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Abstract

A graph Γ is symmetric if its automorphism group acts transitively on the arcs
of Γ, and s-regular if its automorphism group acts regularly on the set of s-arcs of Γ.
Tutte (1947, 1959) showed that every cubic finite symmetric cubic graph is s-regular
for some s ≤ 5. Djokovič and Miller (1980) proved that there are seven types of
arc-transitive group action on finite cubic graphs, characterised by the stabilisers of
a vertex and an edge. A given finite symmetric cubic graph, however, may admit
more than one type of arc-transitive group action. In this paper we determine exactly
which combinations of types are possible. Some combinations are easily eliminated
by existing theory, and others can be eliminated by elementary extensions of that
theory. The remaining combinations give 17 classes of finite symmetric cubic graph,
and for each of these, we prove the class is infinite, and determine at least one
representative. For at least 14 of these 17 classes the representative we give has the
minimum possible number of vertices (and we show that in two of these 14 cases
every graph in the class is a cover of the smallest representative), while for the other
three classes, we give the smallest examples known to us. In an Appendix, we give
a table showing the class of every symmetric cubic graph on up to 768 vertices.
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2000 Mathematics Subject Classifications: 05C25, 20B25.

1 Introduction

By a graph we mean an undirected finite graph, without loops or multiple edges. For

a graph Γ, we denote by V (Γ), E(Γ) and Aut(Γ) its vertex set, its edge set and its

automorphism group, respectively.

An s-arc in a graph Γ is an ordered (s+1)-tuple (v0, v1, . . . , vs−1, vs) of vertices of Γ such

that vi−1 is adjacent to vi for 1 ≤ i ≤ s, and also vi−1 6= vi+1 for 1 ≤ i < s; in other words,

1Supported by the Marsden Fund of New Zealand via grant UOA 0412
2Supported by grant VEGA 2/2060/22 of the Slovak Academy of Sciences and grant APVT-51-012502

1



a directed walk of length s which never includes the reverse of an arc just crossed. A graph

Γ is said to be s-arc-transitive if its automorphism group Aut(Γ) is transitive on the set of

all s-arcs in Γ. In particular, 0-arc-transitive means vertex-transitive, and 1-arc-transitive

means arc-transitive, or symmetric. An arc-transitive graph Γ is said to be s-regular if

for any two s-arcs in Γ, there is a unique automorphism of Γ mapping one to the other.

For s ≥ 1, an s-regular graph is a union of isomorphic s-regular connected graphs and

isolated vertices. Hence in what follows, we consider only non-trivial connected graphs.

Every connected vertex-transitive graph is regular in the sense of all vertices having the

same valency (degree), and when this valency is 3 the graph is called cubic.

Tutte [20, 21] proved that every finite symmetric cubic graph is s-regular for some

s ≤ 5. The stabiliser of a vertex in any group acting regularly on the s-arcs of a (connected)

cubic graph is isomorphic to either the cyclic group Z3, the symmetric group S3, the direct

product S3 × Z2 (which is dihedral of order 12), the symmetric group S4 or the direct

product S4 × Z2, depending on whether s = 1, 2, 3, 4 or 5 respectively. In the cases s = 2

and s = 4 there are two different possibilities for the edge-stabilisers, while for s = 1, 3 and

5 there are just one each. Taking into account the isomorphism type of the pair consisting

of a vertex-stabiliser and edge-stabiliser, this gives seven classes of arc-transitive actions of

a group on a finite cubic graph. These classes correspond also to seven classes of ‘universal’

groups acting arc-transitively on the infinite cubic tree with finite vertex-stabiliser (see

[15, 17]). It follows that the automorphism group of any finite symmetric cubic graph is

an epimorphic image of one of these seven groups, called G1, G
1
2, G

2
2, G3, G

1
4, G

2
4 and G5

by Conder and Lorimer in [11].

We will use the following presentations for these seven groups, as given by Conder and

Lorimer in [11] based on the analysis undertaken in [15, 17]:

G1 is generated by two elements h and a, subject to the relations h3 = a2 = 1;

G1
2 is generated by h, a and p, subject to h3 = a2 = p2 = 1, apa = p, php = h−1;

G2
2 is generated by h, a and p, subject to h3 = p2 = 1, a2 = p, php = h−1;

G3 is generated by h, a, p, q, subject to h3 = a2 = p2 = q2 = 1, apa = q, qp = pq,

ph = hp, qhq = h−1;

G1
4 is generated by h, a, p, q and r, subject to h3 = a2 = p2 = q2 = r2 = 1, apa = p,

aqa = r, h−1ph = q, h−1qh = pq, rhr = h−1, pq = qp, pr = rp, rq = pqr;

G2
4 is generated by h, a, p, q and r, subject to h3 = p2 = q2 = r2 = 1, a2 = p, a−1qa = r,

h−1ph = q, h−1qh = pq, rhr = h−1, pq = qp, pr = rp, rq = pqr;

G5 is generated by h, a, p, q, r and s, subject to h3 = a2 = p2 = q2 = r2 = s2 = 1,

apa = q, ara = s, h−1ph = p, h−1qh = r, h−1rh = pqr, shs = h−1, pq = qp, pr = rp,

ps = sp, qr = rq, qs = sq, sr = pqrs.
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Given a quotient G of one of the seven groups above by some normal torsion-free

subgroup, the corresponding arc-transitive graph Γ = (V,E) can be constructed in the

the way described in [11]. Let X be the generating set for G consisting of images of

the above generators h, a, . . . , and let H be the subgroup generated by X \ {a}. For

convenience, we will use the same symbol to denote a generator and its image. Now take

as vertex-set the coset space V = {Hg | g ∈ G}, and join two vertices Hx and Hy an

edge whenever xy−1 ∈ HaH . This adjacency relation is symmetric since HaH = Ha−1H

(indeed a2 ∈ H) in each of the seven cases. The group G acts on the right cosets by

multiplication, preserving the adjacency relation. Since HaH = Ha ∪ Hah ∪ Hah−1 in

each of the seven cases, the graph Γ is cubic and symmetric. This ‘double-coset graph’

will be denoted by Γ = Γ(G,H, a).

In some cases, the full automorphism group Aut(Γ) may contain more than one sub-

group acting transitively on the arcs of Γ. When G′ is any such subgroup, G′ will be the

image of one of the seven groups G1, G
1
2, G

2
2, G3, G

1
4, G

2
4 and G5, and Γ will be obtainable

as the double-coset graph Γ(G′, H ′, a′) for the appropriate subgroup H ′ and element a′ of

G′. Such a subgroup G′ of Aut(Γ) will said to be of type 1, 21, 22, 3, 41, 42 or 5, according

to which of the seven groups it comes from. For example, the Petersen graph is 3-regular,

with automorphism group S5 of order 120 and type 3, but also A5 acts regularly on its

2-arcs, with type 21 (since A5 contains involutions that reverse an edge). Another way of

saying this is that there exists an epimorphism ψ : G3 → S5 (with torsion-free kernel), and

the restriction of ψ to the subgroup G1
2 (of index 2 in G3) maps G1

2 to A5. On the other

hand, the Sextet graph S(17) constructed in [2] has automorphism group PSL(2, 17) of

order 2448 and type 41, but the simple group PSL(2, 17) contains no proper subgroup of

index up to 16, and hence contains no other subgroup acting arc-transitively on S(17). In

this case, there is an epimorphism θ : G1
4 → PSL(2, 17) (with torsion-free kernel), but the

restriction of θ to the subgroup G1 (of index 8 in G1
4) maps G1 onto PSL(2, 17).

