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Abstract

The concept of a t-balanced Cayley map is a natural generalization of the
previously studied notions of balanced and anti-balanced Cayley maps (the
terms coined by Sirdii and Skoviera (1992)). We develop a general theory of
t-balanced Cayley maps based on the use of skew-morphisms of groups (Jajcay
and Siran (2002)), and apply our results to the specific case of regular Cayley
maps of abelian groups.

1 Introduction

A Cayley map M = CM(H, X,p) is a 2-cell embedding of a Cayley graph C(H, X)
in an orientable surface determined by the rotation p of edges incident to a given
vertex, with the additional property that the automorphism group Aut(M) contains
a vertex-regular subgroup isomorphic to the underlying group H. This additional
property makes Cayley maps naturally very symmetric, and puts them at the core of
the study of regular maps — maps having the highest level of symmetry possible. A
large proportion of classical examples of regular maps turn out to be regular Cayley
maps (for more on this see [9] for instance). Prior to the 1990s, almost all known
examples of regular Cayley maps were the so-called balanced Cayley maps, stemming
from the existence of certain group automorphisms of the underlying group H. The
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first systematic study of non-balanced Cayley maps appeared with the introduction
of anti-balanced Cayley maps in [11], and following that, a general theory of Cayley
maps and of the related concept of a skew-morphism was developed in [9] and [4],
respectively.

In this paper we apply the general theory of skew-morphisms to a class of Cayley
maps that is a generalization of the classes studied by Sirdn and Skoviera [10, 11},
namely regular ¢-balanced Cayley maps.

The paper splits naturally into three parts. In the first part, we review and extend
known results on skew-morphisms of finite groups. In the second part, we apply these
to the study of regular ¢-balanced Cayley maps. The third part of our paper is devoted
to the special case of t-balanced and other regular maps derived from abelian groups.
Our ultimate goal is a possible classification of all such maps — part of an ongoing
project to classify all abelian groups A which admit at least one regular Cayley map
CM (A, X,p). Substantial first steps in this project are described in [2].

2 Preliminaries

Throughout this paper, we adopt the notation used in [4], and we will restrict our
attention to simple Cayley graphs and Cayley maps with simple underlying graphs.
In particular, a Cayley graph T = C'(H, X) will be a graph based on a group H and a
finite set X = {x1,x9,..., 2} of elements in H which does not contain 15, contains
no repeated elements, is closed under the operation of taking inverses, and generates
all of H. The vertices of the Cayley graph I' are the elements of H, and two vertices
g and h are joined by an edge if and only if ¢ = hz; for some x; € X. The ordered
pairs (h,x) for h € H and x € X are called the arcs or darts of T.

Let p be any cyclic permutation of the elements of X. Then the Cayley map M =
CM(H, X,p) is the 2-cell embedding of the Cayley graph C'(H, X) in an orientable
surface for which the orientation-induced local ordering of the darts emanating from
any vertex g € H is always the same as the order of generators in X induced by p;
that is, the neighbors of any vertex g are always spread counterclockwise around g in
the order (gz,gp(z), gp*(z),...,gp* (z)). Since X is closed under taking inverses,
for each x € X there exists a non-negative integer 7 such that p’(x) = x=. The
function x(z) : X — Zj defined for each x € X as the smallest 7 with this property
is called the distribution of inverses of the Cayley map CM(H, X, p).

Based on the properties of this distribution of inverses, a Cayley map is said
to be balanced if p(z~') = p(x)~! for all z € X, and is said to be anti-balanced
if p(7') = (p~'(z))~" for all z € X. Another way of saying this is that in the
balanced case, the local ordering of the neighbors of each vertex g is of the form
(921, 9Ta, . .., 9Tq, g7 ", 925", . .. ,ga:gl), while in the anti-balanced case this ordering
is of the form (gx1, 92, - - -, gxq, gx;l, ..., 9Ty, go7"), with redundancies possible for
involutory generators z;.

An automorphism of a Cayley map M is a permutation of the set of darts of M
which preserves the incidence relation of the vertices, edges and faces of the map. The



full automorphism group of M, denoted by Aut(M), is the group of all automorphisms
of M under the operation of composition. This group always acts semiregularly on
the set of darts of M, that is, the stabilizer in Aut(M) of each arc of M is trivial.
If the action of Aut(M) on the darts of M is transitive (and therefore regular), we
say that the Cayley map M is a regular Cayley map. The reader interested in more
information on regular maps is advised to consult [3], [1] or [9].

3 Skew-morphisms of finite groups

We will take particular advantage of a necessary and sufficient condition for a Cayley
map M to be regular, based on the concept of a skew-morphism introduced in [4].
Let H be a finite group, ¢ : H — H a permutation of H of order k£ (in the full
symmetric group Sym(H)), and 7 : H — Zj, a function from H to the cyclic group
Z,. We say that ¢ is a skew-morphism of H, with associated power function m, if
(p(lH) = ]-H and
o(ab) = p(a)p™ @ (b) for alla,be H (1)

where ¢™@(b) is the image of b under ¢ applied 7(a) times.
The relevance of skew-morphisms for regular Cayley maps is summed up in the
following theorem:

Theorem 3.1 ([4]) A Cayley map CM(H, X, p) is reqular if and only if there exists
a skew-morphism ¢ of H such that p(z) = p(x) for all z € X.

Note that the skew-morphism ¢ may be seen as an extension of the function p,
allowing the determination of the orientation of edges incident to an arbitrary vertex
a € H by the formula ¢(a)'¢(az) = p"(x) = ¢"(z) for all z € X, where r = 7(a).

It follows from the above theorem that the regular Cayley maps of a group H are
in one-to-one correspondence with the orbits of skew-morphisms of H that are closed
under taking inverses and generate all of H. Hence knowing all the skew-morphisms
of the finite group H allows one to construct a complete list of all regular Cayley maps
on H. In what follows, we shall study the general properties of skew-morphisms of
finite groups in order to facilitate the construction of such lists.

Let us assume from now on that CM (H, X, p) is a regular Cayley map, and ¢ is the
corresponding skew-morphism (with restriction to X equal to p, and associated power
function 7). It is easy to see that 7(1g) = 1, and, unless ¢ = idy, also 7(a) # 0 for
all @ in H (see [4]). The following lemma gives some of the most important algebraic
properties of skew-morphisms (as presented in [4]).

Lemma 3.2 Let ¢ be a skew-morphism of a finite group H and let m be the power
function of . Then the following hold:

(a) The set kerm ={a € H | n(a) =1} is a subgroup of H



(b) 7(g) = w(h) if and only if g and h belong to the same right coset of the subgroup
kerm in H

(¢) The set Fixp ={a € H | p(a) = a} is a subgroup of H
(d) w(ghg™") =1 for all h € kert NFixyp and all g € H

(e) The group kerm N Fixp is a normal subgroup of Fixep.

A simple counting argument shows that in the case of a skew-morphism ¢ of a regular
Cayley map, it is always true that | ker 7| > 1, or equivalently, 7(a) = 1 for at least
one element a # 1y (see [4]). If w(a) = 1 for all @ € H, that is, if kerm = H, then
¢ is a group automorphism of H and the map is balanced (see [10]). Also if M is
an anti-balanced regular Cayley map, then ker 7 is a subgroup of index 2 in H, with
m(a) = |X|—1for all a & ker7, and ¢ is an anti-automorphism of H (see [11]).

The valence of the Cayley map M (equal to the size k of the generating set X) is
the true order of the skew-morphism ¢, that is, |X| = |¢|. This is easy to see from
the fact that the size of the full automorphism group of a regular Cayley map, which
is equal to |H]||¢p|, is also equal to the number of darts of the map, namely |H||X]|.
It follows that the length of every orbit of ¢ must divide the valence £ = |X|, and
that every orbit of ¢ which is closed under taking inverses and which generates all of
H must be of the same length k. Note that two (or more) such orbits may give rise
to two (or more) regular Cayley maps, possibly non-isomorphic, but all of the same
valence.

