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Abstract

Manifolds have uses throughout and beyond Mathematics and it is not surprising that
topologists have expended a huge effort in trying to understand them. In this article we
are particularly interested in the question: ‘when is a manifold metrisable?’ We describe
many conditions equivalent to metrisability.

1 Introduction.

By a manifold is meant a connected, Hausdorff space which is locally homeomorphic to eu-
clidean space (we take our manifolds to have no boundary). Note that because of connected-
ness the dimension of the euclidean space is an invariant of the manifold (unless the manifold
is empty!); this is the dimension of the manifold. A pair (U, h), where U ⊂ M is open and
h : U → Rm is a homeomorphism, is called a coordinate chart.

The following notation is used. R denotes the real line with the usual (order) topology while
Rn denotes the nth power of R. Bn consists of all points of Rn at most 1 from the origin. The
sets ω and ω1 are, respectively, the finite and countable ordinals.

Clearly every manifold is Tychonoff. Of course manifolds share all of the local properties
of euclidean space, including local compactness, local connectedness, local path or arc con-
nectedness, first countability, local second countability, local hereditary separability, etc. As
every manifold is locally compact and Hausdorff, hence completely regular, it follows that every
manifold is uniformisable ([34, Proposition 11.5]). The following result shows that manifolds
cannot be too big.

Proposition 1 Let M be a (non-empty!) manifold. Then every countable subset of M is
contained in an open subset which is homeomorphic to euclidean space. Hence every two points
of M may be joined by an arc.

Proof. Suppose that the dimension of M is m. Let S ⊂ M be a countable subset, say 〈Sn〉 is
such that S = ∪n≥1Sn, |Sn| = n and Sn ⊂ Sn+1.

By induction on n we choose open Vn ⊂ M and compact Cn ⊂ M such that

(i) Sn ∪ Cn−1 ⊂ C̊n and (ii) (Vn, Cn) ≈ (Rm, Bm),

where C0 = ∅.
For n = 1, S1 is a singleton so V1 may be any appropriate neighbourhood of that point

while C1 is a compact neighbourhood chosen to satisfy (ii) as well.
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Suppose that Vn and Cn have been constructed. Consider

S = {x ∈ M / ∃ open U ⊂ M with Cn ∪ {x} ⊂ U ≈ Rm}.

S is open. S is also closed, for suppose that z ∈ S̄ − S. Then we may choose open
O ⊂ M with O ≈ Rm and z ∈ O. Choose x ∈ O ∩ S. Then there is open U ⊂ M with
Cn ∪ {x} ⊂ U ≈ Rm. We may assume that O is small enough that O ∩ Cn = ∅. Using the
euclidean space structure of O we may stretch U within O so as to include z but not uncover
any of Cn. Thus z ∈ S.

As M is connected and S 6= ∅ we must have S = M . Thus there is open Vn+1 ⊂ M with
Sn+1 ∪ Cn = (Sn+1 − Sn) ∪ Cn ⊂ Vn+1 ≈ Rm. Because Sn+1 ∪ Cn is compact we may find in
Vn+1 a compact subset Cn+1 so that (i) and (ii) hold with n replaced by n + 1.

Let Un = C̊n. Then Un is open, Un ⊂ Un+1 and Un ≈ Rm. Thus by [6], U = ∪n≥1Un is also
open with U ≈ Rm. Furthermore Sn ⊂ Un for each n so that S ⊂ U .

There has been considerable study of metrisable manifolds, especially compact manifolds.
In particular it is known that there are only two metrisable manifolds of dimension 1: the circle
S1, where

Sn = {(x0, . . . , xn) ∈ Rn+1 / x2
0 + · · ·+ x2

n = 1},
and the real line R itself. In dimension 2 the compact manifolds have also been classified,
this time into two sequences: the orientable manifolds, which consist of the 2-sphere S2 with
n handles (n ∈ ω) sewn on, and the non-orientable manifolds, which consist of the 2-sphere
with n cross-caps (n ∈ ω − {0}) sewn on. See [20, Chapter 14 and Appendix B], for example.
Despite considerable progress in the study of compact manifolds in higher dimensions there
has been no classification even of compact manifolds of dimension 3. Indeed, the 3-dimensional
Poincaré conjecture has only now apparently been resolved after about 100 years. The original
conjecture, [47], differs slightly from that posed below and was found by Poincaré to be false.
Poincaré’s counterexample was published in [48], where the following version was also posed.
The conjecture says that if a compact manifold M of dimension 3 is such that every continuous
function S1 → M extends to a continuous function B2 → M , where B2 = {(x, y) ∈ R2 :
x2 + y2 = 1}, then M is homeomorphic to S3. The analogue of this conjecture in dimensions
higher than 3 is known to be true, [17, Corollary 7.1B] in dimension 4 and [40, Proposition B,
p109] in dimension 5 and higher.

