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a b s t r a c t

Tipping points are abrupt transitions in time-varying systems which may be driven by
noise, changes in the underlying system, or some combination of the two. Early warning
signals of tipping points are potentially valuable leading indicators of these transitions.
In low-dimensional systems, it is possible to characterize these indicators based on the
expected type of the tipping point. In spatial systems, indicators which take account
of changes in the spatial structure are in principle able to capture more information,
compared with aggregate measures, and thus provide stronger leading indicators. Here
we propose the use of dynamic mode decomposition (DMD), a dimensionality reduction
technique first developed in a fluid dynamics context, as a method for extracting
useful information about critical slowing down in the leading mode of a spatial system
approaching a tipping point. To demonstrate its potential utility for this purpose
we employ two models: one drawn from the physiology literature for the study of
spatially-patterned ventilation distributions in asthma, and the other an ecological model
previously used for the study of spatial early warning signals of tipping points. Together
these show that the DMD leading eigenvalue may be a useful spatially-informed early
warning signal.

© 2022 Elsevier B.V. All rights reserved.

1. Introduction

Tipping points, defined as abrupt transitions in time-varying systems, have generated much interest in climate and
cology for their potential to predict, understand and/or mitigate phenomena such as climate change and ecosystem
ollapse (e.g. [1]). Other areas, such as physiology [2], have similar concepts in disease exacerbations, though perhaps
ithout the same level of interest to date. Tipping points are often classified as [3]

• Bifurcation-driven tipping, or B-tipping, in which the equilibria of the underlying system change qualitatively;
• Noise-driven tipping, or N-tipping, in which the system transitions between stable equilibria, driven by noise; or
• Rate-driven tipping, or R-tipping, in which the system is unable to track the quantitative changes of the current

equilibrium.

ithin these broad categories, further distinctions can be made; for example, B-tipping analysis may be further broken
own by classification of the bifurcations involved [4]. Much current research is dedicated to the subtleties of R-tipping.

∗ Corresponding author.
E-mail address: g.donovan@auckland.ac.nz (G.M. Donovan).
URL: https://www.math.auckland.ac.nz/~gdon030/ (G.M. Donovan).
ttps://doi.org/10.1016/j.physa.2022.127152
378-4371/© 2022 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.physa.2022.127152
http://www.elsevier.com/locate/physa
http://www.elsevier.com/locate/physa
http://crossmark.crossref.org/dialog/?doi=10.1016/j.physa.2022.127152&domain=pdf
mailto:g.donovan@auckland.ac.nz
https://www.math.auckland.ac.nz/~gdon030/
https://doi.org/10.1016/j.physa.2022.127152


G.M. Donovan and C. Brand Physica A 596 (2022) 127152

i
s
t

i
s
e
m

–
s
b
c
t
i
E

a
a
b
c
t

2

2

2

o

s

a
e
p
7
s
(
t
o
a

2

W
t
c

An obvious area of interest is anticipating tipping points by way of so-called early warning signals (EWS). One example
s the phenomenon known as critical slowing down [5,6], in which, as the tipping point is approached, the system becomes
lower to return to equilibrium after perturbation. This can be indicated by changes in the variance or autocorrelation of
he time series of system observations. Many other EWS indicators have also been proposed [7].

All of the above applies in the context of analysis of time series signals; imagine, for example, mean surface temperature
n a climate context, or species population numbers in an ecological one. However, many systems of interest are spatial
ystems. If we have information about the spatial distribution of the system (vegetation patterns, for instance), does this
ncode useful information about tipping points and early warning signals? Naively, spatially-informed indicators may be
ore valuable for these systems, compared with aggregate measures, because they take account of this spatial structure.
Intuitively we expect that spatial analysis will be useful for systems which exhibit patterns or other spatial structure