Another divisibility constraint on ¢ and m may be derived from a formula proved
in [4], which allows the determination of 7(z) for all z € X from the distribution of
inverses x:

m(z) = x(¢()) — x(z) +1 mod |X]. (2)
This yields

dYom@) = Y (x(e@) = x(@) +1) = > x(e(2) = X x(@) + 3 1=|X],

rzeX rzeX zeX rzeX zeX
since Y zex X(¢(2)) = Xzex X(x), and hence

> w(z) =0 mod |X]|. (3)

reX

In other words, the sum of powers assigned to the elements in the generating set must
be divisible by |X]|, the valence of the map.

Even more surprisingly, this result extends to the neighbors of all the vertices g
of the map M due to another formula from [4] (Lemma 3) proved for all g,h € H :

m(g)—1
m(gh)= Y 7(¢'(h)) mod |g]. (4)

j=0



Using (4) one may deduce for any fixed g € H that

m(g)-1
> mlgw) =) 2 m(¢'(x)) = Y m(g)m(z) = 7(9) Y 7(x)
and hence that
wa(gx) =m(9)0=0 mod |X|. (5)

In other words, also the sum of powers assigned to the neighbors of any vertex of the
map is divisible by the valence of the map.

In terms of vertex-colorings, what we have proved is that every Cayley graph
C(H, X) which can be regularly embedded as a Cayley map admits a vertex-coloring
with colors from {1,2,...,|X|— 1} such that the sum of colors assigned to the neigh-
bors of each vertex of the graph is divisible by |X|. Of course, any Cayley graph
C(H,X) admits trivially a coloring that satisfies this property, by assigning color 1
to each vertex of the graph. If C(H, X) is embeddable as a non-balanced Cayley
map, however, then the resulting coloring is not the trivial one.

Next, since X is the orbit of any x € X under ¢, formula (3) can also be written

in the form
|X|-1

> 7(¢'(z)) =0 mod |X].

=0
Once again, this extends to a more general statement about the distribution of powers
in any orbit of ¢. Let g and h be elements of H, and let O, and O}, be the respective
orbits of g and h under . Then

gh = o¥(gh) = ¢/¥(g) ¢™(h) = g™ (k)

where m = Y2 71 (4i(g)), and so

X1

> m(¢'(9)) =0 mod |O4l. (6)

1=0

Since the size of each orbit of ¢ divides | X|, this last equation can also be rewritten
in the form
x|

Og|—
o ZO )=0 mod |0y (7)

for all g,h € H.

Let us now turn our attention to the fixed elements of . First we show that the
power 7(f) of any fixed element f of ¢ must divide the power 7(h) of any element
h € H, and must be invertible in Zx . For if ¢(f) = f then by (4) we observe that

w(h)—1 w(h)—1
(o' (f)) = n(f) =n(h)n(f) in Zx for every h € H,
i=0 i=0



and replacing h by hf!, we find 7(f) divides 7(h) for every h in H.

This simple observation yields further that 7 restricted to Fixp (the subgroup of
elements of H fixed by ¢) is a homomorphism from Fixy into the multiplicative group
of all invertible elements of the ring Z x|, and so Fixp/(ker 7 N Fix¢p) is isomorphic
to a subgroup of (Zx,-). This now implies, for instance, that if |H| and the value
of the Euler ¢ function at |X| are relatively prime, then all the fixed elements of
¢ are assigned the m-value 1. Moreover, the set 7(H) = {w(a) | a € H} of all
powers of elements of H is invariant under multiplication by 7(f) for all f in Fixe,
as m(h)m(f) =m(hf) € m(H) for all h € H.

We have seen that the m-values of the fixed elements of ¢ are quite special. Next
we shall argue that their position within the underlying Cayley graph is special too.
Given a Cayley graph C(H, X), the vertex-set H can be partitioned into disjoint
classes with respect to shortest distance from 15 (equal to the length of the shortest
expression for an element of H in terms of the generators from X). Now if f is a
fixed element of ¢, then the invertibility of 7(f) in Z x| implies that the products
0r(f), 1n(f), 2w (f),---, (|X| — D)7(f) are all distinct modulo | X|. Consequently, for
any = € X we find the | X| successive images of fz under ¢, namely

fz, o(fz) = fo" D (x), *(fz) = f" (), ..., @¥7(fz) = fXI7DmD (),

are all distinct, and so the neighbors of f constitute a single orbit of ¢ (noting that
no orbit of ¢ can be longer than | X]).

As skew-morphisms of Cayley maps always correspond to graph automorphisms of
the underlying Cayley graph, we know that ¢ preserves distances from 15, and hence
the elements of any orbit of ¢ must all be of the same distance from 1. In particular,
the | X| neighbours of f all lie at the same distance from 1, and by connectedness
it follows that unless f = 1y, all these neighbors of f are closer than f to 15. Thus
each fixed element f # 1p is at the ‘end’ of a path in C(H, X) from 1, and all of
its neighbors belong to the class of vertices lying at distance 1 less than f from 1p,
so that in some sense f is ‘antipodal’ to 15. Accordingly, only the identity 15 and
the elements antipodal to 1g in this way can be fixed elements of ¢.

Finally we point out an important feature which skew-morphisms share with au-
tomorphisms of groups. Consider any subgroup K of H which is generated by the
elements of an orbit O of a skew-morphism ¢ of H. As can be easily seen from the
defining properties of skew-morphisms, the image of any product of elements of O
under ¢ is again a product of elements of O, and as such, belongs to K = (O).
This implies that ¢ must preserve the subgroup K setwise, and so just like group
automorphisms, skew-morphisms preserve all subgroups generated by their orbits.

In general, the subgroup ker 7 = {a € H |7(a) = 1} does not have to be preserved
by ¢. Nevertheless, the restriction of ¢ to ker 7 is a group isomorphism from ker 7
onto a (possibly different) subgroup of H, as o(zy) = ()@ (y) = ¢(z)e(y) for
all z,y € kerm.



4 t-balanced Cayley maps

As mentioned in the Introduction, the first two types of regular Cayley maps studied
were balanced and anti-balanced Cayley maps [10, 11]. The skew-morphism ¢ asso-
ciated with a balanced regular Cayley map C M (H, X, p) is a group automorphism of
the underlying group H which preserves the generating set (and its order), and its
associated power function is simply the constant function 1 with ker7 = H. On the
other hand, the skew-morphism associated with an anti-balanced regular Cayley map
is an anti-automorphism of H, and is in some way as close to being a group automor-
phism of H as possible (as the associated power function 7 assumes only two values
in Z x|, namely 1 and —1, with ker 7 being a subgroup of index 2 in H and preserved
by ¢, and the restriction of ¢ to ker 7 being a group automorphism of ker 7).

There is also another important characteristic shared by these two special types
of skew-morphisms. Applying (2), one can easily see that 7(z) = 1 for all x € X
in the balanced case, and 7(z) = |X| — 1 for all z € X in the anti-balanced case.
In both cases, the values of 7 assigned to the generators in X are constant. This is
certainly a very special situation, and one can reasonably expect that skew-morphisms
whose associated power functions are constant on X will be both close to being group
automorphisms, and helpful.

In this section, we investigate skew-morphisms with this promising feature. Before
doing so, we note that the importance of Cayley maps with the sort of distribution
of inverses arising from a constant power function has been recognized by several
different groups of researchers [7, 8, 6, 13|, the first use of the term “t-balanced”
going back to a 1998 talk of M. Schultz. We believe, however, that our approach
using skew-morphisms will bring a more general understanding of these maps.

