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Abstract

A subset of vertices of a graph is said to be 2-arc closed if it contains
every vertex that is adjacent to at least two vertices in the subset.
In this paper, 2-arc closed subsets generated by pairs of vertices at
distance at most 2 are studied. Several questions are posed about
the structure of such subsets and the relationships between two such
subsets, and examples are given from the class of partition graphs.

1 Introduction

Let ' = (V, E) be a connected undirected graph with vertex set V' and edge
set E (identified with a subset of unordered pairs from V). A 1-arc (or
simply an arc) is an ordered pair of adjacent vertices. A 2-arc of I is a triple
(a, B,7) of vertices such that {«, 8} and {B,7} are edges and a # . A
non-empty subset S of V' is said to be 2-arc closed if for each 2-arc (o, 3,7)
with «,v € S, the intermediate vertex [ also lies in S. More generally, for
each non-empty subset X C V', we define the 2-arc closure of X to be

Co(X)=(1{S | X C S, Sis 2-arc closed }.

Since V is 2-arc closed, and since the intersection of 2-arc closed subsets is
also 2-arc closed, it follows that Cy(X) is the unique smallest 2-arc closed
subset containing X. We say that C(X) is the 2-arc closed subset generated
by X, and we identify Co(X) also with the subgraph of I" induced on the
subset Cy(X) of V.

The structure of 2-arc closed subsets generated by very small subsets
depends on the girth g(T') of T, which is defined as the length of the shortest
cycle of I' if I' contains a cycle, and otherwise is co. For o, 8 € V, we write
Ca(a) = Ca({r}) and Co(e, B) = Co({«v, B}). Clearly Co(a) = {a} = K, and
if the distance d(«, 8) between o and 3 is greater than 2 then Cy(c, 5) =
{a, } =2 2 K; (where K,, denotes the complete graph on n vertices). Also
if d(a, ) = 2 and ¢(I') > 5, then there is a unique 2-arc (o, 7, ) from a to



B and we have Co(av, f) = {«, 7, B} = P», a path of length 2. It is interesting
therefore to consider the following kinds of 2-arc closed subsets:

(a) Co(a, B) where {a, f} is an edge of I" and ¢(I") = 3;
(b) Ca(cr, B) where d(«,3) =2 in I" and ¢g(I") = 3 or 4;

(c) Co(a, B,7) where d(«, 8) = d(a,v) =2, d(B,7) =1, and ¢(T') = 5.

In case (b), if g(I') = 4 and each pair a, 8 of vertices at distance 2 lies in
exactly one cycle of length 4, then Cy(c, 8) = C, and T is called a rectagraph.
To our knowledge the first characterisation of a family of rectagraphs was
given by Cameron [3, 4]. He proved that the only rectagraphs of valency
k admitting a vertex-transitive group of automorphisms G, such that the
stabiliser GG, of a vertex a induces Ay, or S; on the k vertices adjacent to «, are
the k-cube Q) and its antipodal quotient % - Qr. More generally rectagraphs
arise as coset graphs of binary linear codes with minimum weight at least 5;
for example, the k-cube @)y is the coset graph of the zero code of length k.
Mulder and Neumaier showed that each rectagraph of valency k£ has at most
2F vertices with equality only in the case of the k-cube, see [2, 1.13.1] and the
preceding comments. Also Brouwer [2, 4.3.6] studied rectagraphs of valency
k for which the 2-arc closure of each 3-claw was a 3-cube, and showed that
these are homomorphic images of the k-cube. (A 3-claw is a subgraph with
four vertices «, 3,7, 0 and three edges {a, 8}, {c, v}, {a, d}.) This result was
applied to characterise the rectagraphs corresponding to the binary Golay
codes of lengths 23 and 24; see [2, 11.3D & 11.3E].