by analysing only aggregate measures we are discarding potentially useful information. Following this line of thinking,
everal spatial measures, such as spatial correlation [8], variance, skewness [9] and the discrete Fourier transform [10] have
een proposed [11,12]. Although the theory of spatial EWS is much less developed than their non-spatial, low-dimensional
ousins, at least in a B-tipping context there is reason to expect spatial changes which reflect critical slowing down in
he leading mode. Chen et al. [13] suggest that one way to capture this slowing down in the leading mode is to do so
ndirectly, by way of the eigenvalues of the covariance matrix. Here we propose an alternative methodology for spatial
WS: capturing the leading spatial mode more directly using dynamic mode decomposition (DMD).
DMD is a dimensionality reduction technique originally developed in a fluid dynamics context [14] and subsequently

pplied in many other domains [15,16]. In intuitive terms, it has been described as a combination of principal component
nalysis (PCA) in space and Fourier analysis in time [17,18], giving a reduced description of both spatial and temporal
ehaviour [19]. Therefore it is intuitively well-suited to assessing temporal changes in the leading mode. It allows us to
apture both the leading spatial mode, and its associated eigenvalue indicating the time variation; in this paper we show
hat the DMD leading eigenvalue is a promising methodology for use as a spatially-informed EWS of B-tipping.

. Methods

.1. Models

.1.1. Lung ventilation model
We use as an example system a model drawn from the study of ventilation patterns in asthma [20]. In order to focus

n spatial EWS, we employ a simplified version of the original model; the simplifications are summarized in Appendix.
Briefly, the airway dynamics are described in terms of airway luminal radius (r) by a continuous-time lattice dynamical

ystem with additive white noise given by

dri,j
dt

=

[
1 + exp

(
− Pb + κ

k
ri,j

+ PbA(r4i,j + r4i+1,j + r4i−1,j + · · ·

r4i,j+1 + r4i,j−1)(1 − ri,j + 1.5(1 − ri,j)2) + PI

)]−1

− ri,j + σdWi,j (1)

where

Pb(t) =
Pb(0)N2∑

i,j∈L r4i,j
(2)

nd i, j ∈ L are all lattice elements in the N-by-N square lattice. The nearest-neighbour interactions arise from local
xpansion of the lung (so-called parenchymal tethering) and the global coupling via the assumption that breathing
ressures increase to maintain flow despite airway narrowing. The parameter values used are PI = 0.96, Pb(0) =

.25, A = 0.63, and k = 14.1, all dimensionless, describing airway compliance and interactions. In broad terms, the
implified, parameters control the strength of breathing (Pb(0)), inter-airway coupling via parenchymal interdependence
A), airway smooth muscle mass (k), and the inflection point of the pressure–radius relationship (PI ); more details, and
he relationship with the dimensional version of the model, are given in Appendix. The parameter κ describes the degree
f smooth muscle activation, which acts to narrow the airways, and is used here as the bifurcation control parameter and
ssumed to increase linearly with time.

.1.2. Bifurcation structure of lung ventilation model
The bifurcation structure of the deterministic version of this model (i.e. when σ = 0) has been previously studied [20].
e will not recapitulate the full analysis here, but several key aspects are relevant to this study. First is that we can locate

he bifurcation (with κ as a bifurcation parameter) in which the homogeneous equilibrium loses stability and from which
lustered solutions emerge. Writing the system as dri

dt = fi(r⃗), with linear subscript indexing, we express the derivatives
evaluated at the homogeneous equilibrium r∗ as

α =
∂ fi
⏐⏐⏐⏐
∂ri r=r∗

2
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β =
∂ fi
∂rj

⏐⏐⏐⏐
r=r∗

γ =
∂ fi
∂rk

⏐⏐⏐⏐
r=r∗

for the ith cell ri, where rj are the nearest neighbours and rk the rest of the cells. Because of the symmetries of the
ystem, the Jacobian of the homogeneous equilibrium then has block circulant structure in terms of α, β and γ . Due to
his structure, the eigenvalues of the Jacobian are given explicitly by

λn,m = α + 2β(cos(nθ ) + cos(mθ )) − γ (2 cos(nθ ) + 2 cos(mθ ) + 1)

f (n,m) ̸= (0, 0), and

λ0,0 = α + 4β + (N2
− 5)γ (3)

here N is the lattice size. For the parameters used here, λ0,0 is the leading eigenvalue and thus Eq. (3) can be used to
ocate the deterministic bifurcation.