Accordingly, let M = CM(H,X,p) be a regular Cayley map, with associated
skew-morphism ¢ and power function 7. We will say that M is a t-balanced Cayley
map if 7(z) = ¢t for all z € X. Note that this concept is simply a property of
the distribution x (from which 7 can be computed using formula (2)), and does not
really require the map to be regular; nevertheless we shall assume the regularity of
M throughout this section. Balanced and anti-balanced Cayley maps are 1-balanced
and (|X|—1)-balanced respectively.

Now suppose M is t-balanced, where ¢ > 1. Then at least one element of X, say
z, is not an involution (see [10]), so that x and z~' are distinct elements. By (4) we
obtain

m(z)—1 ) t—1
l=n(lg)=n(zz )= Y (@)= t==,
i=0 i=0
and it follows that ¢ must be a square root of 1 in Z x|. Moreover, we find
m(z)—1 ' t—1
mzy)= > 7' (y) = t=t"=1 foralz,yeX,

Il
)

= 7

and an easy induction shows that every word on X of even length belongs to ker 7.
Furthermore, as all the elements of X are assigned the same m-value, they all belong
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to the same right coset of ker 7, and we conclude that ker 7 is a subgroup of index at
most 2 in H, and that 7 assumes only two values, namely 1 and t.
We summarize our observations in the following lemma:

Lemma 4.1 Let M = CM(H, X, p) be a t-balanced regular Cayley map. Then either
M is balanced (in which caset = 1), or otherwise t is a square root of 1 in Z x| (other
than 1 itself), ker 7 is a subgroup of index 2 in H, the power function m assumes only
the two values 1 and t, the skew-morphism ¢ preserves ker m setwise, and ¢ restricted
to ker w is a group automorphism of ker .

Proof. We have proved most of the statements of the lemma already above. If ¢ > 1,
then ker 7 must be a proper subgroup of H, and X must contain at least one non-
involutory element (for if X consists entirely of involutions, then the map is balanced).
It remains to show that ¢ preserves ker 7. To do this, recall that ¢ induces a graph
automorphism of the underlying Cayley graph C(G, X), and therefore maps paths of
even length to paths of even length; in particular, the image ¢(z;,;, - . .xizj) of any
element z;, x;, . .. x;,; € ker  still belongs to ker 7. Finally, as we have already pointed
out, it is easy to see from (1) that ¢ restricted to ker 7 is a group isomorphism. O

Thus we see that ¢-balanced regular Cayley maps share almost all of the important
characteristics of anti-balanced regular Cayley maps.

Next, let us focus on the form of the generating orbit X in the case t > 1, with the
knowledge that all balanced Cayley maps stem from the relatively well-understood
group automorphisms of their underlying group.

Let x be any element of X of order greater than 2. Since X lies entirely in a single
right coset of ker 7, we have X C (kerw)z, and so ¢(z) = hx for some h € kerm.
Applying ¢ again, we find ¢*(x) = ¢(p(z)) = p(ha) = @(h)e™ ™ (z) = p(h)p(z) =
@(h)hzx, since h € ker w. This extends easily by induction to all powers of ¢, and so
we find that the elements of X can be listed in the form

[z, hz, p(h)hz, @*(R)p(h)hz, ..., X2 (R (h).. @ (R)p(h)ha].  (8)

In other words, the generating set X is completely determined by a non-involutory
element z € X, the element h = ¢(z)z™" € kern, and the @-orbit of h. Note also
that it is easy to see that the length |Oy| of the orbit of ¢ containing A must divide
the length |X| of X (as was argued in general in the previous section).

To complete this section, let us consider the possible distributions of inverses for
t-balanced Cayley maps. Rearranging formula (2) gives

x(p(x)) = x(z) + 7(z) —1 mod [X] 9)

which expresses the distance from its inverse of the successor of x in X in terms
of the distance of x from its inverse, for all z € X. The latter formula allows for
classification of all possible t-balanced distributions of inverses in X, as follows.



First, suppose t = 1. Substituting 1 for 7(z) in (9) yields x(¢(z)) = x(x), and
then by the definition of x we obtain

o(x) ! = ) (p(2)) = X (p(2)) = (¥ (a)) = p(z ') forallz € X.

Hence (as we already know) the map is balanced and the skew-morphism ¢ is a group
automorphism of H.
Similarly, if t = | X|—1, then x(p(x)) = x(z) —2 and we find p(z~!) = (o~} (z))!
for all x € X, and the map is anti-balanced, with ¢ an anti-automorphism of H.
Finally, if we suppose that ¢ is a square root of 1 other than 41, we obtain a
distribution of inverses which is neither balanced nor anti-balanced. This time the
formula (9) gives

o(x) = X (o()) = X (2) = M (XD (2)) = iz 1)

and thus
o(@) ' =l (x!) forallz € X. (10)

All possibilities for the distribution of inverses of a t-balanced Cayley map are
summed up in the following lemma, which is the final result of this section.

Lemma 4.2 Let M = CM(H, X,p) be a t-balanced Cayley map. Then t may be
assumed to satisfy 0 <t <|X|, and necessarily t* =1 mod |X|. Furthermore, the
distribution of inverses in p is uniquely determined (up to cyclic shift) and there exists
a non-negative integer j<|X| such that j(t +1) =0 mod |X| and the ordering p is
of the form

(z,0(2), @*(2), - a7 (@) (PP (@) )
where the distance between ¢'(x) and (p*(z)) ! is j+i(t—1) mod |X|, fori=1,2,....

Proof. We have already proved most of the lemma. To complete the proof, we suppose
first that CM (H, X, p) is a regular Cayley map, with corresponding skew-morphism
¢ and constant power function 7 taking value m(a) =t for all @ € X.

If X consists entirely of involutions, then p has the form (z1,x9, 23,4, .., 2k)
and the map is balanced, so t = 1 and we can take j = 0.

If X contains non-involutory elements, then pick any one of them and name it z,
and let j be the distance x(z) from z to z~! in the ordering p. Then 0 < j < |X|,
and ¢/(x) = z~!. Moreover, x(p(z)) = x(z) + 7(z) — 1 = j +t — 1 by formula (9),
and by induction, we find x(¢*(z)) = j +i(t — 1) for all 4 > 0. It follows that the
ordering of X is of the form described in the statement of the lemma.

To prove the identity j(¢ + 1) = 0 mod |X|, notice that x(z) + x(z~!) is the
length of the full cycle of p, namely |X|. As 27! = X (z) = (), we thus find

0= x(z) +x(z") = x(z) + x(¢'(z)) =5 + (j +j(t = 1)) = j(t + 1) mod |X].

Finally, choosing a different non-involutory element z’ to start with may seem to
lead to a different j' = x(z'), and a different series of equations x(¢*(z')) = j'+i(t—1)

9



for i > 0. Since 2’ = ¢*(z) for some i > 0, however, it follows that j' = x(2') =
X(#'(x)) = j+i(t — 1), and thus ¢'(z) = ¢ (a') implies x(¢*(z)) = x(¢" (a")), s0
that both choices for the starting elements lead to the same distribution of inverses
(up to a cyclic shift with respect to placing x or z’ in the first position, respectively).
We conclude that the lemma holds for all reqular t-balanced Cayley maps.

In order to prove the result for all ¢-balanced Cayley maps, the above proof can
be easily altered to avoid references to skew-morphisms. However, a much simpler
argument follows from a result in [9], where the authors proved that there exists a
regular Cayley map for each possible distribution of inverses . a

Observe that > =1 mod |X| if and only if | X]| is a divisor of t* — 1. Thus, it is
natural to ask whether each pair of numbers ¢ and | X| satisfying the condition #* =1
mod | X | allows for a valid distribution of inverses of the type described in our lemma.
It is not hard to see that this is indeed the case: by choosing j = ¢ — 1, and taking
advantage of the fact that ¢ is relatively prime to t* — 1 (for ¢ > 1), one can show
that each feasible pair (¢, |X|) determines a valid ¢-balanced distribution of inverses.
This does not necessarily imply that each feasible pair allows for the existence of a
t-balanced regular Cayley map of valence |X|. Nevertheless, we will prove the latter
to be true in Theorem 6.10.