In contrast to the compact situation, where it is known that there are only countably many
manifolds [11], in the nonmetrisable case there are 2ℵ1 manifolds, even of dimension 2 ([43], p
669). However, there are only two nonmetrisable manifolds of dimension 1, the simpler being
the open long ray, L+, [7]. To ease the description of L+ we firstly give a way of constructing the
positive real numbers from the non-negative integers and copies of the unit interval. Between
any integer and its successor we insert a copy of the open unit interval. More precisely, let
R+ = ω × [0, 1) − {(0, 0)}, order R+ by the lexicographic order from the natural orders on ω
and [0, 1) and then topologise R+ by the order topology. To get L+ we do the same thing but
replace ω by ω1. More precisely, let L+ = ω1 × [0, 1)− {(0, 0)}, order L+ by the lexicographic
order from the natural orders on ω1 and [0, 1) and then topologise L+ by the order topology.
The other nonmetrisable manifold of dimension 1 is the long line, which is obtained by joining
together two copies of L+ at their (0,0) ends in much the same way as one may reconstruct the
real line R by joining together two copies of (0,∞) at their 0 ends, thinking of one copy as giving
the positive reals and the other the negative reals. More precisely, let L be the disjoint union
of two copies of L+ (call them L+ and L− respectively, with ordering <+ and <− respectively)
as well as a single point, which we denote by 0, order L by x < y when x <+ y in L+, when
x = 0 and y ∈ L+, when x ∈ L− and y ∈ L+ or y = 0 and when x, y ∈ L− and y <− x, and
topologise L by the order topology.
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The survey articles [43] and [45] are good sources of information about nonmetrisable man-
ifolds.

A significant question in topology is that of deciding when a topological space is metrisable,
there being many criteria which have now been developed to answer the question. Perhaps the
most natural is the following: a topological space is metrisable if and only if it is paracompact,
Hausdorff and locally metrisable, see [54] and [33, Theorem 2.68]. Note that manifolds are
always Hausdorff and locally metrisable so this criterion gives a criterion for the metrisability of
a manifold, viz that a manifold is metrisable if and only if it is paracompact. Many metrisation
criteria have been discovered for manifolds, as seen by Theorem 2 below, which lists criteria
which require at least some of the extra properties possessed by manifolds. Of course one must
not be surprised if conditions which in general topological spaces are considerably weaker than
metrisability are actually equivalent to metrisability in the presence of the extra topological
conditions which always hold for a manifold: such a condition is that of being nearly meta-
Lindelöf, 10 in Theorem 2 below. Similarly one should not be surprised to find conditions
which are normally stronger than metrisability: such a condition is that M may be embedded
in euclidean space, 32 in Theorem 2. Finally one may expect to find conditions which in a
general topological space have no immediate connection with metrisability: such a condition is
second countability, 26 in Theorem 2.

2 Definitions.

In this section we list numerous definitions relevant to the question of metrisability..

Definitions: Let X be a topological space and F a family of subsets of X. Then:

• X is submetrisable if there is a metric topology on X which is contained in the given
topology;

• X is Polish if X is a separable, complete metric space;

• X is paracompact (respectively metacompact, paraLindelöf and metaLindelöf ) if every
open cover U has a locally finite (respectively point finite, locally countable, and point
countable) open refinement, ie there is another open cover V such that each member of V
is a subset of some member of U and each point of X has a neighbourhood meeting only
finitely (respectively lies in only finitely, has a neighbourhood meeting only countably,
and lies in only countably) many members of V ;

• X is finitistic (respectively strongly finitistic) if every open cover of X has an open
refinement V and there is an integer m such that each point of X lies in (respectively
has a neighbourhood which meets) at most m members of V (finitistic spaces have also
been called boundedly metacompact and strongly finitistic spaces have also been called
boundedly paracompact);

• X is strongly paracompact if every open cover U has a star-finite open refinement V , ie
for any V ∈ V the set {W ∈ V / V ∩W 6= ∅} is finite. If in addition, given U , there is
an integer m such that {W ∈ V / V ∩W 6= ∅} contains at most m members then X is
star finitistic;

• X is screenable (respectively σ-metacompact and σ-paraLindelöf ) if every open cover U
has an open refinement V which can be decomposed as V = ∪n∈ωVn such that each Vn is
disjoint (respectively point finite and locally countable);
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• X is (linearly) [ω1-]Lindelöf if every open cover (which is a chain) [which has cardinality
ω1] has a countable subcover;

• X is (nearly) [linearly ω1-]metaLindelöf if every open cover U of X [with |U| = ω1] has
an open refinement which is point-countable (on a dense subset);

• X is almost metaLindelöf if for every open cover U there is a collection V of open subsets
of X such that each member of V lies in some member of U , that each point of X lies in
at most countably many members of V , and that X =

⋃
{V / V ∈ V}.