In this paper we provide a more detailed classification of finite symmetric cubic graphs,

by determining exactly which combinations of types are realisable for arc-transitive sub-

groups of the full automorphism group. Some combinations are easily eliminated by

existing theory (such as in [11, 15, 17]), and others will be eliminated by elementary ex-

tensions of that theory, in Section 2. The remaining combinations give 17 classes of finite

symmetric cubic graph. We provide further general background to some of these in Section

3, and then in Section 4 we give detailed information about each one.

For each of the 17 classes, we give at least one representative, including the absolute

smallest in 14 cases, and the smallest known to us in the other three. Also we prove that

each class is infinite — in fact in two cases, every graph in the class is a cover of the

smallest representative — and we consider the question of whether the graphs in each

class are bipartite.

The complete classification is summarised in Section 5, and the class of every finite
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symmetric graph on up to 768 vertices is given in a table (showing other information about

each graph) in an Appendix. We gratefully acknowledge the assistance of the Magma

system [3] in the investigations published here.

2 Non-admissible combinations

The following relationships between the seven groups G1, G
1
2, G

2
2, G3, G

1
4, G

2
4 and G5 are

known, and obtainable from the theory developed in [11, 15, 17].

Proposition 2.1

(a) In the group G1
2, the subgroup generated by h and a has index 2 and is isomorphic

to G1;

(b) The group G2
2 contains no subgroup isomorphic to G1;

(c) In the group G3, the subgroup generated by h, a and pq has index 2 and is isomorphic

to G1
2, the subgroup generated by h, ap and pq has index 2 and is isomorphic to G2

2,

and the subgroup generated by h and a has index 4 and is isomorphic to G1;

(d) In the group G1
4, the subgroup generated by h and a has index 8 and is isomorphic

to G1, but there are no subgroups of index 2 isomorphic to G3 and no subgroups of

index 4 isomorphic to G1
2 or G2

2;

(e) In the group G2
4, there are no subgroups of index up to 8 isomorphic to G1, G

1
2, G

2
2

or G3;

(f) In the group G5, the subgroup generated by hpq, a and pq has index 2 and is isomor-

phic to G1
4, the subgroup generated by hpq, ap and pq has index 2 and is isomorphic

to G2
4, and the subgroup generated by h and a has index 16 and is isomorphic to G1,

but there are no subgroups of index up to 8 isomorphic to G1
2, G

2
2 or G3.

As a consequence of these relationships, we know the following:

Corollary 2.2 Let G be an arc-transitive group of automorphisms of a finite symmetric

cubic graph Γ. Then

• if G has type 22, then G contains no subgroup of type 1;

• if G has type 41, then G contains no subgroup of type 21, 22 or 3;

• if G has type 42, then G contains no subgroup of type 1, 21, 22 or 3;

• if G has type 5, then G contains no subgroup of type 21, 22 or 3.
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This puts a severe restriction on the combinations of types of that are realisable. For

example, no such graph can have arc-transitive subgroups of both the types 22 and 41;

other such conditions are described in detail in [15, Section 6].

Once combinations like {22, 41} are eliminated, we are left with just 23 possibilities to

consider:

1-arc-regular Γ : {1} only
2-arc-regular Γ : {1, 21}, {21}, {22}
3-arc-regular Γ : {1, 21, 22, 3}, {1, 21, 3}, {1, 22, 3}, {21, 22, 3}, {1, 3}, {21, 3}, {22, 3}, {3}
4-arc-regular Γ : {1, 41}, {41}, {42}
5-arc-regular Γ : {1, 41, 42, 5}, {1, 41, 5}, {1, 42, 5}, {41, 42, 5}, {1, 5}, {41, 5}, {42, 5}, {5}.

But further, we have:

Proposition 2.3 If the automorphism group of a 3-arc-regular finite cubic graph has an

arc-transitive subgroup of type 1 (and index 4), then it also has arc-transitive subgroups

of types 21 and 22 (and index 2). Similarly, if the automorphism group of a 5-arc-regular

finite cubic graph has an arc-transitive subgroup of type 1 (and index 16), then it also has

arc-transitive subgroups of types 41 and 42 (and index 2).

Proof. The first part of this was proved in [15, Proposition 26], but can also be explained

as follows. Suppose Γ is a 3-arc-regular finite cubic graph, and ψ : G3 → Aut(Γ) is an

epimorphism with the property that the restriction of ψ to the subgroup M generated by

h and a (of index 4 in G3) maps M to a subgroup G of index 4 in Aut(Γ). Then the action

of Aut(Γ) by right multiplication on right cosets of G is equivalent to the corresponding

action of G3 on cosets of M , namely the following:

h 7→ (M)(Mp)(Mq)(Mpq), a 7→ (M)(Mp,Mq)(Mpq),
p 7→ (M,Mp)(Mq,Mpq), q 7→ (M,Mq)(Mp,Mpq).

The kernel of this action is the subgroup K generated by h and aha, of index 8 in G3, and

the quotient G3/K is dihedral. In particular, and since aha = aphpa = (ap)h(ap)−1, the

subgroup K is contained in the two subgroups 〈h, a, pq〉 and 〈h, ap, pq〉 given in Proposition

2.1(c) as isomorphic to G1
2 and G2

2 respectively, and these must be taken by ψ to subgroups

of index 2 in Aut(Γ). Thus Aut(Γ) contains arc-transitive subgroups of types 21 and 22.

The case in which Γ is 5-arc-regular is analogous to this one, except the subgroup M

generated by h and a has index 16 in G5, and its core K in G5 is the subgroup generated

by all conjugates of the element (ha)4(h−1a)4ha(h−1a)2(ha)2h−1a and has index 112896.

(These facts can be verified with the help of Magma [3].) Since K is contained in the two

subgroups 〈hpq, a, pq〉 ∼= G1
4 and 〈hpq, ap, pq〉 ∼= G2

4 given in Proposition 2.1(f), it follows

that Aut(Γ) contains arc-transitive subgroups of types 41 and 42.

This eliminates the possibility of the combinations {1, 21, 3}, {1, 22, 3} and {1, 3} for 3-

regular cubic graphs, and {1, 41, 5}, {1, 42, 5} and {1, 5} for 5-regular cubic graphs, leaving

just 17 combinations that will all be shown to be realisable in Section 4.
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3 Further background on admissible combinations

Many of the possible combinations of types of actions can be seen in the automorphism

groups of symmetric cubic graphs of small order. A census of these, including most but

not all examples on up to 512 vertices, was compiled by Foster [4], and a complete list

of all on up to 768 vertices was obtained systematically by Conder & Dobcsányi [10]. In

what follows, we will refer to graphs in the list of all examples of order up to 768 using

names consistent with those in [4, 10]; for example, F234B is Wong’s graph, which is the

second of the two symmetric cubic graphs of order 234. We have used Magma [3] to help

determine the types of action admitted by all the graphs in this list, and the results are

given in a table in the Appendix.

Before proceeding further with the classification, we give some general properties of

graphs admitting some of the type combinations.

Proposition 3.1 Every symmetric cubic graph admitting actions of types 21, 22 and 3 is

bipartite. On the other hand, every 3-regular cubic graph admitting an action of just one

of the types 21 and 22 is non-bipartite.