The following two examples illustrate the use of Lemma 4.2.

Example 4.3 Let us consider the possible distribution of inverses in a 3-balanced
reqular Cayley map CM(H, X, p). In this case (t = 3), the size of the generating set
X is uniquely determined by the congruence t* = 1 mod | X|: here 32 = 1 mod | X| so
| X| divides 8, and as 3 =t < |X|, we find |X| is 4 or 8, but if | X| were 4 then we
would obtain an anti-balanced map. Hence the only “true” 3-balanced reqular Cayley
maps are of valence 8.

Next let x be any given non-involutory element of X (the existence of which is
guaranteed by the fact that our map is not balanced), and let j = x(z). As0<j <8
and j(t+1) =45 = 0 mod 8, we see j must be one of 2,4 or 6.

Let us first suppose j = 2. Applying Lemma 4.2, we can determine the distribution
of inverses in p by the following computations modulo 8:

x(e'(@) =j+1t—-1)=2+2=4, x(¢*(z)=j+2(t—-1)=2+4=6,
x(@*(x)) =2+6=0, x(p*(z) =2+8=2,
x(@*(x)) =2+ 10 = 4, x(¢°(z)) =24+12 =6,
x(@7(z)) =2+ 14 =0, x(B(z)) =2+16 =2

This implies, for example, that in the cycle representing p the third and seventh

elements to the right of x are involutions, and in fact p must be of the form
('/'L" y’ $_17Z7 U’ y_l’v_17w) (11)

with z and w being involutions.

10



If 7 = 4 instead, we start from an element whose distance from its inverse is 4.
One such element in the above permutation is the element y, and an easy computation
shows that the permutation resulting from starting with y (in the case j = 4) is of
the form (y,x7 %, z,v,y~ Y, vt w,x), which is a cyclic shift of (11) above. Similarly,
in the case j = 6 we obtain a cyclic shift of (11), equivalent also to its reverse.

We conclude that (11) gives the only possible distribution of inverses for a 3-
balanced Cayley map. Also for example, as the set of generators listed in p cannot
involve repeated or trivial elements, and cyclic groups possess only one non-identity
involution, we may further conclude that no cyclic group has a 3-balanced regular
Cayley map.

Example 4.4 Let us consider (—3)-balanced reqular Cayley maps. Taking t = —3
yields | X | = 8 again, and the only solution to the equation j(t+ 1) = —27 = 0 mod 8
1s j = 4. This time the computations mod 8 yield

—~
N
—
8
~—
~—
Il
—~
w
—
8
~—
~—

0, x(¢ 4, = =4,
x(¢°(2)) =0,  x(¢°(z)) =4, = =4,
so every second element is an involution, and the unique distribution of inverses for

a (—3)-balanced Cayley map always corresponds to an 8-cycle of the form

p: ('/L‘iy,’z’ Uim_lﬁwiz_l’t)’ (12)

with y,v,w, and t being involutions.

Note again here that the relatively large number of involutions needed for p provides
us with a lower bound on the rank of the underlying Cayley group of the Cayley map.
Indeed since the number of elements of order 2 in a finite abelian group H of rank r
is at most 2" — 1, and 4 such elements are required in (12), we find that the rank of
any finite abelian group H having a (—3)-balanced regular Cayley map CM(H, X, p)
must be at least 3.

5 Skew-morphisms of abelian groups

The final four sections of this paper are devoted to the special case of skew-morphisms
of abelian groups. Let us start by dealing with some of their most significant features.

Lemma 5.1 If A is a finite abelian group, and ¢ is a skew-morphism of A, then
(1) ¢ preserves kerm setwise (that is, p(ker ) = kern),
(ii) the restriction of ¢ to kerw is a group automorphism of ker m, and

(iii) for each a in A, the power m(a) is congruent to 1 modulo the length of every
non-trivial orbit of ¢ on ker .
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Proof. First, since A is abelian, p(ab) = ¢(ba) for all a,b € A. In particular, if
a € ker 7, then o(ab) = ¢(a)p(b) while ¢(ba) = @(b)¢™® (a) for all b € A, and so

@ﬂ(b)(a) = p(a) forall a € kerm and b € A.

It follows that either a is a fixed element of ¢, or 7(b) = 1 modulo the length |O,| of
the orbit of a, whenever a € kerm and b € A. Hence the power 7(b) associated with
any element b € A must be congruent to 1 modulo the length of any orbit of ¢ on
non-fixed points of ker 7.

Now let us apply this simple observation to the products of the form ¢(a)b, for
a € kerm and b € A. On one hand

o(p(a)b) = ©*(a)™ @) (b),

while on the other hand

o(p(a)b) = p(bp(a)) = ¢(b)e™ (¢(a)).

Clearly, the length of the orbit of a is the same as the length of the orbit of ¢(a),
and thus 7(b) = 1 modulo the length of the orbit of ¢(a). This means, however,
that ©"®(p(a)) = ¢(p(a)) = ¢*(a). Substituting this result in second of the two
equations displayed above gives ¢(b) = ¢™#(@)(p), for all b € A whenever a € ker 7.
Thus 7(¢(a)) =1 and so p(a) € ker 7 for all a € ker 7, that is, p(ker7) = kerw. As
also p(ab) = ¢(a)p(b) for all a,b € ker 7, this proves the restriction ¢[ye;, is a group
automorphism of ker 7. O

Corollary 5.2 If ¢ is a t-balanced skew-morphism of the finite abelian group A, then
50 is every power ¢* of ¢.

Proof. 1f a € kerm, then an easy induction gives ¢(ab) = ¢(a)p'(b) for all b € A,
since ¢ preserves ker m. On the other hand, if a € A \ ker 7, then similarly ¢*(ab) =
ot a)p(b) = ¢i(a)(¢?)!(b) for all b € A, since ¢ also preserves A \ ker 7. O

In [4] it was proved that if M = CM(H, X, p) is a regular Cayley map of valence
k, where k is smaller than the least index of any non-trivial subgroup of H, then
M is necessarily balanced. At the other end of the spectrum, it is well-known that
any regular Cayley map of a complete graph (with valence & equal to |H|—1) is also
balanced; see [5]. An immediate consequence of Lemma 5.1 extends the second of
these two results to regular Cayley maps of abelian groups.

Corollary 5.3 Let A be a finite abelian group, and let m be the smallest order of
a non-trivial subgroup of A. Then any reqular Cayley map CM (A, X,p) of valence
strictly larger than |A|—m is balanced.

Proof. Suppose that M = CM (A, X, p) is regular, with associated skew-morphism
¢ and power function 7, and further suppose |X| > |A| — m. Letting K = ker 7, we
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observe that since X is an orbit of ¢ and ¢ preserves K, either X C K or XN K = .
As the latter case would imply |X| < |A| — |K| < |A| — m, it is impossible, hence
X C K and therefore A = (X) C K, which forces K = A and so M is balanced. O

Another consequence of Lemma 5.1 is that ¢ permutes the cosets of ker 7, for if
b € kerm and z € A then ¢(bx) = ¢(b)p(x), which belongs to the same coset of ker 7
as ¢(z). Recall also that the sizes of the orbits of the group automorphism ¢ [yers
must all divide |X|. These two observations provide a lot of additional information
about the orbits of skew-morphisms of Cayley maps of finite abelian groups.