• X is (strongly) hereditarily Lindelöf if every subspace (of the countably infinite power)
of X is Lindelöf;

• X is k-Lindelöf provided every open k-cover (ie every compact subset of X lies in some
member of the cover) has a countable k-subcover;

• X is (strongly) hereditarily separable if every subspace (of the countably infinite power)
of X is separable;

• X is Hurewicz if for each sequence 〈Un〉 of open covers of X there is a sequence 〈Vn〉 such
that Vn is a finite subset of Un for each n ∈ ω and ∪n∈ωVn covers X (note the alternative
definition of Hurewicz, [14]: X is Hurewicz if for each sequence 〈Un〉 of open covers of
X there is a sequence 〈Vn〉 such that Vn is a finite subset of Un and for each x ∈ X we
have x ∈ ∪Vn for all but finitely many n ∈ ω. For a manifold these two conditions are
equivalent.);

• X is hemicompact if there is an increasing sequence 〈Kn〉 of compact subsets of X such
that for any compact K ⊂ X there is n such that K ⊂ Kn;

• X is cosmic if there is a countable family C of closed subsets of X such that for each
point x ∈ X and each open set U containing x there is a set C ∈ C such that x ∈ C ⊂ U ;

• X is an ℵ0-space ([29, page 493]) provided that it has a countable k-network, i.e. a
countable collection N such that if K ⊂ U with K compact and U open then K ⊂ N ⊂ U
for some N ∈ N ;

• X is an ℵ-space ([29, page 493]) provided that it has a σ-locally finite k-network;

• X has the Moving Off Property, [31], provided that every family K of non-empty compact
subsets of X large enough to contain for each compact C ⊂ X a disjoint K ∈ K has an
infinite subfamily with a discrete open expansion;

• X is a q-space if each point admits a sequence of neighbourhoods Qn such that xn ∈ Qn

implies that 〈xn〉 clusters;

• X is Fréchet or Fréchet-Urysohn if whenever x ∈ A there is a sequence 〈xn〉 in A that
converges to x;

• X is a k-space if A is closed whenever A ∩K is closed for every compact subset K ⊂ X;

• X is Lašnev if it is the image of a metrisable space under a closed map;

• X is analytic if it is the continuous image of a Polish space (equivalently of the irrational
numbers);
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• X is M1 if it has a σ-closure preserving base (ie a base B such that there is a decomposition
B = ∪∞n=1Bn where for each n and each F ⊂ Bn we have ∪F = ∪{F̄ / F ∈ F});

• X is stratifiable or M3 if there is a function G which assigns to each n ∈ ω and closed set
A ⊂ X an open set G(n, A) containing A such that A = ∩nG(n, A) and if A ⊂ B then
G(n, A) ⊂ G(n,B);

• X is perfectly normal if for every pair A, B of disjoint closed subsets of X there is a
continuous function f : X → R such that f−1(0) = A and f−1(1) = B;

• X is monotonically normal if for each open U ⊂ X and each x ∈ U it is possible to choose
an open set µ(x, U) such that x ∈ µ(x, U) ⊂ U and such that if µ(x, U) ∩ µ(y, V ) 6= ∅
then either x ∈ V or y ∈ U ;

• X is extremely normal if for each open U ⊂ X and each x ∈ U it is possible to choose an
open set ν(x, U) such that x ∈ ν(x, U) ⊂ U and such that if ν(x, U) ∩ ν(y, V ) 6= ∅ and
x 6= y then either ν(x, U) ⊂ V or ν(y, V ) ⊂ U ;

• X is weakly normal if for every pair A, B of disjoint closed subsets of X there is a
continuous function f : X → S, for some separable metric space S, such that f(A) ∩
f(B) = ∅;

• X is a Moore space if it is regular and has a development, ie a sequence 〈Un〉 of open
covers such that for each x ∈ X the collection {st(x,Un) : n ∈ ω} forms a neighbourhood
basis at x;

• X has a regular Gδ-diagonal if the diagonal ∆ is a regular Gδ-subset of X2, ie there is a
sequence 〈Un〉 of open subsets of X2 such that ∆ = ∩Un = ∩Un.

• X has a quasi-regular Gδ-diagonal if there is a sequence 〈Un〉 of open subsets of X2 such
that for each (x, y) ∈ X2 −∆ there is n with (x, x) ∈ Un but (x, y) /∈ Un.

• X has a G∗
δ-diagonal if there is a sequence 〈Gn〉 of open covers of X such that for each

x, y ∈ X with x 6= y there is n with st(x,Gn) ⊂ X − {y}.

• X has a quasi-G∗
δ-diagonal if there is a sequence 〈Gn〉 of families of open subsets of X

such that for each x, y ∈ X with x 6= y there is n with x ∈ st(x,Gn) ⊂ X − {y}.