Proof. The first part of this was proved in [15, Proposition 26] . The group G3 has

exactly three subgroups of index 2, namely K = 〈h, a, pq〉 ∼= G1
2 and L = 〈h, ap, pq〉 ∼= G2

2

and M = 〈h, p, q, aha〉, and any two of these intersect in the normal subgroup 〈h, pq, aha〉,

of index 4 in G3 (with quotient ∼= 〈a, p〉 ∼= Z2 × Z2). Now suppose ψ : G3 → G is the

epimorphism associated with a 3-regular action of a group G on a cubic graph Γ. If

K ∼= G1
2 and L ∼= G2

2 are both mapped to subgroups of index 2 in G, then these must

be different (for otherwise they both contain the ψ-images of all four of h, a, p = a(ap)

and q = p(pq)), and so the third subgroup M is also mapped to a subgroup of index 2, in

which case Γ is bipartite. Similarly, if just one of the two subgroups K ∼= G1
2 and L ∼= G2

2

is mapped to a subgroup of index 2 in G, then M is not, so Γ is non-bipartite.

Proposition 3.2 [15, Proposition 29] Every symmetric cubic graph admitting actions of

types 1 and 41 is a cover of the Heawood graph (the incidence graph of a projective plane

of order 2), and in particular, is bipartite.

Proof. Let ψ : G1
4 → G be the epimorphism associated with an action of a group G of

type 41 on a cubic graph Γ. If ψ maps the subgroup 〈h, a〉 ∼= G1 to a subgroup of index 8

in G, then the natural permutation representation of G on cosets of this index 8 subgroup

is equivalent to the representation of G1
4 on cosets of 〈h, a〉, which gives PGL(2, 7) as a

quotient. Hence kerψ is contained in the kernel of the latter representation, and it follows

that Γ is a cover of the Heawood graph. Since the latter is bipartite, so is Γ.
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Proposition 3.3 Every symmetric cubic graph admitting actions of types 41, 42 and 5 is

bipartite. On the other hand, every 5-regular cubic graph admitting an action of just one

of the types 41 and 42 is non-bipartite.

Proof. This is entirely similar to the proof of Proposition 3.1. The group G5 has exactly

three subgroups of index 2, namely K = 〈h, a, pq〉 ∼= G1
4 and L = 〈h, ap, pq〉 ∼= G2

4,

and M = 〈h, p, q, r, s, aha〉, with any two of these intersecting in the normal subgroup

〈h, pq, aha〉 of index 4 in G5 (with quotient ∼= 〈a, p〉 ∼= Z2 × Z2). It follows that if

ψ : G5 → G is the epimorphism associated with a 5-regular action of a group G on a cubic

graph Γ, and K ∼= G1
4 and L ∼= G2

4 are both mapped to subgroups of index 2 in G, then so

is M , so Γ is bipartite. On the other hand, if just one of the two subgroups K ∼= G1
4 and

L ∼= G2
4 is mapped to a subgroup of index 2 in G, then M cannot be, so Γ is non-bipartite.

Proposition 3.4 Every 5-regular cubic graph admitting actions of types 1 and 5 is a cover

of the Biggs-Conway graph (of order 2352), and in particular, is bipartite.

This was recognised by Djokovič and Miller in [15, Proposition 30], although the Biggs-

Conway graph itself was not identified until later in [1]. The automorphism group of

the Biggs-Conway graph is isomorphic to a subgroup of index 2 in the wreath product

PGL(2, 7) ≀ C2, of order 112896. This group has a faithful permutation representation

of degree 16 that is equivalent to the action of the group G5 on the cosets of subgroup

〈h, a〉 ∼= G1, with its three subgroups of index 2 being equivalent to the images of the

three subgroups K, L and M considered in the proof of Proposition 3.3.

Proof of 3.4. If ψ : G5 → G is the epimorphism associated with a 5-regular action of a

group G on on a cubic graph Γ, and ψ maps the subgroup 〈h, a〉 ∼= G1 to a subgroup of

index 16 in G, then the natural permutation representation of G on cosets of this index

16 subgroup is equivalent to the representation of G5 on cosets of 〈h, a〉, which gives the

automorphism group of the Bigg-Conway graph as a quotient. Hence kerψ is contained in

the kernel of the latter representation, and it follows that Γ is a cover of the Bigg-Conway

graph. Since the latter is bipartite, so is Γ.

4 Admissible combinations of actions

We consider each of the possible type combinations in turn.
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4.1 Type 1 only

Finite cubic graphs admitting arc-transitive group actions of type 1 only are precisely

those which are 1-regular. All examples are the underlying graphs of orientably-regular

but chiral (irreflexible) 3-valent maps (see [9, 14] or related articles on regular maps).

The smallest is F026, with automorphism group a semi-direct product of Z13 by Z6

(of order 78), but there are many others, and not every example is a cover of this one.

Examples like F026 (of girth 6) are bipartite, but others like F448A (of girth 7) are not.

There are infinitely many graphs in this class. In fact there are at least two different

kinds of families of examples. On one hand, there is an infinite family of examples of girth

6 with soluble automorphism groups, obtainable by adding (ha)6 = 1 plus extra relations

to the group G1; see [19]. On the other hand, it can be shown using coset graphs that for

every integer k ≥ 7, all but finitely many of the alternating groups An can be generated by

two elements x and y such that x, y and xy have orders 2, 3 and k respectively, with the

additional property that there exists no group automorphism taking x and y to x−1 and

y−1 respectively. This theorem (which will be published elsewhere by the first author in a

paper on chiral maps) implies that there exist infinite many 1-regular finite cubic graphs of

girth k for every k ≥ 7, with alternating (and therefore insoluble) automorphism groups.

Actions of type 21 and 3 are avoided because of chirality — a lack of mirror symmetry —

and actions of type 41 and 5 are avoided because PSL(2, 7) is not involved as a composition

factor in the automorphism group.

4.2 Types 1 and 21 only

All graphs in this class are 2-regular, and have a 1-regular (but no 3-regular) group of

automorphisms. As such, they are all underlying graphs of 3-valent regular maps that are

both reflexible and orientable, but not isomorphic to their Petrie duals; see [16].

The smallest is the complete graph K4, but not every example is a cover of this one.

Examples like the 3-dimensional cube graph F008 (of girth 4) and F050 (of girth 6) are

bipartite, while K4 (of girth 3) and F056B (of girth 7) others like these are not.

There are infinitely many graphs in this class. Their automorphism groups are the

images of non-degenerate epimorphisms from G1
2
∼= PGL(2,Z) with the property that

the subgroup G1 = 〈h, a〉 ∼= PSL(2,Z) maps to a subgroup of index 2, and there exists

no group automorphism taking the images of h, p and a to the images of h, p and ap

respectively. As the latter condition can be checked by considering the images of (ha)2

and (hap)2 = hah−1a, it is relatively easy to verify when (ha)2 and hah−1amap to elements

of different orders. Examples include the symmetric groups Sn for all but finitely many

n (see [5]), and PGL(2, q) or PSL(2, q) × Z2 for certain prime-powers q (see [6]). Indeed

for any integer k ≥ 6, this class contains infinitely many graphs of girth k, by residual

finiteness of the (2, 3, k) triangle group 〈 a, h | a2, h3, (ah)k 〉.
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4.3 Type 21 only

In this class, the graphs are 2-regular but admit no 1-regular group of automorphisms. As

such, they are all underlying graphs of non-orientable 3-valent regular maps (see [9]).