Since in the case of rectagraphs every 2-arc closed subset generated by a
pair of vertices at distance 2 is a 4-cycle C,, sometimes called a quadrangle,
such 2-arc closed subsets have sometimes been called quads in the literature.
The term quad has also been used to denote the 2-arc closed subsets in each
of the cases (a) to (c) above. There have been other interesting characterisa-
tions of families of graphs by the structure of their quads together with the
local action of a vertex-stabiliser. A case of particular interest because of its



importance for the class of distance transitive graphs is the family of locally
projective graphs (see [10, Chapter 9]). A graph I is said to be locally pro-
jective of type (n,q) if the permutation group induced by a vertex-stabiliser
G, on the set I'(a) of vertices adjacent to a contains a normal subgroup
isomorphic to PSL,(¢) in its natural doubly transitive action on the points
of the projective geometry. Locally projective graphs of girth 3 are complete
graphs, while those of girth 4 were classified completely by Cameron and
Praeger and Ching in [5, 6], and classification of locally projective graphs of
girth 5 was begun by Ivanov in [9]. The latter required classification of the
flag-transitive P-geometries [10, 12], and was effectively completed in [11].
The final part of the classification involved a detailed study of locally pro-
jective graphs of type (3,4). A key role was played by certain 2-arc closed
subgraphs isomorphic to the Armanios-Wells graph on 32 vertices.

For most of the characterisations mentioned above the group action was
assumed to be 2-arc transitive, so that all quads of I" were isomorphic to
each other. This is not the case in general, and we will give some examples
in later sections from the class of partition graphs.

We will restrict our attention to graphs with the following properties:

Hypothesis 1 The graph T’ = (V, E) is finite and connected of girth 3 or
4, and admits a group G of automorphisms acting transitively on its arcs.
Let the G-orbits on unordered pairs of vertices at distance 2 be Py, ..., Py
(where k > 1), and for each i let {cy, B;} € P;. Then up to isomorphism the
quad Co(au, ;) is independent of the choice of the pair {ay, 5;} € P;, and we
will denote it by Quad,. If g(T') = 3 then we also let Quad, denote the quad

generated by a pair of adjacent vertices.

We begin by deriving in Section 2 some general properties of quads. The
observations proved in Theorem 1 prompted questions about the possible
nature and relationships between the various quads in finite arc-transitive
graphs. In the rest of the paper we explore some sub-families of partition
graphs, and demonstrate that many of the possibilities highlighted in Sec-
tion 2 occur in these graphs.



2 (General properties of quads

In this section we investigate relationships between the quads of graphs sat-
isfying Hypothesis 1. One property of importance is whether or not the
subgraph induced on the set I'(«) of vertices adjacent to « is connected.
For a subset X C V, we denote by X the subgraph of I’ induced on X,
that is, the graph with vertex set X such that if o, 3 € X then {«, 3} is an
edge of X if and only if it is an edge of I'. If it is clear from the context
however, we will use Quad; to denote both the set of vertices and also the
subgraph induced on it. A cycle C, = (o, ..., q,) is a graph with n vertices
ai,...,a, and n edges {w;, ;. 1} for all 4, where the subscripts are to be

taken modulo n.

Theorem 1 Suppose that Hypothesis 1 holds.

(a) If g(I') = 3, then Quad, is isomorphic to a subgraph of each Quad,,
and either Quad, = Quad, for some i > 1, or Quad, is complete.

(b) IfI'(c) is connected, then Quad, = Quad, = ... = Quad, =V.
(¢) If Quad; contains a pair of vertices {a, B} € P;, then Quad; = Cy(a, 3)
and Cy(c, B) C Quad,.

(d) IfT contains a cycle Cy = («, B,7,0) such that Co(a,y) = Quad; and
Co(B,9) = Quad;, then Quad; = Quad,.

e) Fori > 0, the setwise stabiliser Gquaqa, of Quad, is transitive on the se
For i > 0, the setwise stabiliser Gquaq, of Quad; is t 17) the set
of pairs from P; contained in Quad;. Moreover, Gquaq, 5 arc-transitive

on Quad,.

PrOOF. (a) For i > 1, let v € I'(ey;) N T'(B;). Then Quad; = Ca(ey, B;)
contains Ca(cy;,y) = Quad,. If Quad, is not a complete graph, then Quad,
contains a pair of vertices «, 8 at distance 2, in which case Quad, contains
Co(a, B), but Co(a, B) is isomorphic to Quad; where P; is the orbit on un-

ordered pairs containing {«, 8}, hence Quad, = Quad,.
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(b) Suppose that I'(«) is connected. By (a) it is sufficient to prove that
Quad, = V. Let Quad, = Cy(a, B) where § € I'(a). First we prove induc-
tively that Quad, contains all vertices of I'(«) which are at given distance !

from f in I'(«). By the definition of Quad,, this is true for [ = 1. Suppose

it is true for some [ less than the diameter of I'(a), and let v € T'(«) be at

distance [ + 1 from (8 in T'(«). Then there is a vertex § € I'(a) NT'(y) at
distance [ from £ in I'(a), and by the inductive hypothesis Quad, contains
. Hence Quad, contains Cy(«, ¢), and as («, v, d) is a 2-arc, Quad, also con-
tains . Thus Quad, contains every vertex of I'(cr), and so by connectivity
of I' it follows that Quad, = V.

