞

1
𝑥𝜆𝑛 𝑑𝑥

= 𝑔2 lim
𝑐1→−∞

𝐽𝜆(𝑀0,𝑀1,𝑀2; 𝑐1, 0) + (𝑓1 + 𝑔1)𝐽𝜆+1(𝑀0,𝑀1,𝑀2; 0, 1)

+ lim
𝑐2→+∞

[

(𝑔2 + 𝑔3)𝐽𝜆+1(𝑀0,𝑀1,𝑀2; 1, 𝑐2) − 𝑔3𝐽𝜆(𝑀0,𝑀1,𝑀2; 1, 𝑐2)
]

.

hile at first this appears rather complicated due to the limits, these
re trivial to implement because Eq. (20) is always evaluated at finite
ounds: in the limit as 𝑐2 → ∞ the upper evaluation becomes [⋅]|𝑥=𝑥0+𝛥

nd in the limit as 𝑐1 → −∞ the lower evaluation becomes [⋅]|𝑥=𝑥0−𝛥.
inally we have the complete set of governing equations

𝑀 ′
0 = 𝑏0 − �̄�0

𝑀 ′
1 + 𝑣(𝑡)𝑀0 = 𝑏1 − �̄�1

′
2 + 2𝑣(𝑡)𝑀1 = 𝑏2 − �̄�2.

. Results

We demonstrate these methods using two typical situations: a con-
tant velocity stretch, and oscillatory stretching. In both cases we use
he protocols of [3] for consistency of comparisons. All approximations
re solved numerically using the same adaptive timestepping 4th-order
unge–Kutta approach.

.1. Constant velocity stretch

Following Zahalak we consider a constant velocity stretch with
∕ℎ = ±10 s−1. Each approximation is computed and compared with
he method of characteristics solution for the full PDE. Results are
hown in Fig. 2. The upper panels show the time evolution of the first
hree moments 𝑀0,𝑀1 and 𝑀2. The lower panels compare the im-
lied approximate distributions to the ‘‘true’’ method of characteristics
istribution at various time points (as labelled).

As Zahalak observed, the DM approximation with a Gaussian distri-
ution offers reasonable agreement in the moments, despite deviation
n the underlying distribution. Perhaps surprisingly, the DM approxi-
ation with the uniform distribution might be described in exactly the

ame terms. The generalized approximation, on the other hand, appears
o offer no benefit.

The constant velocity scenario in contraction, e.g. with a change of
ign for the constant 𝑣(𝑡), is shown in Fig. 3. The same basic conclusions
re in evidence: the uniform assumption performs at least as well as
he Gaussian, both of which track the true solution with reasonable

ccuracy; the generalized approach again offers no benefit. c

4

.2. Oscillatory length

The length profile of the oscillatory regime is 𝑣(𝑡) = 𝑣0 sin(2𝜋𝜔𝑡) with
0∕ℎ = 25 s−1 and 𝜔 = 8 s−1. The results are shown in Fig. 4 using the
ame layout as Fig. 2, except that the 𝑁 = 3 version of the generalized
pproach is not shown — in places the deviation is sufficiently large
hat the axis scale makes it difficult to visualize the other methods.

Here the same basic conclusion is present: the DM approxima-
ions based on Gaussian and uniform underlying distributions offer
urprisingly good approximations of the macroscopic moments, despite
isagreement in the underlying distribution itself. In considering the
ccuracy of the approximation, one should also consider the compu-
ational cost. Though all of the DM approaches involve a substantial
eduction in the dimensionality of the ODE system to be solved, other
onsiderations may be at play, for example the cost of evaluating the er-
or functions. In terms of total CPU time, all of the DM approximations
ffer at least an order of magnitude speedup relative to the method
f characteristics solution with 500 points in the spatial resolution of
he bond distribution. The uniform distribution is the most efficient,
ffering more than two orders of magnitude improvement, followed
losely by the Gram–Charlier approach with 𝑁 = 2 also offer about
wo orders of magnitude improvement. Zahalak’s Gaussian DM is next
est, and finally the Gram–Charlier with 𝑁 = 3 offers about one order
mprovement. The generalized approach based on the Gram–Charlier
-series appears to offer no particular benefit. The reasons for, and
otential resolution of this, are discussed in the following section.

.3. Error analysis

A systematic analysis of the approximation errors for the DM ap-
roaches based on Gaussian and uniform approximations are shown in
ig. 5. The left panel gives the total error in the first two moments,
hile the right panel shows the total error in the distribution itself.
hile the moments are the key macroscopic observables, examination

f the distribution error helps to understand the behaviour of these
wo approximations. For very low frequencies, the distribution is close
o steady state and so well-approximated by a uniform distribution:
ence the small total errors in both moments and distribution error for
he uniform approximation in this range. As the frequency increases
he distribution shape deviates farther from steady state, and as such
oth error types rise. Eventually this increases to the point where
he Gaussian approximation has superior performance, if only for a
elatively small frequency window. Indeed this window only occurs at
ll when 𝑣0 has been increased relative to that used in Section 3.2. At
0∕ℎ = 25 s−1 (the value used previously) the uniform approximation
s preferred throughout this frequency range.