Because we are mostly interested in non-balanced Cayley maps, we will suppose
from now on that K = ker 7 is a proper subgroup of A, with X N K = (.

If z € X, and x and ¢(x) belong to the same right coset of K, then as previously
we have ¢(z) = hx for some h € K and find that ¢*(z) = ¢(¢(z)) = p(hz) =
o(h)™™(z) = p(h)p(z) = ¢(h)hz € Kz, so that also ¢*(x) belongs to the same
coset of K as z and ¢(z). By induction, it follows that the whole @-orbit of z is
contained in the same coset of K, and hence all the elements in the orbit are assigned
the same value of the power function 7, making the map ¢-balanced for some suitable
t. In particular, the orbit X has the same form (8) as encountered in the previous
section, namely

(z, hz, p(h)hz, ©*(h)p(h)hz, ..., g0|X|_2(h)<p|X|_3(h) . ¢*(h)p(h)hz).

Note here that = ¢ ker 7 while h € kerm, and |X| — 1 must be the smallest positive
integer k for which *(h)@*=1(h) ... % (z)p(z)h = 14.

On the other hand, suppose x € X but z and ¢(z) do not belong to the same
coset of K. Then for each i we find the consecutive elements ¢*(x) and ¢*™!(z) of X
must lie in different cosets of K (or otherwise we have the previous case). We claim,
however, that there must be a positive integer ¢ (strictly between 1 and |X|) such
that ¢'(z) and ¢"*¢(x) belong to the same coset of K for all i. To prove this, note
that m(g) # 0 for all g € A (see [4]) and w(x) # 1 for all z € X (since X N K = §),
and hence the powers assigned to the elements of X all lie strictly between 1 and | X|.
By the pigeonhole principle, X must contain at least two elements which are assigned
the same power and hence belong to the same coset of K = kerm. So now let ¢ be
the smallest positive integer such that for some 7 and j differing by ¢, the elements
¢'(z) and ¢?(z) lie in the same coset of K. This means that ¢’(z) = h¢'(z) for some
h € ker , which implies further by induction that the successors of 7 (z) must visit
the same cosets and in exactly the same order as the successors of ¢*(x). Moreover, as
 permutes cosets of K in A, we see that ¢ permutes the cosets containing elements
of the p-orbit of z in a cycle of length . Hence the elements of X may be listed as

z,  o(x), ), .., ¢ ),
bz, o(h)e(z), *(h)@*(@), ..., ¢ H(h)e" (),
haz, o(ha)p(z), ©*(ho)*(2), ... , ¢ ()" " (),
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b

hiw, o(h)o(@), ©*(hi)@? (@), .., ¢ ()" (2),
where h; = ¢*(hj_1)hy for1<j <k and ¢ (hg)h = 1a. (13)

Note that at least the first two rows of this list are necessary, so that £ > 1, and
that each h; is a non-trivial element of H (for 1 < j < k), and that the ¢ elements
T, 0(x), p%(2),. .., " (z) belong to mutually distinct cosets of K = ker 7.

These observations lead to the following theorem:

Theorem 5.4 Let M = CM (A, X,p) be a regular Cayley map of the finite abelian
group A, with associated skew-morphism . If the order |A| of A is odd, then either
M s balanced, or ker 7 is of index greater than 2 in A and X has the form given in
(13). On the other hand, if |A| is even, then either M is t-balanced for some t, or
ker 7 is of index greater than 2 in A and X has the form given in (13).

Proof. All that remains for us to prove is the assertion in the case where |A| is odd.
In this case A has no subgroup of index 2, so the map M cannot be t-balanced for
any t > 1, and hence is either balanced or of the form described by (13). ]

6 t-balanced Cayley maps for abelian groups

Next we concentrate our attention on t-balanced regular Cayley maps for abelian
groups, where the commutativity of multiplication implies additional results which
are not always true for t-balanced Cayley maps of other types of groups.

As we have already proved in Lemma 5.1, when the group is abelian the values of
the power function 7 must be congruent to 1 modulo the length of each of non-trivial
orbit of ¢ on ker 7, and therefore t must be congruent to 1 modulo the order of the
restriction @lgerx, as well as being a square root of 1 modulo X (by Lemma 4.1).

Recall also that when ¢ > 1, the elements of X are completely determined by a
non-involutory element z € X, the element h = ¢(z)z~! € kerm, and the (p-orbit
of h, as described in (8). In particular, as X is closed under inverses, we must have
rt=¢I(h)e! L(h)...po(h)hz for some j, in which case

2 = (@ (W) (h) ... o)™ € (h,o(h), o (B),..., ¢ (h) ).

Since X generates A, which is abelian, and x is the only element outside ker 7 used
in the expressions for the elements of X in (8), we conclude that

A=LULz where L={h,o(h),p*h),...,¢'(h)),

from which it follows that kerm = L.
Furthermore, if we assume ¢ > 1, we know that ¢ must be congruent to 1 modulo

the length of any non-trivial orbit of ¢ on ker 7. Considering, in particular, the orbit
Oy, of h, we know that |Oy| divides | X| and ¢ = 1 mod |Oy]|. Since t > 1, it follows
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that | X| > |Opl, and therefore | X| = k|O}| for some integer k > 1. If, however, h
were of order greater than 2 and O, contained h~! # h, then Oy, being an orbit of
a group automorphism | ker 7, would have to be closed under inverses, which would
imply

PO h) O 2 (h) .. p(R)h = 14.

Consequently, we would obtain
PO (RO (h) L p(h)ha =,

which would yield the identity |Op| = |X|. It follows that in the case where ¢ > 1
and h is a non-involution, the orbit ), contains the inverse of none of its elements
(which are, of course, all of the same order).

On the other hand, if ¢ > 1 and h has order 2, then all the elements of O
are involutions, the product of which cannot possibly be equal to 15 as that would
again imply |O| = | X|. Hence in this case, ker 7, being an abelian group generated
by involutions, must be an elementary abelian 2-group, isomorphic to Z$ for some
s < |04, and the whole group A is then isomorphic to a Z,-extension of Z3.

In the case where ¢t = |X| — 1, we get an additional result for ker 7. Here the
congruence t = 1 mod |Oy| implies that | X | = 2 mod |0/, but then since | X]| is also
divisible by |0, we find 0 = 2 mod |O,|, and conclude that |Op| is 1 or 2. In turn
this implies that ker 7 (being generated by O},) is an abelian group of rank 1 or 2.

In the case where the orbit Oy, is of size 1 (that is, when & is a fixed point of ¢),
our previous observation may be reversed, as follows. Suppose that ¢(h) = h. Then
the p-ordering of X has the form

[z, hx, hz, BPz, ..., WX "1z],

where h is an element of ker 7 of order |X| > 2. In particular, z=' = h/z for some j.
But now for any 7 we have (hiz)™! = z7'h™" = WWaxh™" = W/ "'z (as A is abelian), so

p((h'2)™) = (W ~'z) = p(K ")p(z) = Ko = (" '2) ™" = (¢~ (K'z)) ™

for all 4, which shows that the map is anti-balanced. Hence if h is fixed by ¢, then
ker 7 is cyclic (generated by the element h = ¢(z)x™!), the map is anti-balanced,
and ¢ is an anti-automorphism of A. Many easy examples of this situation can be
constructed, as below.

Example 6.1 Let A be the cyclic group Zg under addition mod 8, and let K be
the cyclic subgroup generated by 2, of order 4. Take x = 1 and suppose (1) = 3
(so that h = 2) while k= idx. Then ¢ = (0)(2)(4)(6)(1,3,5,7), giving an anti-
automorphism of Zs, and the resulting Cayley map CM(Zg,{1,3,5,7}, ) is anti-
balanced.