(c) By definition Q; = Cy(«, B), and Cy(a, ) C Q; since «, B € Q;.

(d) This follows immediately from part (c).

(e) If o, B,d, B" € Quad; with {a, 8},{c/, '} € P;, then it follows from
part (c) that Co(a, B) = Co(d/, 8') = Quad,. Also by arc-transitivity {«, } =
{, B} for some g € G, so Quad! = Co(c, 5')Y = Ca(a, f) = Quad,, and
hence GQuaq, is transitive on the pairs from P; contained in Quad;. An

analogous argument proves that G'quaq, is transitive on the arcs of Quad,. H

Theorem 1 suggests some general questions about quads. For example,
Quad, is a complete graph if I' is a complete graph; however there are also
incomplete graphs for which Quad, is a complete graph, and we will give
examples from the class of partition graphs in Sections 5, 6 and 7. We find
families of examples in which Quad, = K3 and K.

Question 1 What can be said about incomplete arc-transitive graphs for
which Quad, s a complete graph? In such graphs can Quad, = K, for
any given n > 37

In addition, all quads equal the full vertex set V if I'(«) is connected,

but we shall give examples in Section 6 of a class of graphs for which I'(«) is
disconnected and yet still Quad; =V for all 7 > 1.

Question 2 What can be said about arc-transitive graphs T’ for which T'(a)

15 disconnected and Quad; =V for some ¢



3 Partition graphs

The partition graphs form a family of arc-transitive graphs admitting a finite
symmetric group S, acting primitively on the vertices. For any composite
positive integer n, let 2, = {1,2,...,n} be a set of size n on which G = S,
acts naturally. For each graph I' = (V| E) in this class there is a factorisation
n = mr with 1 < r < n such that the vertex set V' of [' may be identified with
the set of partitions of €2, having r parts of size m, hence the nomenclature
partition graphs. The set of edges is a G-orbit on unordered pairs of these
partitions. Originally this class of graphs arose in the problem of classifying
distance transitive graphs with automorphism group a finite alternating or
symmetric group [8]. In [7] several properties of partition graphs were con-
sidered, including their girth, and the local action of the stabiliser of a vertex
« on its neighbourhood I'(e).

Investigating the quads in some of the partition graphs of girth 3 drew
our attention to some interesting sub-families, and suggested the general
properties of quads described in the previous section. For the first sub-
family m = 2, and for all graphs in this sub-family Quad, = K3 and @ isa
disjoint union of graphs K5. There are two other quads which arise for graphs
in this sub-family, one isomorphic to the Cartesian product graph C5 x Cj,
and the other isomorphic to the complement of the Johnson graph J(6,2);
details are given in Section 5. The second sub-family, which is described in
Section 6, has r = 3, and again for all graphs in this sub-family W is a
disjoint union of graphs K, and Quad, is the complete graph Kj3. This time,
however, all the quads Quad, (for ¢ > 1) are equal to V. Since in these
two rather different sub-families the subgraphs Quad, are isomorphic to Kj,
we would be interested to know exactly which partition graphs have this
property, and also which other complete graphs arise as Quad, for partition
graphs. In Section 7 we give a third sub-family of partition graphs for which
Quad, = K.

It was the discovery of these facts experimentally for small graphs in

each sub-family, using MAGMA [1], which led us to some of the properties



established in Theorem 1. Our findings also suggest the following questions

for further investigation:

Question 3 For which partition graphs T is the subgraph T'(a) connected?

Question 4 For which partition graphs I' of girth 3 is Quad, a complete
graph?