The smallest is the graph F084, but not every example is a cover of this one. Examples

like F120A (of girth 8) are bipartite, but F084 (of girth 7) and others like it are not.

Again there are infinitely graphs in this class. Their automorphism groups are the

images of non-degenerate epimorphisms from G1
2
∼= PGL(2,Z) under which G1 = 〈h, a〉 ∼=

PSL(2,Z) does not map to a subgroup of index 2, and there exists no group automorphism

taking the images of h, p and a to the images of h, p and ap respectively. Examples include

simple quotients of G1
2 such as the alternating groups An for all but finitely many n (see

[5]), and PSL(2, p) for certain primes p (see [6]). Note that simplicity implies that there

will be no subgroup of type 1, but does not rule out the possibility of the graph being

3-arc-regular (as the Petersen graph shows in §4.7 below).

4.4 Type 22 only

This class consists of 2-regular cubic graphs admitting an action of type 22. The first

known example of such a graph was given by Conder and Lorimer in [11], in answer to a

question raised by Djokovič and Miller in [15, Problem 2]. This example had automorphism

group S11. The smallest example was found to be F448C, of order 448, in [10]. Clearly

not every example is a cover of this smallest one. Both F448C and the earlier example

are bipartite, but many others are not. An infinite family of non-bipartite examples (with

automorphism groups A6k+3 for all k > 3) was constructed in [12, Example 4.1].

4.5 Types 1, 21, 22 and 3

Graphs in this class are 3-regular cubic graphs admitting an action of type 1 (and therefore

actions of types 21 and 22, by Proposition 2.3). As such, they are the underlying graphs

of reflexible orientable 3-valent regular maps that are isomorphic to their Petrie duals.

The smallest example is the complete bipartite graph K3,3, but there are many oth-

ers, such as F040, which are not covers of this one. All examples are bipartite, by [15,

Proposition 26] or Proposition 3.1.

Again there are infinitely graphs in this class; in fact there are infinitely many that are

covers of K3,3. To see this, note that the kernel of the epimorphism ψ : G3 → Aut(K3,3) is a

normal subgroupK of index 72 inG3, generated by conjugates of the element (ha)2(h−1a)2.

The Reidemeister-Schreier process (implemented as the Rewrite command in Magma [3])

can be used to show that the abelianisation K/[K,K] of the subgroup K is isomorphic

to Z
4 (free abelian of rank 4). It follows that for every positive integer k, the group G3

contains a normal subgroup Nk = [K,K]Kk of index k4 in K, with quotient G3/Nk of
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order 72k4, which is then the automorphism group of a 3-regular cubic graph of order 6k4

that is a cover of K3,3 and admits actions of all four types 1, 21, 22 and 3.

4.6 Types 21, 22 and 3 only

Graphs in this class are 3-regular and admit actions of types 21 and 22, but not of type 1.

All such graphs are bipartite, by [15, Proposition 26] or Proposition 3.1. The smallest is

F020B, but there are many others, such as F056C, which are not covers of this one.

On the other hand, the class does contain infinitely many covers of F020B. This follows

from the fact that the kernel of the epimorphism ψ : G3 → Aut(F020B) is a normal sub-

group K of index 240 in G3, generated by conjugates of the element pq(ha)2(h−1a)2(ha)2,

with abelianisation K/[K,K] isomorphic to Z
11 (free abelian of rank 11). For every posi-

tive integer k, the group G3 therefore contains a normal subgroup Nk = [K,K]Kk of index

k11 in K, with quotient G3/Nk of order 240k11, which is then the automorphism group of

a 3-regular cubic graph of order 20k11 that is a cover of F020B and admits arc-transitive

group actions of types 21, 22 and 3. Moreover, if k is odd, then the subgroup 〈h, a〉 ∼= G1

of G3 must map to the same subgroup as 〈h, a, pq〉 ∼= G1
2 (of index 2 in the automorphism

group), so this graph will not admit an arc-transitive group action of type 1.

4.7 Types 21 and 3 only

Graphs in this class are 3-regular and admit actions of type 21, but not of type 1 or 22. All

such graphs are non-bipartite, by Proposition 3.1. The smallest example is the Petersen

graph F010 (see [18]), with automorphism group S5, but there are others that are not

covers of this one (such as F570A, the automorphism group of which is PGL(2, 19)).

Again the class is infinite. The kernel of the epimorphism ψ : G3 → Aut(F010) is a

normal subgroup K of index 120 in G3, generated by conjugates of the element (ha)5. The

abelianisation K/[K,K] is isomorphic to Z
6, so for every positive integer k, the group G3

has a quotient of order 120k6 that is the automorphism group of a 3-regular cubic graph of

order 10k6 and contains a subgroup of type 21. If k is odd, then the subgroup 〈h, a〉 ∼= G1

of G3 must map to the same subgroup as 〈h, a, pq〉 ∼= G1
2 (of index 2 in the automorphism

group), while the subgroup 〈h, ap, pq〉 ∼= G2
2 maps onto the full automorphism group, so

this graph will not admit an arc-transitive group action of type 1 or 22.

4.8 Types 22 and 3 only

This case is similar to the previous one, but with the roles of 21 and 22 reversed. Again

all graphs in this class are non-bipartite, by Proposition 3.1. The smallest example is

the Coxeter graph F028 (see [13]), with automorphism group PGL(2, 7), but there are

others that are not covers of this one (such as F408B, the automorphism group of which

is PGL(2, 17)).
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The class is infinite, for one reason because the epimorphism ψ : G3 → Aut(F028) has

kernel K of index 336 in G3, generated by conjugates of pha(h−1a)2(ha)2(h−1a)2, with

abelianisation K/[K,K] ∼= Z
15. Accordingly, for every positive integer k, the group G3

has a quotient G3/Nk of order 336k15 that is the automorphism group of a 3-regular cubic

graph of order 28k15 and contains a subgroup of type 22; and moreover if k is odd, then

the subgroup 〈h, a〉 ∼= G1 must map to the full automorphism group, so this graph will

not admit an arc-transitive group action of type 1 or 21.

4.9 Type 3 only

Djokovič and Miller found an example in this class in [15, Section 16], having 182 ver-

tices; this is F182D. The smallest example, however, is F110, with automorphism group

PGL(2, 11). Clearly not every example is a cover of F110. The two smallest examples are

bipartite, but a third small example F506A is not. As in the previous four cases, this class

contains infinitely many covers of its smallest member. The kernel of the epimorphism

ψ : G3 → Aut(F110) is a normal subgroup K of index 1320 in G3, generated by conju-

gates of q(ha)2(h−1a(ha)3)2, with abelianisation K/[K,K] isomorphic to Z
56. Hence for

every positive integer k, the group G3 has a quotient G3/Nk of order 1320k56 that is the

automorphism group of a 3-regular cubic graph of order 110k56, and if k is odd, then this

graph admits no arc-transitive group action of type 1, 21 or 22.

4.10 Types 1 and 41 only

As observed by Djokovič and Miller in [15, Proposition 29] (and again in Proposition 3.2

above), there is a unique minimal finite cubic graph admitting actions of types 1 and 41,

namely the Heawood graph F014 (the incidence graph of a projective plane of order 2).

Every graph in this class is a cover of the Heawood graph, and in particular, is bipartite.