The observations we have made following Theorem 5.4 may be summarized in the
following:
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Lemma 6.2 Let M = CM(A, X,p) be a t-balanced regular Cayley map of a finite
abelian group A, wheret > 1, and let ¢ be the associated skew-morphism, m the power
function, x a non-involutory element of X, and h = p(x)x~'. Then each of the
following holds:

(a) 22 € (h,o(h),*(h),...,0 (h)) for some j;

(b) kerm = (h,(h), ¢*(h), ..., ¢’ (h)), where j is as in (a), and so ker 7 is generated
by the w-orbit of h;

(c) the length |X| of the -orbit X is a proper multiple of the length |On| of the
orbit of Ylxerr containing h;

m(z)? =1 mod |X|;
7(x) =1 modulo the order of Qlxern;

)
)
f) if h has order 2, then kerm = Z5 for some s < |Op;
) if t=1|X|—1, then |On| <2, and ker 7w is either cyclic or of rank 2;
)

if |Onl =1, then ¢ is an anti-automorphism of A, and ker 7 is cyclic.

Part (g) of the above result can be further extended to obtain a general upper
bound on the rank of the group A itself.

Theorem 6.3 If the finite abelian group A has a t-balanced regular Cayley map
CM (A, X,p), witht > 1, then the rank of A is bounded above by min(t—1, | X |—t+1).

Proof. Recall that when ¢ > 1, we know that '~! acts trivially on K = ker 7, and that
the elements of X are completely determined by a single element x € X and the ¢-
orbit of the element h = p(z)z~! € ker 7. Letting ¢ = ¢*=2(h)p!=3(h) ... *(h)p(h)h,
we note that the terms of this product are permuted by ¢, and therefore p(c) = c. It
follows that the elements of X may be listed as follows:

z, hz, p(h)hz, ¢*(h)e(hhz, ..., "> (h)p"™*(h) ... ¢*(h)e(h)hz,

cz, chx, cp(h)ha, cp*(R)p(h)ha, ..., cp'>(R)p"*(h)...o*(R)p(h)hz,
Az, hx, Ap(h)hx, Ap*(h)p(h)hx, ..., A3 (h)p=*(h)...o*(h)p(h)hz,
Az, *hx, p(h)hz, Ap*(h)p(h)hz, ... , and so on.

In particular, it follows that A = (X) = (z, ¢, h, p(h), %, ..., 0" 4(h), " 3(h)), and
thus A has rank at most t.
But further, if x is an involution then

1= (1) = ¢(2°) = p(az) = p(2)¢'(z) = (hz)(chz) = c(hz)*

2

and so ¢ = (hz)~#, which reduces the rank of A to at most ¢t — 1.
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On the other hand, if z is not an involution, then since ! € X we find that
either 7! = ¢/z for some j, in which case

1= ¢(zdz) = p(2)¢'(2) = (2)¢' (') ¢'(x) = (hz)(d')(ch) = ch*zcz = ch?

and therefore ¢ = h™2, or otherwise z 1 = /¥ (h)* 1(h)...*(h)p(h)hz for some
j and some k with 1 < k£ < t—3, in which case

Pt (h) € (z,¢,h, 0(h), (), ..., "2 (h), " (R)),

and in both cases the rank of A reduces to at most ¢ — 1.

Next let s = | X |—t. Because ¢ has order |X| and ¢'~! acts trivially on K = ker,
we see that also p**! acts trivially on K. Adopting a similar approach to the one
above, we may take ¢ to be the product ¢*(h)¢**(h)...o*(h)e(h)h, and find that
o(c) = ¢ and that A = (z,c, h, o(h), ?, ..., 0 2(h), 0*"'(h)), of rank at most s+ 2.

Moreover, the same arguments as above show that either ¢ = h~2 or otherwise
o*(h) € (z,¢, h,p(h), 2, ..., 0" 2(h), ¢*1(h)) for some k with 1 < k < s — 2, and
hence the rank of A reduces to at most s+ 1. This proves the theorem. a

Hence, for example, if £ = 3 then A has rank at most 2, while if ¢ = | X| — 3 then
A has rank at most 4. Before proceeding with some more examples, we should note
that if ¢ = +2 then 3 =¢* — 1 = 0 (mod |X]|), so |X| = 3 and then ¢t =1 or | X|—1,
which are cases covered previously.

Example 6.4 Let us construct a reqular 3-balanced abelian Cayley map CM (A, X, p).
FEzcept in degenerate cases, when t = 3 the rank of A is at least 2 (as shown in Ez-
ample 4.3), and hence exactly 2 (by Theorem 6.3). Also | X| = 8, and p must have
the form (11). Furthermore, A is a 2-extension of kerm, and the elements in (11)
must all belong to A\ kern. It follows that |A| > 16. If X consisted of all the ele-
ments in A\ ker 7, it would certainly be closed under inverses and generate all of A.
The most obvious possibility to consider is therefore one in which A = Zg X Zy, with
kerm = {(¢,0) | i € Zg}, and X = {(i,1) | i € Zg}. We will also take x = (1,1) in X.

The restriction of the potential skew-morphism ¢ to ker m must be an isomorphism
of kerm, with t = 3 congruent to 1 modulo its order, hence Q|xerr has order 1 or 2.
If Qlxerr 18 trivial then ¢ is an anti-automorphism (by Lemma 6.2(h)), so its order
must be 2. Now there are three automorphisms of Zg x {0} of order 2, taking (1,0) to
(3,0), (5,0) and (7,0) respectively, but if we want x(x) = 2 as required to achieve the
distribution of inverses given by (11) in Ezample 4.3, then we need =1 = z+h+p(h),
so that h+ p(h) =z~ — 2 = (7,0) — (1,0) = (6,0). Hence we may choose h = (1,0)
and the automorphism of Zg x {0} taking (1,0) to (5,0). This gives a 3-balanced
skew-morphism for Zg X Zo which permutes the elements of a generating set in a
cycle

p=((1,1),(2,1),(7,1),(0,1),(5,1), (6,1),(3,1),(4,1) ).

Note also that all regular 3-balanced abelian Cayley maps can be constructed in
this manner: the underlying group A must be a rank 2 abelian group with factors of
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even order and having a subgroup of index 2 that admits an automorphism of order
2 whose orbit can be used to produce the permutation p of the form (11).

Example 6.5 We give an example of a reqular (—3)-balanced abelian Cayley map
CM (A, X,p). Here we require from Example 4.4 and Theorem 6.3 that | X| =8, and
p takes the form (12), and A must have rank 3 or 4.

Let A =17, x Z3, and define the skew-morphism ¢ on A with kernel K = ker 7 =
{(3,4,k,0) | i € Zy, j,k € Zs} by setting ¢(i,5,k,0) = (i + 2k,i + k,5,0) and
o(i,5,k,1) = (1 +2k— 1,0+ k+1,5,1) for all i € Zy and j,k € Zy. Note that
@ restricts to an automorphism of K taking (1,0,0,0) to (1,1,0,0), (0,1,0,0) to
(0,0,1,0), and (0,0,1,0) to (2,1,0,0), and that the cycle of ¢ containing the element
z = (0,0,0,1) under ¢ is given by p = ((0,0,0,1),(3,1,0,1),(2,0,1,1),(3,0,0,1),
(2,0,0,1),(1,1,0,1),(0,0,1,1),(1,0,0,1)). This cycle has the required form (12),
and its elements generate A, so ¢ is a (—3)-balanced skew-morphism for A.

The examples presented above suggest that the upper bound given in Theorem 6.3
could be sharp. As we shall prove next, this is indeed the case. The following lemma
asserts that automorphisms of the kind used in the above examples exist in general.