• X is θ-refinable if every open cover can be refined to an open θ-cover, ie a cover U which
can be expressed as ∪n∈ωUn where each Un covers X and for each x ∈ X there is n such
that ord(x,Un) < ω;

• X is subparacompact if every open cover has a σ-discrete closed refinement;

• X has property pp, [38], provided that each open cover U of X has an open refinement
V such that for each choice function f : V → X with f(V ) ∈ V for each V ∈ V the set
f(V) is closed and discrete in X;

• X has property (a), [38], provided that for each open cover U of X and each dense subset
D ⊂ X there is a subset C ⊂ D such that C is closed and discrete in X and st(C,U) = X;

• X has a base of countable order, B, if whenever C ⊂ B is a collection such that each
member of C contains a particular point p ∈ X and for each C ∈ C there is D ∈ C with
D a proper subset of C then C is a local base at p;
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• X is pseudocomplete provided that it has a sequence 〈Bn〉 of π-bases (B ⊂ 2X − {∅} is
a π-base if every non-empty open subset of X contains some member of B) such that if
Bn ∈ Bn and Bn+1 ⊂ Bn for each n, then

⋂
n∈ω Bn 6= ∅;

• X has the countable chain condition (abbreviated ccc) if every pairwise disjoint family of
open subsets is countable;

• X is countably tight if for each A ⊂ X and each x ∈ Ā there is a countable B ⊂ A for
which x ∈ B̄;

• X is countably fan tight if whenever x ∈ ∩n∈ωAn there are finite sets Bn ⊂ An such that
x ∈ ∪n∈ωBn;

• X is countably strongly fan tight if whenever x ∈ ∩n∈ωAn there is a sequence 〈an〉 such
that an ∈ An for each n and x ∈ {an / n ∈ ω};

• X is sequential if for each A ⊂ X, the set A is closed whenever for each sequence of points
of A each limit point is also in A;

• X is weakly α-favourable if there is a winning strategy for player α in the Banach-Mazur
game (defined below);

• X is strongly α-favourable if there is a stationary winning strategy for player α in the
Choquet game (defined below);

• for each x ∈ X the star of x in F is st(x,F) = ∪{F ∈ F : x ∈ F};

• X is Baire provided that the intersection of any countable collection of dense Gδ subsets
is dense;

• X is Volterra, [25], provided that the intersection of any two dense Gδ subsets is dense;

• X is strongly Baire provided that X is regular and there is a dense subset D ⊂ X such
that β does not have a winning strategy in the game GS(D) played on X.

• F is point-star-open if for each x ∈ X the set st(x,F) is open.

• The Banach-Mazur game has two players α and β whose play alternates. Player β begins
by choosing a non-empty open subset of X. After that the players choose successive non-
empty open subsets of their opponent’s previous move. Player α wins iff the intersection
of the sets is non-empty; otherwise player β wins.

• The Choquet game has two players α and β whose play alternates. Player β begins by
choosing a point in an open subset of X, say x0 ∈ V0 ⊂ X. After that the players alternate
with α choosing an open set Un ⊂ X with xn ∈ Un ⊂ Vn then β chooses a point xn+1 and
an open set Vn+1 with xn+1 ∈ Vn+1 ⊂ Un. Player α wins iff the intersection of the sets is
non-empty; otherwise player β wins.

• Gruenhage’s game Go
K,L(X), [30], has, at the nth stage, player K choose a compactum

Kn ⊂ X after which player L chooses another compactum Ln ⊂ X so that Ln ∩Ki = ∅
for each i ≤ n. Player K wins if 〈Ln〉n∈ω has a discrete open expansion, ie there is a
sequence 〈Un〉n∈ω of open sets such that Ln ⊂ Un and ∀x ∈ X,∃U ⊂ M open such that
x ∈ U and U meets at most one of the sets Un.
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• For a dense subset D ⊂ X the game GS(D) has two players α and β whose play alternates.
Player β begins by choosing a non-empty open subset Vn of X. After that the players
choose successive non-empty open subsets of their opponent’s previous move, β choosing
sets Vn and α choosing sets Un. Player α wins iff the intersection of the sets is non-empty
and each sequence 〈xn〉, for which xn ∈ Un ∩D, clusters in X; otherwise player β wins.

• When players α and β play a topological game, a strategy for α is a function which
tells α what points or sets to select given all the previous points and sets chosen by β. A
stationary strategy for α is a function which tells α what points or sets to select given only
the most recent choice of points and sets chosen by β. A winning (stationary) strategy
for α is a (stationary) strategy which guarantees that α will win whatever moves β might
make.

We will denote by Ck(X, Y ) (respectively Cp(X, Y )) the space of all continuous functions
from X to Y with the compact-open topology (respectively the topology of pointwise conver-
gence).

We will denote by $ the space {0, 1} with the Sierpinski topology {∅, $, {0}}. Then for
any space X we denote by [X, $] the space of continuous functions from X to $ with the upper
Kuratowski topology, i.e. that in which a subset F ⊂ [X, $] is open if and only if

(i) for each f ∈ F and each g ∈ [X, $] if g ≤ f then g ∈ F ;

(ii) if G ⊂ [X, $] is such that infG ∈ F then there is a finite subfamily G ′ ⊂ G with infG ′ ∈ F .

In this definition we are using the usual ordering on {0, 1} when discussing ≤ and inf. Of course
identifying a closed subset of X with its characteristic function gives a bijective correspondence
between [X, $] and the collection of closed subsets of X.

3 Criteria for metrisability.

We now state and outline the proof of the main theorem. It is believed that no two conditions
are equivalent in a general topological space, though, as will be noticed at the start of the proof
of Theorem 2, there may be a chain of implications holding in a general space.