Furthermore, we can show that there are infinitely many such covers. The kernel of the

epimorphism ψ : G1
4 → Aut(F014) is a normal subgroup K of index 336 inG1

4, generated by

conjugates of p(ha)3(h−1a)3, and the abelianisation K/[K,K] is isomorphic to Z
8. Hence

for every positive integer k, the group G1
4 has a quotient G1

4/Nk of order 336k8 that is

the automorphism group of a 4-regular cubic graph of order 14k8 admitting arc-transitive

group actions of both types 1 and 41 (but not of type 5, since F014 is not 5-regular).

4.11 Type 41 only

The smallest representative of this class is the Sextet graph S(17) of order 102, labelled

F102 in the Foster census, and one of an infinite family of symmetric cubic graphs con-

structed in [2]. Not every graph in this class is a cover of this smallest one. Examples like

F506B (of girth 14) and F650B (of girth 12) are bipartite, but F102 (of girth 9) and others

like it are not. This class contains infinitely many of the Sextet graphs S(p), namely all of
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those for prime p ≡ ±1 mod 16 (in which case S(p) is non-bipartite, with automorphism

group PSL(2, p)), and all of those for prime p ≡ ±7 mod 16 but p 6= 7 (in which case

S(p) is bipartite, with automorphism group PGL(2, p)). Also this class contains infinitely

many covers S(17), because the kernel of the epimorphism ψ : G1
4 → Aut(S(17)) is a

normal subgroup K of index 2448 in G1
4, generated by conjugates of the element (ha)9,

with abelianisation K/[K,K] ∼= Z
52.

4.12 Type 42 only

This class consists of 4-regular cubic graphs admitting an action of type 42. The first

known example of such a graph was a (non-bipartite) graph with automorphism group A29,

produced by Conder & Lorimer [11] in answer to a question raised by Djokovič and Miller

in [15, Problem 3]. Also an infinite family of (bipartite) examples with automorphism

groups S36k for all k > 4 was subsequently constructed in [12, Example 4.2].

The smallest example we have been able to find is a graph of order 27,634,932, which

is a 310-fold cover of F468 (which is itself a double cover of Wong’s graph F234B). The

automorphism group of this graph is an extension of an elementary abelian group of order

310 by Aut(PSL(3, 3)), and is isomorphic to the permutation group induced by G2
4 on the

cosets of its subgroup of index 39 generated by the elements p, q, r, a, (ha)3(h−1a)2hah,

(ha)5(h−1a)3h and (ha)4h−1aha(h−1a)2hah−1. We do not know for sure if this is the

smallest 4-regular cubic graph of type 42.

4.13 Types 1, 41, 42 and 5

As observed in [15, Proposition 30] by Djokovič and Miller, and repeated above in Propo-

sition 3.4, there is a unique minimal finite cubic graph admitting actions of types 1 and 5,

namely the Biggs-Conway graph [1]. The automorphism group of this graph contains sub-

groups of index 2 that are the images of the subgroups 〈h, a, pq〉 ∼= G1
4 and 〈h, ap, pq〉 ∼= G2

4

under an epimorphism from G5, as well as a subgroup of index 16 which is the image of

the subgroup 〈h, a〉 ∼= G1. Accordingly, the graph admits arc-transitive actions of types

1, 41, 42 and 5. Every finite cubic graph admitting actions of all four of these types is a

cover of the Biggs-Conway graph, and in particular, must be bipartite.

Furthermore, we can show that there are infinitely many of these covers. The ker-

nel of the epimorphism from G5 to the automorphism group of the Biggs-Conway graph

is a normal subgroup K of index 112896 in G5, generated by conjugates of the element

(ha)4(h−1a)4ha(h−1a)2(ha)2h−1a, with abelianisation K/[K,K] ∼= Z
1177. (Note that com-

putation of this abelianisation is not easy because of the large index |G5 :K|; but it is

relatively easy to see that K is contained in the subgroup L = 〈h−1aha, hah−1a〉, which

has index 96 in G5 and has abelianisation L/[L,L] ∼= Z
2, and then since [K,K] ⊂ [L,L],

it follows that [K,K] has infinite index in L, and therefore infinite index in K.)

12



4.14 Types 41, 42 and 5 only

Graphs in this class are 5-regular and admit actions of types 41 and 42, but not of type

1. All such graphs are bipartite, by Proposition 3.3. The smallest is Tutte’s 8-cage F030,

which is the Sextet graph S(3), but there are also many others, such as F468 (the double

cover of Wong’s graph), which are not covers of this one.

In fact this class contains the Sextet graph S(p) for every prime p ≡ ±3 or ±5 mod

16. Each such S(p) is 5-regular and bipartite, with automorphism group PΓL(2, p2). The

latter group contains three subgroups of index 2, one of which is PGL(2, p2), shown in

[2] to be 4-regular on S(p). As S(p) is bipartite, it follows from Proposition 3.3 that

its automorphism group contains subgroups of both types 41 and 42 (but no 1-regular

subgroup, since S(p) does not cover the Biggs-Conway graph).

Also the kernel of the epimorphism ψ : G5 → Aut(S(3)) is a normal subgroup K of in-

dex 1440 in G5, generated by conjugates of the element pq(ha)4(h−1a)4, with abelianisation

K/[K,K] ∼= Z
16, so this class contains infinitely many covers of S(3).

4.15 Types 41 and 5 only

For every graph Γ in this class, there is an epimorphism ψ : G5 → Aut(Γ) that maps both

of the subgroups 〈h, a〉 ∼= G1 and 〈h, a, pq〉 ∼= G1
4 to a subgroup of index 2 in Aut(Γ), and

the subgroup 〈h, ap, pq〉 ∼= G2
4 onto Aut(Γ) itself. Every such graph Γ will be non-bipartite,

by Proposition 3.3.

One example is a graph of order 75600 with automorphism group S10 shown to exist

by Conder in [7], and we believe this is the smallest example.

There are, in fact, infinitely many such examples, because the kernel K of the corre-

sponding epimorphism ψ : G5 → S10 has infinite abelianisation. The precise form of the

abelianisation is difficult to determine, since |G5 :K| = 10!, but it is easy to verify (with

the help of Magma [3] for example) thatK is contained in the subgroup L of index 90 inG5

generated by p, ahah−1a, h−1ahah−1ahpahah−1ah−1 and hahah−1ahahah−1apahah−1ah−1,

and that this has abelianisation L/[L,L] ∼= Z2 ⊕ Z2 ⊕ Z. Since [K,K] ⊂ [L,L], it follows

that [K,K] has infinite index in L, and therefore infinite index in K. Hence this class of

graphs contains infinitely many covers of Conder’s graph of order 75600.

Also there are many more examples than these: Conder showed in in [8] how to combine

permutation representations for S4 × Z2 to prove that for all but finitely many n, there

exists an epimorphism ψ : G5 → Sn under which the ψ-images of h and a are permutations

generating An while those of p, q, r and s are odd.

4.16 Types 42 and 5 only

This case is similar to the previous one, but with the roles of 41 and 42 reversed. Again all

graphs in this class are non-bipartite, by Proposition 3.3. The smallest is Wong’s graph
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F234B (see [22]), with automorphism group Aut(PSL(3, 3)), of order 11232. Infinitely

many of its covers belong to the same class, as the kernel of the epimorphism ψ : G5 →

Aut(PSL(3, 3)) has infinite abelianisation (isomorphic to Z
118). The class contains other

examples as well, however, such as one with automorphism group S42 (obtainable as the

quotient of G5 by the core of the subgroup generated by ps, ap and (ha)3h−1ahah−1).