Lemma 6.6 For any positive integers m and n of equal parity, there exists an au-
tomorphism 0 of the abelian group B = Zo, X (Zy)™ 2 such that 6 has order m,

the orbit under 0 of some element b (of order 2n) generates B, and the product
bo(b) 0*(b) ... 0™ (b) equals b™+".

Proof. Choose generators by, bs, ..., b,_1 for B such that b; has order 2n while all
the other b; all have order 2, and define 6 by setting 6(b;) = bibe, 6(b;) = b;y1 for
2 <1 <m-—2, and

H(b 1) _ { b?b2b4 e bm—4bm—2 if m is even

me b?bgb{; ce bm—4bm—2 if m is odd.

Then clearly the orbit of b, under # generates B. Next, #° takes b; to bib, . ..b;b; 1
for 0 < i < m—2, and ™' takes by to b7 lbgbs. .. bp_sbm_1 if m is even, or to
b boby . . . byy_3by,_ if m is odd, and therefore ™ takes b, to b3 0512 if m is even,
or to b2"1Hi ! if m is odd. Because b; has order 2n, and m and n have the same
parity, it follows that ™ (b;) = b; in both cases. In particular, § has order m. Finally
if m is even then

bi0(b1)0%(by) ... 0™ (by) = BRI AR T bt b GbE bE = b
while if m is odd then
b10(b1)0%(by) ... 0™ (by) = BT TIOETENTE LB 02 = b

so in both cases the product of the distinct images of b; under powers of 8 is b7*™™. O

We can now prove the following theorem, which provides for each ¢ > 3 examples
of regular Cayley maps for which the rank bound from Theorem 6.3 on the underlying
group is met.
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Theorem 6.7 For every positive integert > 3 there exists a t-balanced reqular Cayley
map for the abelian group Zoyi1y X (Z2)'? of rank t — 1, and a (—t)-balanced regular
Cayley map for the abelian group Zoy 1y X (Zy)" of rank t + 1. In both cases, the
valence of the map is equal to t? — 1.

Proof. Take m =t —1and n =t + 1 in the first case, and m=t+landn=1¢—1
in the second case, and let A = Zy, X (Zy)™ '. Note that m + n = 2¢ in both cases.
Choose generators by, bs,..., b, for A such that b; has order 2n while the other b;
have order 2, let B be the subgroup generated by by, b, ..., b, 1, and define € as in
the proof of Lemma 6.6. Now extend the definition of this automorphism 6 to a skew
morphism ¢ of A by setting ¢(a) = 0(a) and ¢(ab,,) = 0(a)b; 'bab,, for all a € B.

Let x = b,,, and observe that in both cases ¢(b;) = b1by, so p(b?) = b2, and also
o(z) = by'box, so that ¢(b1x) = bibyby bz = x, and therefore ¢ ~'(z) = byz. In
particular, it follows that ¢ =2(z) = 671(by)biz and ¢ =3(z) = 072(b,)0~'(b1)b1z, and
so on, so that

™) = 0™ D (by) .07 (by)byx = 0(b1)0%(by) . .. 0™ (by) bz = b = b

In the first case, this tells us that ¢~ ¢~ (z) = b¥x = by %z, therefore (b7 %z) =
(1 (b7%x)) = ¢(x), and it follows that

o' (z) = o' (b7b7%x) = ' (b]) " (b5 %z) = bip(x) = bIby 'bow = bibox = (z) ™,

so that the skew-morphism ¢ is ¢-balanced, as required.
In the second case, ¢~ (z) = b?*z = b?z, and hence

¢ H(z) = ol (@) = p(biz) = P(B))(x) = bTb; 'ber = bibox = p(z) !,

so that ¢ is (—t)-balanced in this case.

Finally, it is easy to see that the valence | X | (which equals the length of the orbit
of z under ¢ ) in each case is the product of the order m of ¢[p= 6 and the order of
the element b""™ = b2, which is n since ¢ is coprime to n = t 4+ 1. Hence in each case
we have |X| =mn =t*> — 1. O

To conclude this section, we revisit the length of X with respect to the length of
the orbit O, containing h, under the additional assumption that h is not fixed by .
We already know that | X | is a proper multiple of |0} |, and as h is not fixed by ¢, also
|On| > 1. Thus, | X| > 2|Oy| > 4. Denoting |Oy| by £, we find the first £ elements of
the ¢-ordering of X are

z, hx, p(h)hz, o*(h)p(h)hz, ..., cp£’2(h)gozf3(h)...cp2(h)<p(h)hac,

and then these are followed by subsequences of length ¢ each of the form
w', hw', p(h)hw', @*(R)p(h)hw', ..., ¢ 2(h)e"2(h) ... o*(R)p(h)hw',

where w = ¢*1(h)p*2(h)...0*(h)p(h)h is an element of ker 7 of order k = | X|/Z.
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In addition, if we want ¢ to be a skew-morphism of A which is neither a group
automorphism nor an anti-automorphism of A, then |X| must satisfy the condition
that Z x| contains a square root ¢ of 1 different from 41, and hence, for example,
| X| # 4,5,6,7,9,10,11,13, ... . The possibilities for n = |X| are given precisely by
case (c) of the following lemma, which can obtained from properties of the Euler
¢-function and a simple application of the Chinese Remainder Theorem:

Lemma 6.8 For any positive integer k, the number of square roots of 1 in Zy, is
(a) 1 if k=2,
(b) 2 if k=4 or k=1p’ or2p’ where p is an odd prime, j >0, and

(c) more than 2 if k=27 wherej >3, or k=2/s wherej > 2 and s > 1 is odd,
or k s divisible by two distinct odd primes.

As an illustration we give the following:

Example 6.9 In Z5 there are two square roots of 1 other than 1 and —1, namely
5 and 7. Moreover, there exist reqular 5- and T-balanced Cayley maps for numerous
finite abelian groups with valence 12. One such map arises from a skew-morphism ¢
of the cyclic group Csy, defined in terms of a multiplicative generator x for Csy by

. 7j . . .
iy [z if j is even
o) {x79+10 if § is odd.

In this case ¢ induces the group automorphism h — h” on the kernel of the asso-
ciated power function w, of index 2 in Csy, the generating-set X may be taken as
{xt, 2, 2% 213, 2 2?7 2% 2B 2?27 2% 2% }, with w(y) = 5 for all y € ker .

In fact, we can show that a t-balanced regular Cayley map of valence |X| exists
for every feasible pair (t,|X]), as promised in the comments following Lemma 4.2.

Theorem 6.10 Let t and v be positive integers such that t < v and t> = 1 mod v.
Then there exists a t-balanced regular Cayley map CM(A, X, p) of valence | X| = v.

Proof. To begin with, suppose ¢t = 1. In this case take A = ZY and p = (ey, €9, . . ., €),
where X = {ej, es,...,e,} is the standard basis for Z4. The Cayley map CM (A, X, p)
is then a regular 1-balanced Cayley map of valence v, and this construction is valid
for every v > 1. Similarly if £ > 2 and v = t + 1, we may take A = Zy X Z,, and
X =1{(1,0),(1,1),(1,2),...,(1,v — 1)}, and p = ( (1,0), (1,1),(1,2),...,(L,v—1) ),
and then CM (A, X,p) is a regular ¢t-balanced Cayley map of valence v. Also recall
that if t = v — 2, then 1 = t? = 4 mod v and therefore v = 3 and t = 1. Hence for
the remainder of the proof we may suppose that 3 <t <wv — 3.

Now let M be the t-balanced Cayley map of valence ¢t — 1 that was given in the
proof of Theorem 6.7 for the group A = Zs41) X (Z3)""?, let ¢ be the corresponding
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skew-morphism of A, and let y be the element () = by 'box = b7 byb;_1. Then the
orbit of y under ¢ is X, which is of length ¢ —1, is closed under inverses and generates
A, and furthermore, as ¢©'~!(y) = ¢'(x) = (¢(z))~", the distance x(y) between y and
y~!in the cycle p representing the action of ¢ on this orbit is ¢t — 1.