Theorem 2 Let M be a manifold. Then the following are equivalent:

1. M is metrisable;

2. M is paracompact;

3. M is strongly paracompact;

4. M is screenable;

5. M is metacompact;

6. M is σ-metacompact;

7. M is paraLindelöf;

8. M is σ-paraLindelöf;

9. M is metaLindelöf;
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10. M is nearly metaLindelöf;

11. M is Lindelöf;

12. M is linearly Lindelöf;

13. M is ω1-Lindelöf;

14. M is ω1-metaLindelöf;

15. M is nearly linearly ω1-metaLindelöf;

16. M is almost metaLindelöf;

17. M is hereditarily Lindelöf;

18. M is strongly hereditarily Lindelöf;

19. M is k-Lindelöf;

20. M is an ℵ0-space;

21. M is cosmic;

22. M is an ℵ-space;

23. M has a star-countable k-network;

24. M has a point-countable k-network;

25. M has a k-network which is point-countable on some dense subset of M ;

26. M is second countable;

27. M is hemicompact;

28. M is σ-compact;

29. M is Hurewicz;

30. M satisfies the selection criterion S1(K, Γ): for each sequence 〈Un〉 of open k-covers of
X there is a sequence 〈Un〉 with Un ∈ Un for each n, infinitely many of the sets Un are
distinct and each finite subset of X lies in all but finitely many of the sets Un;

31. only countably many coordinate charts are needed to cover M ;

32. M may be embedded in some euclidean space;

33. M may be embedded properly in some euclidean space;

34. M is completely metrisable;

35. there is a continuous discrete map f : M → X where X is Hausdorff and second countable;

36. M is Lašnev;

37. M is an M1-space;

38. M is stratifiable;
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39. M is finitistic;

40. M is strongly finitistic;

41. M is star finitistic;

42. there is an open cover U of M such that for each x ∈ M the set st(x,U) is homeomorphic
to an open subset of Rm;

43. there is a point-star-open cover U of M such that for each x ∈ M the set st(x,U) is
Lindelöf;

44. there is a point-star-open cover U of M such that for each x ∈ M the set st(x,U) is
metrisable;

45. the tangent microbundle on M is equivalent to a fibre bundle;

46. M is a normal Moore space;

47. M is a normal θ-refinable space;

48. M is a normal subparacompact space;

49. M is a normal space which has a σ-discrete cover by compact subsets;

50. M ×M is perfectly normal;

51. M is a normal space which has a sequence 〈Un〉n∈ω of open covers with ∩nst(x,Un) = {x}
for each x ∈ M ;

52. M is perfectly normal and there is a sequence 〈Un〉n∈ω of families of open sets such that
∩n∈C(x)st(x,Un) = {x} for each x ∈ M , where

C(x) = {n ∈ ω / ∃U ∈ Un with x ∈ U};

53. M is separable and there is a sequence 〈Cn〉n∈ω of point-star-open covers such that
∩nst(x, Cn) = {x} for each x ∈ M and for each x, y ∈ M and each n ∈ ω we have
y ∈ st(x, Cn) if and only if x ∈ st(y, Cn);

54. M is separable and there is a sequence 〈Cn〉n∈ω of point-star-open covers such that
∩nst(x, Cn) = {x} for each x ∈ M and for each x ∈ M and each n ∈ ω, ord(x, Cn)
is finite;

55. M is separable and hereditarily normal and there is a sequence 〈Cn〉n∈ω of point-star-open
covers such that ∩nst(x, Cn) = {x} for each x ∈ M ;

56. M is separable and there is a sequence 〈Un〉n∈ω of families of open sets such that
∩n∈C(x)st(x,Un) = {x} for each x ∈ M , and ord(x, Cn) is countable for each x ∈ M
and each n ∈ ω;

57. M ×M has a countable sequence 〈Un : n ∈ ω〉 of open subsets, such that for all (x, y) ∈
M ×M −∆, there is n ∈ ω such that (x, x) ∈ Un but (x, y) /∈ Un;

58. For every subset A ⊂ M there is a continuous injection f : M → Y , where Y is a
metrisable space, such that f(A) ∩ f(M − A) = ∅;
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59. For every subset A ⊂ M there is a continuous f : M → Y , where Y is a space with a
quasi-regular-Gδ-diagonal, such that f(A) ∩ f(M − A) = ∅;

60. M is weakly normal with a G∗
δ-diagonal;

61. M has a quasi-G∗
δ-diagonal and for every closed subset A ⊂ M there is a countable family

G of open subsets such that, for every x ∈ A and y ∈ X − A, there is a G ∈ G with
x ∈ G, y /∈ G;

62. M has a regular Gδ-diagonal;

63. M is submetrisable;

64. M is separable and monotonically normal;

65. M ×M is monotonically normal;

66. M is monotonically normal and of dimension ≥ 2 or M ≈ S1 or R;

67. M is extremely normal;

68. M has the Moving Off Property;

69. M has property pp;

70. every open cover of M has an open refinement V such that for every choice function
f : V → M the set f(V) is closed in M ;