This suggests that the intuitive explanation applies: the uniform ap-
roximation is preferred in situations where the underlying distribution
s relatively close to uniform, and the Gaussian approximation is ad-
antageous where the underlying distribution is better represented by
Gaussian. Moreover, because the steady state distribution is uniform,

he former situation might be expected to occur in situations relatively
lose to steady state (e.g. with low muscle velocities) and the latter to
ccur more often where absolute muscle velocity is higher.

A similar analysis was performed to assess the sensitivity to the
inding rate parameters. A sensitivity analysis covering ±40% in the
inding rate parameters produced error analysis results which were
ualitatively the same as those shown here.

. Discussion and conclusions

The principle benefit of the distribution moment approximation
ethod is that it provides a systematic means of reduction from the

riginal governing PDE to ODEs for the macroscopic observables; of
ourse there are many proposed ODE models (e.g. [12]), but these

annot in general be connected with the original crossbridge PDE.
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Fig. 2. Comparison of approximation methods for a constant velocity stretch. Upper panels show the time evolution of the first three moments 𝑀0 ,𝑀1 and 𝑀2. Lower panels
compare the implied approximate distributions to the ‘‘true’’ method of characteristics distribution at various time points (as labelled).

Fig. 3. Comparison of approximation methods for a constant velocity shortening. Layout as in Fig. 2. Note that the 𝑁 = 3 version of the generalized approximation is not shown
(see text), and that in the 𝑀2 panel the 𝑦-axis range has been chosen to exclude much of the generalized approximation so as to capture the behaviour of the more accurate
approximations.
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Fig. 4. Comparison of approximation methods for oscillatory stretch. Layout as in Fig. 2. Note that the 𝑁 = 3 version of the generalized approximation is not shown (see text).
Fig. 5. Systematic analysis of moment errors (left panel) and distribution error (right panel) comparing each approximation with the method of characteristics solution in the
oscillatory length protocol as the frequency is varied. Here 𝑣0∕ℎ = 100 s−1.
t

In this manuscript two variations of Zahalak’s distribution moment
approximation are developed: an 𝑁-moment approximation based on
the Gram–Charlier A series, intended to allow generalization of the
DM method, and a simplified version based on a uniform distribution.
Both are compared with Zahalak’s Gaussian DM, and the method of
characteristics, using the Huxley crossbridge model as a test case.
These results suggest that while the generalized method offers no
additional benefit, the uniform DM approximation offers a similar level
of macroscopic approximation with reduced complexity of derivation.
It might thus be considered as a viable alternative to the Gaussian
DM in applications. In particular the error analysis suggests that the
uniform approximation is particularly useful in situations in which a
low muscle velocity leads to an underlying bond distribution which is
close to steady state; the Gaussian approximation can be favoured in
situations further from equilibrium.

In his original paper [3], Zahalak noted that generalizations were
possible, but predicted that the Gaussian assumption provided an op-
timal balance, and that generalizations to higher moments would not
 t

6

be worthwhile relative to their complexity. To a certain extent, this
appears to be borne out, though with two caveats: (i) that the simpler
uniform assumption may preferable in some circumstances, and (ii) that
while the generalization presented here offers no further benefits, there
remain several potential avenues of improvement.

One overarching problem with the generalized N moment approx-
imation is that the distribution is not confined to a bounded interval
and so the distribution is not necessarily uniquely defined, even with
the inclusion of all moments [13]. Leaving aside this technical point,
here the difficulty is almost certainly related to the behaviour of
the truncated expansion. Indeed the truncated Gram–Charlier A-series
does not have optimal behaviour, and for this reason the Edgeworth
series is preferred in many contexts.2 Thus it remains possible that an
approximation based on the truncated Edgeworth series, which also

2 The two series are identical up to the ordering of the terms [11], but
his has important consequences for the stability of the approximation when
runcating the series [14].
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allows expression of the distribution in terms of its moments, might
offer a route to generalization. Another possible improvement to the
Gram–Charlier approach would be to appropriately scale the spatial
variables at the approximation stage to match the standard deviation
of �̂� to that of 𝛼. However, it seems likely that Zahalak’s contention
was correct: higher order moment approximations may not be worth
their complexity. This is particularly true in light of the computational
cost: a coarser method of characteristics discretization is likely to be
preferable to a higher-order moment approximation. There are also
other approaches to systematic reduction which might be favoured in
some contexts [15–17].

Other assumed forms for the underlying distribution could be con-
sidered as well. The principal limitation is the ability to express the
partial moments ∫ 𝑐2

𝑐1
𝑥𝜆𝑛(𝑥) 𝑑𝑥 in terms of the moments. This can be

done explicitly for all assumed forms in this paper. While in principle
this problem could be solved numerically for other forms, this presents
practical difficulties: the inversion of the partial moments needs to be
carried out at each integration step, while staying on the same solution
branch. In practice the difficulties involved strongly favour explicit
inversion.

One further note is that we have confined ourselves to the simplest
form of the Huxley crossbridge model, while many extensions of that
theory have been introduced, and add some complications to employ-
ing a DM approximation. However, most are not insurmountable. For
example, we have already pointed out that the ‘‘standard’’ binding rate
functions can be generalized to piecewise polynomial; indeed they can
be generalized beyond this as well, so long as the partial moments can
be written explicitly. Other generalizations involve additional bound
species and hence are systems of PDEs of the crossbridge character;
these too can be handled in a similar fashion [5]. In short, many
crossbridge-type models can be approximated in this way.
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