.1.3. Vegetation turbidity model
We also demonstrate the DMD EWSmethodology as applied to the vegetative turbidity model originally due to Ref. [21]

hich has been previously used as model for assessment of spatial EWS [8,13]. Briefly, the model is described by a system
f coupled (lattice) ordinary differential equations using a finite-difference approximation to the diffusion operator as

dVi,j

dt
= rvVi,j

(
1 − Vi,j

hp
E + Ep

i,j

hp
E

)
+ D

(
Vi+1,j + Vi−1,j + Vi,j+1 + Vi,j−1 − 4Vi,j

)
+ σdWi,j

where

Ei,j =
Eohv

hv + Vi,j
.

ere Vi,j is the vegetation cover, rv is the maximum vegetation growth rate, hE is the half-saturation turbidity constant,
v is the half-saturation vegetation constant, p is a Hill coefficient, D is the dispersion constant and σ is the standard

deviation of the additive white noise. The parameter Eo represents the background turbidity is used here as the control
parameter and assumed to increase linearly with time.

2.2. Dynamic mode decomposition

Here we provide a brief synopsis of the DMD algorithm so that readers unfamiliar with DMD may understand the
broad outline. For more details the reader is referred to Refs. [15,16,22].

Consider an observation vector xi, of length m, at t = i∆t from our dynamical system. (For the lung ventilation model
this would be r , and for the vegetation turbidity model it is V . Also recall that we are using a lattice system so this
observation vector is necessarily in reshaped form.) We define an observation window and then stack up the observations
within window. For a window of size n, we have observations x1, x2, . . . xn arranged as the m-by-n matrices [23]

X =

[
|

x1
|

|

x2
|

. . .
|

xn−1
|

]
(4)

and

X′
=

[
|

x2
|

|

x3
|

. . .
|

xn
|

]
. (5)

Note the overlap between the two data matrices, such that X′ is shifted by ∆t from X. Thus we suppose that there
exists an (unknown) linear operator A such that X′

= AX, and thus A describes the advance in time of the observed
snapshots. The goal of DMD is to obtain the eigendecomposition of A, but without forming A itself. This is done by first
computing the singular value decomposition (SVD) of X = UΣVT , where in the usual way U gives the left singular vectors,
V gives the right singular vectors, and Σ is a diagonal matrix containing the singular values. We then form the square
matrix S = UTX′VΣ−1 and compute its eigenvalues λj and eigenvectors φj. The DMD eigenvalues are then given by λj and
the DMD modes by Uφj. For additional algorithmic and implementation details, including the usual implementation as a
for-loop, the reader is referred to [22].
3
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Fig. 1. Single realization of the model and proposed spatial EWS. Upper panel: λmax; middle panel: Kendall’s τ ; lower panel(s): system evolution
napshots displaying emergence of spatial structure. Here the DMD sliding window size is taken to be 10 timesteps.

.3. Proposed spatial EWS using DMD

Our proposed method of spatial EWS uses a sliding window of size n observations. For each set of n observations,
MD is performed as described above. We then take the leading DMD eigenvalue |λmax|, which itself is time varying
s the sliding window advances, as our EWS. The effectiveness of this potential signal is assessed in the usual way by
alculating Kendall’s τ (rank correlation coefficient) between the signal |λmax| and the control parameter prior to the
nderlying bifurcation. Note that here we know the underlying control parameters (κ for the lung ventilation model
nd Eo for the vegetation turbidity model); they are ramped linearly in time and used both for simulating the synthetic
napshot data and also for purposes of computing the Kendall’s τ correlations. In practice, however, the underlying control
oefficient would be unknown. For purposes of quantitative assessment, Kendall correlation (|τ |) coefficients close to 1
re generally interpreted as providing good predictive value as an EWS, though care should be taken [24].