Next, as t? = 1 mod v we know that t* — 1 = kv for some k, and by Corollary
5.2, the function ¢ is also a t-balanced skew-morphism of A. As k divides the length
of the @-orbit X, the skew-morphism ¢* has exactly k orbits on X, each of length v.
We claim that at least one of these new orbits is closed under inverses, namely the
orbit (z, o*(2), p*(2), ..., "Vk(2)) containing the element z = ¢*~1(y) = ©*(x).
To see this, recall that the distance of the latter element z from its inverse in the
original orbit of ¢ may be determined as follows:

Xx(2) =x@ W) =x@)+ k—)((y) 1) =t -1+ (k—-1)(t—1) =kt — 1).

It follows that z=* = *(*~1) (%), and hence the inverse of z belongs to the same orbit
of ©* as z. Moreover, for any i we have

x(@"(2) = x(" W) = x(w) + (ki + k= D)(n(y) — 1) = k(i + 1) (¢t — 1)

and so (¢*(2))7! = @FEFDED(2)) which implies that the orbit X' of z under the
action of the ¢-balanced skew-morphism ¢* is closed under inverses.

Finally, recall that skew-morphisms preserve subgroups generated by their orbits
(as noted at the end of Section 3). Thus ¢* is a ¢t-balanced skew-morphism of the sub-
group A’ = (2, ¢*(2), 0*(2),. .., " Vk(2)), and the Cayley map CM (A, X', (o*)1.4/)
is a regular t-balanced Cayley map of valence v. O

7 Regular anti-balanced maps for abelian groups

We saw in the previous section that 3-balanced regular abelian Cayley maps are all
of the same form. The results of the previous section can also be applied to obtain a
complete classification in the anti-balanced case t = | X| — 1.

First consider the following three families, each involving an anti-automorphism
@ of an abelian group A. Our notation is consistent with Lemma 6.2, namely: z is
an element of the generating set X, h is the element of the kernel of ¢ such that
¢(x) = hz, and k is another element of the kernel (if needed). The abelian group A is
given by a presentation in terms of generators z and h (and k if needed), however we
omit, from the presentation those relations which say that the generators commute.
Also we describe the effect of ¢ only on z and the generators of K = ker ¢, noting that
the definition of ¢ is naturally extended from K to the coset Kz by p(ax) = ¢(a)p(z)
for any a in K.

(i) A=Z9 X Zp = {x,h:2*> =h"=1)a, @(x)=hz and p(h) = h;
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(i) A=Zo, =(x,h:272=h,h" =1),, o(z)=hz and ¢(h) = h" where r* =1
mod n;

(i) A =Zp X Zopy = (T, hk : 72 = h, k™ = k™, W™ = k™ = 1), o(z) = hz,
o(h) =k and (k) = h.

For each family, it is clear that the subgroup K generated by h (and k in case (iii))
has index 2 in A, and that the restriction of ¢ to K is an automorphism of order 2,
so that ¢! = ¢ on K. To verify that ¢ is an anti-automorphism of A, it suffices to
check that ¢(xb) = p(x)p~'(b) for every b in A. This in turn reduces to showing that
p(zz) = p(x)p~'(z), and as p(z) = ha implies © = ¢~ (h)p~ (z) = p(h)p~ (2),
this is equivalent to showing ¢(zz)z~! = hzp(h)~!. Both sides of the latter equation
equal z in case (i), and z7'h~" in case (ii), and z7'k~! in case (iii), so this verification
is easy. Finally, the orbit X of x under ¢ clearly generates A, and is closed under
inverses (as the inverse of x is either x or hx in each case). Type (i) appears in [11],
and in the discussion before Lemma 6.2.

Our main result for this section is that these are the only types of anti-balanced
regular Cayley maps for finite abelian groups.

Theorem 7.1 If the finite group A has an anti-balanced reqular Cayley map, then A
is isomorphic to one of the groups Zo X 4y, Lo, o1 Zy X Loy, where m and n are
positive integers. Furthermore, the group A has an anti-automorphism ¢ of one of
the three types (i), (ii) and (iii) listed above.

Proof. The proof is similar to that of Theorem 6.3, and we use the same notation.
Recall that the kernel K of the skew-morphism ¢ is a subgroup of index 2 in A,
and that the restriction of ¢ to K is an automorphism of K, of order 2. By Lemma
4.2 (with t = —1), the distances between inverses in the cycle representing ¢ on the
generating set X are given by j — 2¢ for some fixed j and variable ¢, and it follows
that there must be an element z in X such that the distance from z to 7! is 0 or 1.
This implies either 22 = 1 or ¢(x) = 2~ *. In both cases, let h = ¢(z)z ! as usual.
If 22 = 1, then h = zp(x) so p(h) = p(rp(z)) = p(z)p '(p(z)) = haz = h,
therefore A is generated by = and h, and we have an anti-balanced map of type (i).
If p(z) = 71, then hx = 7! so 272 = h, and hence A is generated by z and
k = o(h). If p(h) lies in the subgroup generated by h, then A is cyclic (generated
by z), and we have an anti-balanced map of type (ii). If not, then A has rank 2, and
letting n be the order of the intersection of the conjugate cyclic subgroups generated
by h and £, and m be the index of this subgroup in the cyclic subgroup generated by
h (which equals the smallest positive integer j for which k7 is a power of h), we have
an anti-balanced map of type (iii). O

8 Other regular Cayley maps for abelian groups

All the maps constructed above have the property that the power function 7 is con-
stant on the generating set X. Cayley maps CM (A, X,p) for which X contains
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elements from different cosets of ker 7 (with index |A : ker 7| > 2) appear to be much
more difficult to investigate. We have observed that in these cases the ordering of X
induced by ¢ must be of the form (13), given just prior to Theorem 5.4. Although
this puts what appear to be restrictive conditions on the elements h;, it turns out
there are several examples in which this phenomenon occurs. One is given below.

Example 8.1 Consider the direct product A = Cgx C3 of two cyclic groups generated
by elements u and v of orders 6 and 3, written multiplicatively. This group has
a skew-morphism ¢ given by the permutation (1) (u,u™!v?v™t u=3v, v v, uv™!)
(w2, v v, vo, 207 um?) (ud) (uwv,u o) (vt umw).  All the orbits of this
skew-morphism ¢ are closed under inverses, and the second one contains a generating
set X for the group; indeed the @-ordering of X is of the form [a,a™,b,b7", ¢c,c71.

The kernel K = ker 7 of the associated power function 7 is the subgroup generated
by ab® = uv, of order 6, and contains the elements of the last two orbits plus the two
fixed elements of . Coset representatives for ker w in the group A may be taken as 1,
v and v, and the power function 7 associated with o is given by w(h) = 1,7(hv) = 3
and m(hv™') =5, for all h € K. Note that all T-values are odd, as expected, since the
orbits of ¢ on K are all of length 1 or 2. The distribution of the w-values over the
generating set X is [5,3,5,3,5,3].

In conclusion we note that there are just two kinds of distributions of the values
of power functions assigned to the generators of regular Cayley maps of finite abelian
groups: either all these powers are the same, or they form a sequence in which a
basic proper subsequence of distinct powers is repeated a number of times. Since
the values of the power function on the generators can be computed from the inverse
distribution x alone, it follows that the result in [9] stating the existence of a regular
Cayley map for each distribution of inverses does not remain true when restricted
to finite abelian groups; in other words, there exist possibilities for x such that no
simple regular Cayley map C M (A, X, p) for a finite abelian group A has distribution
of inverses equal to Y.

A substantial amount of further theory of regular Cayley maps for finite abelian
groups is given in [2].
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