71. every open cover of M has an open refinement V such that for every choice function
f : V → M the set f(V) is discrete in M ;

72. M is a point-countable union of open subspaces each of which is metrisable;

73. M has a point-countable basis;

74. M is separable and Mω is a countable union of metrisable subspaces;

75. Ck(M, R) is Polish;

76. Ck(M, R) is completely metrisable;

77. Ck(M, R) is first countable;

78. Ck(M, R) is second countable;

79. Ck(M, R) is a q-space;

80. Ck(M, R) is Fréchet;

81. Ck(M, R) is countably tight;

82. Ck(M) has countable strong fan tightness;

83. Ck(M, R) is an ℵ0-space;

84. Ck(M, R) is cosmic;

85. Ck(M, R) is analytic;
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86. C(M, R) satisfies the selection criterion S1(Ω
k
0, Σ

p
0): for each sequence 〈Fn〉 of subsets of

C(M, R) whose compact-open closures contain the constant function 0 there is a sequence
〈fn〉, infinitely many members of which are distinct, with fn ∈ Fn for all n and 〈fn〉
converges pointwise to 0;

87. Cp(M, R) has countable tightness;

88. Cp(M, R) has countable fan tightness;

89. Cp(M, R) is analytic;

90. Cp(M, R) is hereditarily separable;

91. Cp(M, R) (equivalently Ck(M, R)) is separable;

92. [M, $] is first countable;

93. [M, $] is countably tight;

94. [M, $] is sequential;

95. K has a winning strategy in Gruenhage’s game Go
K,L(M);

96. Ck(M, R) is strongly α-favourable;

97. Ck(M, R) is weakly α-favourable;

98. Ck(M, R) is pseudocomplete;

99. Ck(M, R) is strongly Baire;

100. Ck(M, R) is Baire;

101. Ck(M, R) is Volterra.

Outline of the proof of theorem 2.
The following diagram shows how items 1-31 are related:
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m =metrisable; sc =second countable; shL =strongly hereditarily Lindelöf; hL =hereditarily

Lindelöf; σc =σ-compact; hc =hemicompact; H =Hurewicz; SKΓ =satisfies S1(K, Γ);

cch =countably many charts cover; ℵ0 =ℵ0-space; ℵ =ℵ-space; skn =has a star-countable

k-network; pkn =has a point-countable k-network; npkn =has a k-network which is point-

countable on a dense subset; kL =k-Lindelöf; c =cosmic; L =Lindelöf; lL =linearly Lindelöf;

ω1L =ω1-Lindelöf; spc =strongly paracompact; pc =paracompact; mc =metacompact;

s =screenable; pL =paraLindelöf; σmc =σ-metacompact; σpL =σ-paraLindelöf;

mL =metaLindelöf; amL =almost metaLindelöf; nmL =nearly metaLindelöf;

ω1mL =ω1-metaLindelöf; nlω1mL =nearly linearly ω1-metaLindelöf.
All arrows denote implications. Downward sloping arrows show an implication which holds

in an arbitrary topological space. Upward sloping arrows require one or more properties of
manifolds to realise the implication. mL ⇒ L in every locally separable and connected space.

amL ⇒ L in every regular, locally separable and connected space, [23]. nmL ⇒ mL in every

locally hereditarily separable space. L ⇒ spc in every T3 space. ω1L ⇒ L in every locally

metrisable space, [4]. L ⇒ sc in every locally second countable space. L ⇒ hc in every locally

compact space. cch ⇒ L because a countable union of Lindelöf sets is Lindelöf. sc ⇒ m

in every T3 space (Urysohn’s metrisation theorem). ω1mL ⇒ mL in every locally second

countable space, [27]. nlω1mL ⇒ ω1mL in every locally hereditarily separable space, [27].

pkn ⇒ mL in every regular Fréchet space. npkn ⇒ pkn in every regular, locally compact,
locally hereditarily separable space.

By [46, Proposition 7.3.9] we conclude that a metrisable n-manifold, being separable and of
covering dimension n, embeds in R2n+1, so 1⇒32. By choosing a proper continuous real-valued
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function on M we can add a further coordinate to embed M in R2n+2 so that the image is
closed, ie the embedding is proper, hence 1⇒33. It is clear that 33⇒34.

Every second countable Hausdorff space satisfies 35 so 26⇒35. Conversely, given the situ-
ation of 35, if B is a countable base for the topology on X then the Poincaré-Volterra Lemma
of [16, Lemma 23.2] asserts that

{U ⊂ M / U is second countable and
there is V ∈ B such that U is a component of f−1(V )}

is a countable base for M .
Clearly every metrisable space is Lašnev so 1⇒36. The implication 36⇒37 is [29, Theorem

5.5]. It is easy to show that 37⇒38. The implication 38⇒2 is [29, Theorem 5.7].
The conditions 1, 39, 40 and 41 are shown to be equivalent in [13].
The equivalence of conditions 1 and 42-45 is established as follows: 1⇒42 is reasonably

straightforward making use of the fact that metrisable manifolds are σ-compact. Then 42⇒43
is trivial. 43⇒44 requires use of Urysohn’s metrisation theorem to deduce that the Lindelöf
stars are metrisable. 44⇒11 requires some delicate manoeuvres; see [24]. 45⇒42 is also found
in [24] while 1⇒45 is [36, Corollary 2].