. Results

A single realization of the lung ventilation model and proposed spatial EWS is shown in Fig. 1. The upper panel shows
he proposed EWS λmax versus time. The middle panel shows Kendall’s τ , with the histogram in the inset. The lower panels
how a subset of the system evolution snapshots and demonstrate the emergence of the spatially-structured solution. The
ertical dashed line indicates the time when the control parameter reaches the deterministic bifurcation. Together these
uggest that the leading DMD eigenvalue may provide a useful spatial EWS, with good correlation (|τ | ∼ 1) preceding
he tipping point, at least in this example.

We also apply the same DMD EWS methodology to the vegetation turbidity model, using the parameter values
E = 2, rv = 0.5, hv = 0.2, p = 4,D = 0.9, σ = 0.02 and ramping Eo linearly from 6 to 7.5, shown in Fig. 2. As
ith the lung ventilation model, the leading DMD eigenvalue shows good potential as a leading indicator of the tipping
oint as indicated by the τ criterion.
While these single realizations show promise, a more robust examination requires repeated trials, as well as the varying

emporal resolution of the underlying signal, the sliding window size, and the noise level. Fig. 3 shows the contours of
he mode of the Kendall’s τ distribution in the period preceding the tipping point, as the observation timestep and sliding
indow size are varied. The three panels show noise levels 0.05, 0.1 and 0.2 (from left to right). This suggests that for a
easonably broad range of observation frequency and window size, the DMD leading eigenvalue can potentially provide a
aluable EWS. Unsurprisingly, the range over which |τ | ∼ 1, and thus λmax is a worthwhile EWS, is larger for lower noise
evels A more explicit comparison of the modes associated with these leading eigenvalues is also instructive; as shown
n Fig. 4 these reconstruct the spatial changes seen in the underlying system, as designed.

It is also worth considering further the details of the DMD reconstruction as we vary both the observation timestep
nd the sliding window size. Clearly, these numerical parameters interact with the intrinsic timescale of the dynamics of
4
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Fig. 2. Single realization of the vegetative turbidity model and proposed spatial EWS. Upper panel: λmax; middle panel: Kendall’s τ ; lower panel(s):
ystem evolution snapshots displaying emergence of spatial structure. The vertical range of the upper panel is chosen to show the behaviour prior
o the tipping point. Here the DMD sliding window size is taken to be 10 timesteps.

Fig. 3. Contours of the absolute value of the mode of the Kendall’s τ distribution as temporal resolution of the underlying signal, sliding window
size, and the noise level are varied. The three panels show noise levels 0.05, 0.1 and 0.2 (from left to right).

Fig. 4. DMD leading modes corresponding to the simulation in Fig. 1.
5
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Fig. 5. Stability of the leading DMD eigenvalue in the lung ventilation model as the observation timestep and sliding window size are varied. The
signal-to-noise ratio (SNR) is defined here as the change λmax between baseline and the tipping point, divided by the standard deviation of the
observations near baseline.

the underlying system. Because it may not be possible, in practice, to know the underlying timescale precisely a priori,
t is useful to assess the sensitivity of the method to these parameters. To this end, we show also the stability of the
eading eigenvalue and the overall signal-to-noise ratio in Fig. 5. This indicates that overall SNR is relatively robust to the
umerical parameters, and that these need not be tuned particularly closely to the underlying timescale.
It is also instructive to compare with so-called ‘‘generic’’ EWS indicators (for non-spatial systems) applied to the spatial

ean of the system; Fig. 6 shows autoregression, autocorrelation, standard deviation and skewness, all computed with
aussian detrending [25]. For this particular system, based on the τ histograms, both the standard deviation and skewness

may provide useful EWS, as expected for a transition arising from a fold bifurcation [4]. Knowing this a priori, however,
equires a degree of non-generic analysis in order to anticipate which indicators may be valuable from those which are
ot. In contrast, autoregression and autocorrelation are not particularly informative for this system.

. Discussion

Early warning signals of tipping points in low-dimensional systems have evolved from largely empirical, ad hoc
eginnings to the point where there is now a reasonably well-developed theory underpinning their efficacy. For example,
-tipping can now be characterized for different types of underlying bifurcation [4]. Spatial EWS, on the other hand, are
till in their relative infancy; several indicators have been proposed, such as spatial correlation [8], spatial variance, spatial
kewness [9] and the discrete Fourier transform [10]. Here we propose to add the DMD leading eigenvalue as a viable
andidate as a spatial EWS, based on the idea of critical slowing down in the leading mode, and its promise in these
epresentative synthetic datasets.