4.17 Type 5 only

The first known graph in this class was an example with automorphism group A26, pro-

duced by Conder & Lorimer [11] in answer to a question raised by Djokovič and Miller

in [15, Problem 1]. Following on from this, Conder proved in [8] that there are infinitely

many such graphs, by showing that examples exist with automorphism group An for all

but finitely many n. (The fact that An contains no proper subgroup of index less than n

implies that there can be no 1- or 4-regular subgroup whenever n > 16.)

These examples are non-bipartite, but there are also infinitely many bipartite examples.

The construction presented in [8] can be adapted (by the addition of single extra point)

to prove that for all but finitely many n, there exists an epimorphism ψ : G5 → Sn

under which the ψ-images of h, p, q, r and s are even while the ψ-image of a is odd; this

epimorphism then maps both 〈h, a〉 ∼= G1 and 〈h, ap, pq〉 ∼= G2
4 onto Sn. The smallest such

example has automorphism group S20, but we have been able to find another example,

smaller than this, with a rather more interesting group, which we describe below.

The group G5 has a subgroup of index 48 generated by the elements h, p, ahahah−1a

and qsah−1ah−1aha, the cosets of which are permuted by G5 (under multiplication by

elements) as follows:

h 7→ (2, 3, 6)(5, 13, 14)(7, 11, 9)(8, 17, 18)(10, 20, 21)(12, 23, 24)(15, 29, 30)(16,
25, 27)(19, 33, 34)(22, 35, 37)(28, 42, 43)(31, 38, 45)(32, 46, 40)(39, 47, 44),

p 7→ (5, 8)(10, 15)(12, 16)(13, 17)(14, 18)(19, 22)(20, 29)(21, 30)(23, 25)(24, 27)
(26, 41)(28, 40)(31, 39)(32, 42)(33, 35)(34, 37)(36, 48)(38, 47)(43, 46)(44, 45),

q 7→ (1, 2)(3, 6)(4, 7)(9, 11)(13, 25)(14, 24)(17, 23)(18, 27)(20, 35)(21, 34)(26, 31)
(28, 32)(29, 33)(30, 37)(36, 43)(38, 44)(39, 41)(40, 42)(45, 47)(46, 48),

r 7→ (1, 3)(2, 6)(4, 11)(5, 12)(7, 9)(8, 16)(10, 19)(14, 27)(15, 22)(18, 24)(21, 37)
(26, 38)(28, 36)(30, 34)(31, 44)(32, 43)(39, 45)(40, 48)(41, 47)(42, 46),

s 7→ (1, 4)(2, 7)(3, 9)(5, 10)(6, 11)(8, 15)(12, 22)(13, 21)(14, 20)(16, 19)(17, 30)
(18, 29)(23, 37)(24, 35)(25, 34)(27, 33)(28, 42)(32, 40)(38, 45)(44, 47),

a 7→ (1, 5)(2, 8)(3, 10)(4, 12)(6, 15)(7, 16)(9, 19)(11, 22)(13, 26)(14, 28)(17, 31),
(18, 32)(20, 36)(21, 38)(23, 39)(24, 40)(25, 41)(27, 42)(29, 43)(30, 44)(33, 46)
(34, 47)(35, 48)(37, 45).

These permutations generate a group P isomorphic to the wreath product M24 ≀C2 (of

order 2|M24|
2 = 119,876,641,829,683,200), whereM24 is the simple Mathieu group of degree

24. This group P has just one subgroup of index 2, namely the direct product M24 ×M24,

which is the image of the subgroup 〈h, aha, p, q, r, s〉 ∼= G1
4. It follows that P is the
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automorphism group of a bipartite 5-regular cubic graph of order 2,497,430,038,118,400,

but contains no subgroup of type 41 or 42.

The above example was found from a search for subgroups of small index in the group

G5 using Magma [3], and is the smallest example we have been able to find in this class.

5 Summary

Our findings can be summarised as follows:

Theorem 5.1 Finite symmetric cubic graphs can be classified into 17 different families,

according to the combinations of arc-transitive actions they admit. Information on these

classes is given in Table 1. In 14 of the 17 classes, the smallest representatives have been

determined, and in the other three, the smallest known examples have orders 10! = 75600,

310 ·468 and 217·35·52·72·112·232 (for the type combinations {41, 5}, {42} and {5} respectively).

There are infinitely many graphs in each class, and in two cases (the type combinations

{1, 41} and {1, 41, 42, 5}) every graph in the class is a cover of the smallest example.

s Types Bipartite? Smallest example Unique minimal?

1 1 Sometimes F026 No

2 1,21 Sometimes F004 (K4) No

2 21 Sometimes F084 No

2 22 Sometimes F448C No

3 1, 21, 22, 3 Always F006 (K3,3) No

3 21, 22, 3 Always F020B (GP(10,3)) No

3 21, 3 Never F010 (Petersen) No

3 22, 3 Never F028 (Coxeter) No

3 3 Sometimes F110 No

4 1, 41 Always F014 (Heawood) Yes

4 41 Sometimes F102 (S(17)) No

4 42 Sometimes 310-fold cover of F468? No

5 1, 41, 42, 5 Always Biggs-Conway graph Yes

5 41, 42, 5 Always F030 (Tutte’s 8-cage) No

5 41, 5 Never S10 graph? No

5 42, 5 Never F234B (Wong’s graph) No

5 5 Sometimes M24 ≀ C2 graph? No

Table 1: The 17 families of finite symmetric cubic graphs
(classified according to the types of arc-transitive group actions admitted)
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Appendix: Arc-transitive actions on graphs of order up to 768

Graph Order Automs s-trans Girth Diameter Bipartite? Types

F004 4 24 2 3 1 No 1, 21

F006 6 72 3 4 2 Yes 1, 21 , 22 , 3

F008 8 48 2 4 3 Yes 1, 21

F010 10 120 3 5 2 No 21 , 3

F014 14 336 4 6 3 Yes 1, 41

F016 16 96 2 6 4 Yes 1, 21

F018 18 216 3 6 4 Yes 1, 21 , 22 , 3

F020A 20 120 2 5 5 No 1, 21

F020B 20 240 3 6 5 Yes 21 , 22 , 3

F024 24 144 2 6 4 Yes 1, 21

F026 26 78 1 6 5 Yes 1

F028 28 336 3 7 4 No 22 , 3

F030 30 1440 5 8 4 Yes 41 , 42 , 5

F032 32 192 2 6 5 Yes 1, 21

F038 38 114 1 6 5 Yes 1

F040 40 480 3 8 6 Yes 1, 21 , 22 , 3

F042 42 126 1 6 6 Yes 1

F048 48 288 2 8 6 Yes 1, 21

F050 50 300 2 6 7 Yes 1, 21

F054 54 324 2 6 6 Yes 1, 21

F056A 56 168 1 6 7 Yes 1

F056B 56 336 2 7 6 No 1, 21

F056C 56 672 3 8 7 Yes 21 , 22 , 3

F060 60 360 2 9 5 No 1, 21

F062 62 186 1 6 7 Yes 1

F064 64 384 2 8 6 Yes 1, 21

F072 72 432 2 6 8 Yes 1, 21

F074 74 222 1 6 7 Yes 1

F078 78 234 1 6 8 Yes 1

F080 80 960 3 10 8 Yes 1, 21 , 22 , 3

F084 84 504 2 7 7 No 21

F086 86 258 1 6 9 Yes 1

F090 90 4320 5 10 8 Yes 41 , 42 , 5

F096A 96 576 2 6 8 Yes 1, 21

F096B 96 1152 3 8 7 Yes 1, 21 , 22 , 3

F098A 98 294 1 6 9 Yes 1

F098B 98 588 2 6 9 Yes 1, 21

F102 102 2448 4 9 7 No 41

F104 104 312 1 6 9 Yes 1

F108 108 648 2 9 7 No 1, 21

F110 110 1320 3 10 7 Yes 3

F112A 112 672 2 8 7 Yes 1, 21
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Graph Order Automs s-trans Girth Diameter Bipartite? Types