The implication 1⇒46 holds in every topological space while its converse holds provided that
the space is locally compact and locally connected, [49] or [50, Theorem 3.4]. The equivalence
of 46 and 47 comes from [56, Theorem 3], while the equivalence of 46, 47, 48 and 49 is discussed
in [44, Theorem 8.2].

The equivalence of conditions 1, 50 and 51 is referred to briefly in [21]. The implications
1⇒50⇒51 hold in any topological space and the implication 51⇒1 uses some properties of a
manifold.

The equivalence of conditions 1 and 52-55 is discussed in [41].
Proofs of the equivalence of 1 and 56 may be found in [19] and of 1 and 57-61 may be found

in [18].
The implication 62⇒1 holds in every locally compact, locally connected space ([29, Theorem

2.15(b)]) and, as noted in [29, p. 430], every submetrisable space has a regular Gδ-diagonal so
63⇒62.

Every metric space is monotonically normal and every metrisable manifold is second count-
able, hence separable, so 1⇒64. To get the converse implication 64⇒2 use is made of the fact
that every monotonically normal space is hereditarily collectionwise normal ([32]), and hence
no separable monotonically normal space contains a copy of ω1. On the other hand in [5, The-
orem I] it is shown that a monotonically normal space is paracompact if and only if it does not
contain a stationary subset of a regular uncountable ordinal.

If M is metrisable, so is M ×M , so that M ×M is monotonically normal and hence 1⇒65.
The converse follows from a metrisability result of [32] as manifolds are locally countably
compact.

The criterion 66 is [5, corollary 2.3(e)], except that we have listed all of the metrisable
1-manifolds.

Every metrisable space is extremely normal. The implication 67⇒2 is found in [57].
The equivalence of conditions 1, 68 and 100 is discussed in [8].
It is readily shown that every T1-space which is paracompact has property pp. We now

obtain the implication 69⇒5. Suppose that U is an open cover of M . Use the property pp to
find an open refinement V such that for each choice function f : V → M with f(V ) ∈ V for
each V ∈ V the set f(V) is closed and discrete. We will show that V is point-finite. Suppose
to the contrary that x ∈ M is such that {V ∈ V / x ∈ V } is infinite; let 〈Vn〉 be a sequence of
distinct members of V each of which contains x. Because M is a manifold, hence first countable,
we may choose a countable neighbourhood basis {Wn / n ∈ ω} at x. Note that for each n,
Vn ∩ Wn − {x} 6= ∅ as M has no isolated points. Choose a function f : V → M as follows:
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if V ∈ V but V 6= Vn for each n then choose f(V ) ∈ V − {x} arbitrarily; if V = Vn choose
f(Vn) ∈ Vn ∩ Wn − {x}. Then x ∈ f(V) − f(V) so that f(V) is not closed, contrary to the
choice of V . Thus V is point-finite so M is metacompact.

It is easy to show that conditions 70 and 71 are equivalent to each other, and hence also to
69; cf [22, Lemma 2.3].

Details for the implication 72⇒9 appear in [24], while details for the implication 73⇒1
appear in [15]. Of course 26⇒73.

The implication 74⇒1 is a consequence of the more general result that if the countable
power of a topological space X is a countable union of metrisable subspaces and in X discrete
families of open sets are countable then X is metrisable, [55].

The equivalence of conditions 1 and 75 to 94, excluding 77, 82 and 86, is shown in [26]. A
number of properties of manifolds are required, including that every manifold is a q-space and
a k-space, and some of the equivalences to metrisability already proved.

Conditions 77 and 82 are shown to be equivalent to condition 11 in [10, Theorem 6] using
Hausdorffness, local compactness and first countability of manifolds.

In [10, Theorem 15] there is a proof that in a Tychonoff space 30 and 86 are equivalent.
The implication 1⇒96 follows from 75 and [35, Theorem 8.17]. 96⇒97 is trivial. 97⇒95 is

[30, Lemma 4.3]. 95⇒2 is [30, Theorem 4.1].
Complete metrisability implies pseudocompleteness in any space and in turn pseudocom-

pleteness implies α-favourability in a regular space, so 76⇒98⇒97.
The implications 34⇒99 and 99⇒28 are shown in [8, Theorem 2.2].
The equivalence of 100 was already considered above in the context of 68.
Clearly every Baire space is Volterra and the converse holds in any locally convex topological

vector space, [9, Theorem 3.4] so 100⇔101.

4 Other properties of manifolds.

In this section we collect a few more properties which we may hope a manifold to possess.

Theorem 3 Every manifold has a base of countable order.