Spatial EWS would also benefit from a firmer theoretical foundation in the spirit of their non-spatial cousins. Some
ork in this direction has recently appeared regarding the eigenvalues of the covariance matrix [13], and we have

everaged this idea by attempting to capture the mode itself more directly using DMD rather than indirectly via the
igenvalues of the covariance matrix. However, the theoretical tools which served so well for low-dimensional systems
re not readily applied to spatial systems and much remains to be done. Additionally, it may prove useful to make use
f the leading mode itself, rather than only its associated eigenvalue, or perhaps secondary modes as well, rather than
imply the leading eigenvalue as we have done here. A more robust theory will also encapsulate a broader class of spatial
ipping points, rather than being confined to specific (if representative) models. The potential EWS value of the leading
ynamic mode may help to develop this theory.
One aspect of DMD which is relevant to its application as a spatial EWS is that it is particularly adept at reconstructing

eriodic systems. However, the models used here are not of this type (the ventilation model has already been averaged
ver tidal breathing.) However, despite the fact that DMD may not provide a particularly good system reconstruction
n this environment, the leading mode eigenvalue is still a good predictor; that may be because we do not require a full
econstruction, but only a quantification of the critical slowing down in the leading mode. As shown in Fig. 5, the baseline
alues of λmax are reasonably stable with respect to the observational parameters, and despite the relatively small scale
f changes in λmax, the overall signal-to-noise ratio is favourable. We also note that it is possible to optimize the DMD
rocedure to minimize the effects of additive noise [26]. We have not employed the optimized version here, but this
ould likely further improve the SNR (and hence potential usefulness of the EWS).
Although a majority of EWS and tipping point study has been conducted with an emphasis towards applications in

limate or ecology, physiology may be a discipline in which this theory will also thrive. The reasons for this are twofold:
irst, that physiological systems do appear to exhibit tipping points and there is predictive value in EWS in this context [2],
6
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Fig. 6. Comparison with generic EWS; autoregression, autocorrelation, standard deviation and skewness, all computed with Gaussian detrending [25].
Here the ramping of the control parameter has been slowed, relative to previous simulations, to allow time for the detrending to establish before
the (deterministic) bifurcation is reached.

and in future such studies could benefit from a priori study of the EWS indicators (for example, arising from a particular
bifurcation structure), rather than relying on generic methods. Secondly, applications in physiology offer a potentially rich
data source, with each patient offering, in essence, an independent sample. Thus while study of tipping points may help
to further our understanding of physiology, physiology may in turn contribute the data to further our study of tipping
points.
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ppendix. Simplification of lung-ventilation model

The lung ventilation model used in this paper is a simplified version of the model first described in [20]. The changes
re twofold. First, the empirical airway pressure–radius relationship (i.e. Eq. 2 in Ref. [20]), which describes the highly
onlinear opening and closing process of the airway and was first described by Lambert et al. [27] as matched rectangular
yperbolae, is replaced by a three-parameter sigmoidal approximation of the form R(P) =

Rref
1+exp(−c(P−PI ))

where Rref is the
reference radius (as in Ref. [20]), c = 0.725 cm H2O−1 and PI = 1.33 cm H2O. The parameters Rref , c and PI were optimized
using the python scipy.optimize curve-fit function to fit the airway radius function from Ref. [20].

Secondly, the variables and parameters were non-dimensionalized and simplified as follows: r̂i =
ri

Rref
, t̂ = ρt ,

P̂b(0) = cPb(0), P̂I = cPI , Â =
A
5R

4
ref, κ̂ =

κ
21.4 cm H2O

and k = 14.065. Finally, we drop the hats from the non-dimensionalized
quantities to obtain the four-parameter non-dimensional model given in Eqs. (1) and (2).
7
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