F112B 112 1344 3 8 10 Yes 1, 21 , 22 , 3

F112C 112 336 1 10 7 Yes 1

F114 114 342 1 6 10 Yes 1

F120A 120 720 2 8 8 Yes 21

F120B 120 720 2 10 9 Yes 1, 21

F122 122 366 1 6 9 Yes 1

F126 126 378 1 6 10 Yes 1

F128A 128 768 2 6 11 Yes 1, 21

F128B 128 768 2 10 8 Yes 1, 21

F134 134 402 1 6 11 Yes 1

F144A 144 432 1 8 7 Yes 1

F144B 144 864 2 10 8 Yes 1, 21

F146 146 438 1 6 11 Yes 1

F150 150 900 2 6 10 Yes 1, 21

F152 152 456 1 6 11 Yes 1

F158 158 474 1 6 11 Yes 1

F162A 162 972 2 6 12 Yes 1, 21

F162B 162 486 1 12 7 Yes 1

F162C 162 1944 3 12 8 Yes 1, 21 , 22 , 3

F168A 168 504 1 6 12 Yes 1

F168B 168 1008 2 7 9 No 1, 21

F168C 168 1008 2 8 8 No 1, 21

F168D 168 1008 2 9 7 No 1, 21

F168E 168 504 1 12 7 Yes 1

F168F 168 1008 2 12 8 Yes 21

F182A 182 546 1 6 11 Yes 1

F182B 182 546 1 6 13 Yes 1

F182C 182 1092 2 7 8 No 21

F182D 182 2184 3 12 9 Yes 3

F186 186 558 1 6 12 Yes 1

F192A 192 2304 3 8 12 Yes 1, 21 , 22 , 3

F192B 192 1152 2 10 10 Yes 1, 21

F192C 192 1152 2 12 8 Yes 1, 21

F194 194 582 1 6 13 Yes 1

F200 200 1200 2 6 13 Yes 1, 21

F204 204 4896 4 12 9 Yes 41

F206 206 618 1 6 13 Yes 1

F208 208 624 1 10 9 Yes 1

F216A 216 1296 2 6 12 Yes 1, 21

F216B 216 1296 2 10 9 Yes 1, 21

F216C 216 1296 2 12 8 Yes 1, 21

F218 218 654 1 6 13 Yes 1

F220A 220 1320 2 10 9 No 1, 21

F220B 220 1320 2 10 9 Yes 21

F220C 220 2640 3 10 10 Yes 21 , 22 , 3
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Graph Order Automs s-trans Girth Diameter Bipartite? Types

F222 222 666 1 6 14 Yes 1

F224A 224 672 1 6 13 Yes 1

F224B 224 1344 2 12 9 Yes 1, 21

F224C 224 2688 3 12 10 Yes 1, 21 , 22 , 3

F234A 234 702 1 6 14 Yes 1

F234B 234 11232 5 12 8 No 42 , 5

F240A 240 1440 2 8 10 Yes 1, 21

F240B 240 1440 2 9 10 No 1, 21

F240C 240 1440 2 10 11 Yes 1, 21

F242 242 1452 2 6 15 Yes 1, 21

F248 248 744 1 6 15 Yes 1

F250 250 1500 2 10 10 Yes 1, 21

F254 254 762 1 6 13 Yes 1

F256A 256 1536 2 8 10 Yes 1, 21

F256B 256 1536 2 10 10 Yes 1, 21

F256C 256 1536 2 10 11 Yes 1, 21

F256D 256 768 1 12 9 Yes 1

F258 258 774 1 6 14 Yes 1

F266A 266 798 1 6 15 Yes 1

F266B 266 798 1 6 15 Yes 1

F278 278 834 1 6 15 Yes 1

F288A 288 1728 2 6 16 Yes 1, 21

F288B 288 3456 3 12 9 Yes 1, 21 , 22 , 3

F294A 294 1764 2 6 14 Yes 1, 21

F294B 294 882 1 6 16 Yes 1

F296 296 888 1 6 15 Yes 1

F302 302 906 1 6 15 Yes 1

F304 304 912 1 10 11 Yes 1

F312A 312 936 1 6 16 Yes 1

F312B 312 936 1 12 9 Yes 1

F314 314 942 1 6 17 Yes 1

F326 326 978 1 6 17 Yes 1

F336A 336 2016 2 8 10 Yes 1, 21

F336B 336 2016 2 8 13 Yes 1, 21

F336C 336 1008 1 10 12 Yes 1

F336D 336 2016 2 12 9 Yes 1, 21

F336E 336 2016 2 12 12 Yes 1, 21

F336F 336 1008 1 12 12 Yes 1

F338A 338 1014 1 6 15 Yes 1

F338B 338 2028 2 6 17 Yes 1, 21

F342 342 1026 1 6 16 Yes 1

F344 344 1032 1 6 17 Yes 1

F350 350 1050 1 6 17 Yes 1

F360A 360 2160 2 8 11 Yes 21

F360B 360 4320 3 12 10 Yes 1, 21 , 22 , 3
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Graph Order Automs s-trans Girth Diameter Bipartite? Types

F362 362 1086 1 6 17 Yes 1

F364A 364 2184 2 7 11 No 1, 21

F364B 364 2184 2 7 12 No 1, 21

F364C 364 2184 2 7 13 No 1, 21

F364D 364 2184 2 12 9 No 1, 21

F364E 364 2184 2 12 9 Yes 21

F364F 364 2184 2 12 10 Yes 21

F364G 364 4368 3 12 12 Yes 21 , 22 , 3

F366 366 1098 1 6 18 Yes 1

F378A 378 1134 1 6 18 Yes 1

F378B 378 1134 1 12 10 Yes 1

F384A 384 2304 2 6 16 Yes 1, 21

F384B 384 2304 2 12 10 Yes 1, 21

F384C 384 2304 2 12 10 Yes 1, 21

F384D 384 4608 3 12 12 Yes 1, 21 , 22 , 3

F386 386 1158 1 6 17 Yes 1

F392A 392 1176 1 6 17 Yes 1

F392B 392 2352 2 6 19 Yes 1, 21

F398 398 1194 1 6 19 Yes 1

F400A 400 1200 1 8 10 Yes 1

F400B 400 2400 2 10 13 Yes 1, 21

F402 402 1206 1 6 18 Yes 1

F408A 408 2448 2 9 10 No 21

F408B 408 4896 3 9 10 No 22 , 3

F416 416 1248 1 6 19 Yes 1

F422 422 1266 1 6 19 Yes 1

F432A 432 2592 2 10 12 Yes 1, 21

F432B 432 2592 2 10 14 Yes 1, 21

F432C 432 1296 1 12 10 Yes 1

F432D 432 2592 2 12 12 Yes 1, 21

F432E 432 1296 1 8 12 Yes 1

F434A 434 1302 1 6 17 Yes 1

F434B 434 1302 1 6 19 Yes 1

F438 438 1314 1 6 18 Yes 1

F440A 440 2640 2 10 11 Yes 1, 21

F440B 440 2640 2 10 12 Yes 1, 21

F440C 440 5280 3 12 10 Yes 1, 21 , 22 , 3

F446 446 1338 1 6 19 Yes 1

F448A 448 1344 1 7 11 No 1

F448B 448 1344 1 10 13 Yes 1

F448C 448 2688 2 14 10 Yes 22

F450 450 2700 2 6 20 Yes 1, 21

F456A 456 1368 1 6 20 Yes 1

F456B 456 1368 1 12 10 Yes 1

F458 458 1374 1 6 19 Yes 1
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Graph Order Automs s-trans Girth Diameter Bipartite? Types