Proof: By [56, Theorem 2] every metric space has a base of countable order. As every manifold
is locally metrisable it follows from [56, Theorem 1] that every manifold has a base of countable
order.

Some standard conditions which manifolds may possess but which are weaker than metris-
ability are contained in the following theorem.

Theorem 4 Suppose that the manifold M is metrisable. Then M is also normal, hereditarily
normal, perfectly normal, separable, strongly hereditarily separable and has property (a).

Proof outline: Every metrisable space is perfectly normal, normal and hereditarily normal.
Every second countable space is separable and strongly hereditarily separable. Theorem 2(69)
shows that metrisable manifolds satisfy property pp while in [22, Proposition 2.1] it is shown
that every space having property pp has property (a).

There are manifolds which are normal but not metrisable, for example the long ray. The
long ray also has property (a) (and, as shown in [22], even the stronger properties a-favourable
and strongly a-favourable found in [38]).

The observant reader may have noticed that separability is absent as a criterion for metris-
ability in Theorem 2. The following example shows that it must be.

Example 5 There is a manifold which is separable but not metrisable.
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One can make such a manifold out of the plane by replacing each point of the y-axis by an
interval as follows. Let S = {(x, y) ∈ R2 / x 6= 0} with the usual topology from R2. Let
M = S ∪ [{0} × R2]. For each (0, η, ζ) ∈ R3 and each r > 0 let

Wη,ζ,r = {(x, y) ∈ S / ζ − r <
y − η

|x|
< ζ + r and |x| < r} ∪ [{0} × {η} × (ζ − r, ζ + r)].

Topologise M by declaring U ⊂ M to be open if and only if U ∩ S is open in S and for each
(0, η, ζ) ∈ U ∩ (M − S) there is r > 0 so that Wη,ζ,r ⊂ U . Then M is a separable 2-manifold.

There are even manifolds which are both normal and separable but not metrisable, [52].
We need now some facts from Set Theory. The Continuum Hypothesis (CH), dating back

to Cantor, states that any subset of R either has the same cardinality as R or is countable.
Martin’s Axiom (MA) can be expressed in various forms, the most topological of which is the
following: in every compact, ccc, Hausdorff space the intersection of fewer than 2ℵ0 dense open
sets is dense. Recall the Baire Category Theorem which states that if X is Čech complete (ie
X is a Gδ-set in βX; for example every locally compact, Hausdorff space or every complete
metric space) and {Un / n ∈ ω} is a collection of open dense subsets of X then ∩n∈ωUn is dense
in X. From the Baire Category theorem it is immediate that CH⇒MA. Both CH and MA are
independent of the axioms of ZFC and otherwise of each other: thus there are models of Set
Theory satisfying ZFC in which CH (and hence MA) holds, models in which MA holds but CH
fails (denoted MA+¬CH), and models in which MA (and hence CH) fails.

The question whether perfect normality is equivalent to metrisability for a manifold is an
old one, dating back to [1]. It was shown in [51] that under MA+¬CH the two conditions are
equivalent. On the other hand in [53] there is constructed an example of a perfectly normal non-
metrisable manifold under CH. The same situation prevails when we consider strong hereditary
separability. In [37] it is shown that under MA+¬CH every strongly hereditarily separable
space is Lindelöf. On the other hand even when we combine the two notions the resulting
manifold need not be metrisable in general; in [21] there is constructed under CH a manifold
which is strongly hereditarily separable and perfectly normal but not metrisable. There are
many other examples of conditions which are equivalent to metrisability for manifolds in some
models of Set Theory but not equivalent in other models.
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[3] A V Arkhangel’skĭi, Hurewicz spaces, analytic sets, and fan tightness of function spaces,
Soviet Mathematics Doklady, 33(1986), 396–399.
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[14] G Di Maio, Ljubǐsa D R Kočinac and Enrico Meccariello, Selection principles and hyper-
space topologies, Topology and its Applications, 153(2005), 912–923.

[15] D L Fearnley, Metrisation of Moore Spaces and Abstract Topological Manifolds, Bulletin
of the Australian Mathematical Society, 56(1997), 395–401.

[16] Otto Forster, Lectures on Riemann Surfaces, GTM 81 Springer-Verlag (1981).

[17] M H Freedman and F Quinn, Topology of 4-Manifolds, Princeton University Press (1990).

[18] P M Gartside and A M Mohamad, Cleavability of Manifolds, Topology Proceedings,
23(1998), 155–166.

[19] P M Gartside and A M Mohamad, Metrizability of Manifolds by Diagonal Properties,
Topology Proceedings, 24(1999), 621–640.

[20] David Gauld, Differential Topology: an introduction, Lecture Notes in Mathematics
72(1982), Marcel Dekker. Reprint (2006), Dover.

[21] David Gauld, A strongly hereditarily separable, nonmetrisable manifold , Topology and
its Applications, 51(1993), 221–228.

[22] David Gauld, Covering Properties and Metrisation of Manifolds, Topology Proceedings,
23(Summer 1998), 127–140.

[23] David Gauld, Some properties close to Lindelöf, to appear.
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