F468 468 22464 5 12 13 Yes 41 , 42 , 5

F474 474 1422 1 6 20 Yes 1

F480A 480 2880 2 9 15 No 1, 21

F480B 480 2880 2 12 11 Yes 1, 21

F480C 480 2880 2 12 10 No 1, 21

F480D 480 2880 2 10 10 Yes 1, 21

F482 482 1446 1 6 21 Yes 1

F486A 486 2916 2 6 18 Yes 1, 21

F486B 486 2916 2 12 12 Yes 1, 21

F486C 486 5832 3 12 12 Yes 1, 21 , 22 , 3

F486D 486 5832 3 12 12 Yes 1, 21 , 22 , 3

F488 488 1464 1 6 19 Yes 1

F494A 494 1482 1 6 19 Yes 1

F494B 494 1482 1 6 21 Yes 1

F496 496 1488 1 10 15 Yes 1

F500 500 3000 2 10 12 No 1, 21

F504A 504 1512 1 6 20 Yes 1

F504B 504 1512 1 9 10 No 1

F504C 504 3024 2 9 12 No 1, 21

F504D 504 1512 1 12 12 Yes 1

F504E 504 3024 2 14 10 No 1, 21

F506A 506 6072 3 11 11 No 3

F506B 506 12144 4 14 10 Yes 41

F512A 512 3072 2 6 21 Yes 1, 21

F512B 512 3072 2 10 12 Yes 1, 21

F512C 512 3072 2 12 11 Yes 1, 21

F512D 512 3072 2 12 11 Yes 1, 21

F512E 512 1536 1 14 12 Yes 1

F512F 512 3072 2 8 12 Yes 1, 21

F512G 512 3072 2 12 10 Yes 1, 21

F518A 518 1554 1 6 21 Yes 1

F518B 518 1554 1 6 21 Yes 1

F536 536 1608 1 6 21 Yes 1

F542 542 1626 1 6 19 Yes 1

F546A 546 1638 1 6 22 Yes 1

F546B 546 1638 1 6 20 Yes 1

F554 554 1662 1 6 21 Yes 1

F558 558 1674 1 6 22 Yes 1

F566 566 1698 1 6 21 Yes 1

F570A 570 6840 3 9 11 No 21 , 3

F570B 570 3420 2 9 11 No 21

F576A 576 3456 2 10 16 Yes 1, 21

F576B 576 1728 1 8 12 Yes 1

F576C 576 3456 2 12 12 Yes 1, 21

F576D 576 6912 3 12 14 Yes 1, 21 , 22 , 3
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F578 578 3468 2 6 23 Yes 1, 21

F582 582 1746 1 6 22 Yes 1

F584 584 1752 1 6 23 Yes 1

F592 592 1776 1 10 15 Yes 1

F600A 600 3600 2 12 12 Yes 1, 21

F600B 600 3600 2 6 20 Yes 1, 21

F602A 602 1806 1 6 21 Yes 1

F602B 602 1806 1 6 23 Yes 1

F608 608 1824 1 6 21 Yes 1

F614 614 1842 1 6 23 Yes 1

F618 618 1854 1 6 22 Yes 1

F620 620 14880 4 15 10 No 41

F624A 624 1872 1 14 12 Yes 1

F624B 624 1872 1 10 16 Yes 1

F626 626 1878 1 6 23 Yes 1

F632 632 1896 1 6 23 Yes 1

F640 640 7680 3 10 12 Yes 1, 21 , 22 , 3

F648A 648 3888 2 6 24 Yes 1, 21

F648B 648 3888 2 12 14 Yes 1, 21

F648C 648 3888 2 12 12 Yes 1, 21

F648D 648 1944 1 12 13 Yes 1

F648E 648 1944 1 12 12 Yes 1

F648F 648 3888 2 12 10 Yes 1, 21

F650A 650 1950 1 6 23 Yes 1

F650B 650 31200 5 12 11 Yes 41 , 42 , 5

F654 654 1962 1 6 24 Yes 1

F660 660 3960 2 10 11 No 1, 21

F662 662 1986 1 6 21 Yes 1

F666 666 1998 1 6 22 Yes 1

F672A 672 2016 1 12 12 Yes 1

F672B 672 2016 1 6 24 Yes 1

F672C 672 4032 2 8 12 No 1, 21

F672D 672 4032 2 12 12 Yes 1, 21

F672E 672 4032 2 14 12 Yes 1, 21

F672F 672 4032 2 12 13 Yes 1, 21

F672G 672 2016 1 12 12 Yes 1

F674 674 2022 1 6 23 Yes 1

F680A 680 8160 3 10 11 No 21 , 3

F680B 680 4080 2 12 10 No 21

F686A 686 2058 1 6 25 Yes 1

F686B 686 4116 2 12 12 Yes 1, 21

F686C 686 2058 1 6 23 Yes 1

F688 688 2064 1 10 17 Yes 1

F698 698 2094 1 6 25 Yes 1
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F702A 702 2106 1 12 14 Yes 1

F702B 702 2106 1 6 24 Yes 1

F720A 720 8640 3 12 12 Yes 1, 21 , 22 , 3

F720B 720 4320 2 8 12 Yes 1, 21

F720C 720 4320 2 10 10 Yes 1, 21

F720D 720 2160 1 8 12 Yes 1

F720E 720 4320 2 8 16 Yes 1, 21

F720F 720 2160 1 10 11 Yes 1

F722A 722 2166 1 6 25 Yes 1

F722B 722 4332 2 6 25 Yes 1, 21

F726 726 4356 2 6 22 Yes 1, 21

F728A 728 2184 1 6 23 Yes 1

F728B 728 2184 1 6 25 Yes 1

F728C 728 4368 2 12 12 Yes 1, 21

F728D 728 4368 2 12 12 Yes 1, 21

F728E 728 4368 2 12 13 Yes 1, 21

F728F 728 4368 2 12 14 Yes 1, 21

F728G 728 8736 3 12 14 Yes 1, 21 , 22 , 3

F734 734 2202 1 6 23 Yes 1

F744A 744 2232 1 12 13 Yes 1

F744B 744 2232 1 6 24 Yes 1

F746 746 2238 1 6 25 Yes 1

F750 750 4500 2 12 12 Yes 1, 21

F758 758 2274 1 6 25 Yes 1

F762 762 2286 1 6 26 Yes 1

F768A 768 4608 2 10 18 Yes 1, 21

F768B 768 4608 2 12 11 Yes 1, 21

F768C 768 4608 2 12 11 Yes 1, 21

F768D 768 2304 1 12 12 Yes 1

F768E 768 4608 2 12 12 Yes 1, 21

F768F 768 4608 2 12 13 Yes 1, 21

F768G 768 4608 2 14 12 Yes 1, 21
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