Question 5 For which partition graphs ' is some Quad,; equal to V¢ When
1s Quad; =V foralli>17¢

4 Partition graphs and matrices

Let n = mr with 1 < r < n, and let V(m,r) denote the set of partitions of
the set Q, = {1,2,...,n} having r parts of size m. The vertex set V of each
partition graph corresponding to this factorisation of n may be identified with
V(m,r). The edges for a particular graph in this class can be characterised
by a class of matrices of order » whose row and column sums are equal to m.

Let a ={zy |z ... |2z, } and B = {y1|y2| ---. | ¥+ } be any two partitions
of Q, with |z;| = |y;| = m for 1 < ¢ < r. Form the matrix M = (a;;)rxr
where

aij=|xiﬂyj|f0r1§i,j§r.

Clearly the matrix M depends on the orderings of the parts z; and y;. If o =
{T1o | T25 | --- | Tro} and B = {y1, | yor | --- | yr-} are the result of applying
the inverses of permutations ¢ and 7 € S, to the parts of a, 3 respectively,
then the corresponding matrix will be (a;s jr)rxr, that is, the matrix obtained
from M by applying to the rows and columns the permutations ¢t and 7}
respectively. Thus the pair (o, ) is associated with the class [M] of all

matrices obtainable from M by permuting the rows and columns. The map

(0', T) : (aij)rxr = (aia,jT)rxr



defines an action of S, x S, on the set M(m,r) of all » x r matrices with
non-negative integer entries and row and column sums equal to m. The class
[M] is the orbit containing M under this action, and the set of such orbits
labels the partition graphs with vertex set V(m,r). Matrices in the same
orbit under this action will be called equivalent.

The partition graph I';y; corresponding to [M] is the directed graph with
vertex set V' (m, r) such that («, 3) is a directed edge if and only if the matrix
formed from «, 5 in the manner described above lies in [M]. Each such graph
admits S, acting arc-transitively. Also the graph obtained by reversing the
orientation of each directed edge of I/ is the partition graph associated with
the orbit consisting of the transposes of the matrices in [M]. In particular if
[M] is closed under transposes, then I'jy) can be regarded as an undirected
graph. In the trivial case M = mlI, (where I, denotes the r x r identity
matrix), we have [M] = {ml,} and the graph I';;; is degenerate, consisting
of a loop on each vertex. The families of partition graphs which we will
examine in this paper will all consist of undirected graphs corresponding to
non-trivial [M]. We note that [V (m,7)| = —2

(mYrer!”

5 Some partition graphs with m =2

Suppose that n = mr. The first partition graphs we consider are those for
the case m = 2, corresponding to the matrices N, € M(2,r) given by

N, = ( J 0 ) for each integer r > 4,
0 21, ,

where J; denotes the s X s matrix with all entries equal to 1. We determine
the basic parameters and the quads for these graphs. We will order the quads
Quad; (for 1 < i < k) according to their size.

For integers m, n satisfying 1 < m < n/2, the Johnson graph J(n,m) is
the graph with vertices the m-element subsets of {1,2,...,n}, such that two
vertices u and v are adjacent whenever |[uNv| =m — 1. The complement I'°



of a graph ' = (V| E) is the graph with vertex set V such that a 2-element
subset {a, 8} of V is an edge of I'® if and only if {a, 8} ¢ E. For graphs
I'=(V,E) and I'" = (V', E"), we define the Cartesian product graph T' x T’
as the graph with vertex set V' x V’ such that («, ') is adjacent to (3, 8') if
and only if either « = § and {¢/, 8’} € F', or o = ' and {a, f} € E.

Proposition 2 Let I' = I'\y,) with v > 4. Then T’ is an undirected graph
having girth 3 and valency r(r — 1), and I'(a) = (5)Ky. The group S, has
two orbits on unordered pairs of vertices at distance 2, and the quads satisfy

Quad, = K3, Quad; = C3 x C3, and Quad, = J(6,2)°.

PROOF. Since N, is equal to its transpose it follows that I' is undirected.
Let o = {x1| ... |z} € V(2,r). Then each vertex 5 € ['(a) is a partition of
2, with 7 — 2 parts in common with . Suppose that the parts z; = {a1,as}
and z; = {b1,be} are not parts of 3. Then either {ay,b:} and {as, bo}, or

{ai,be} and {ag,b;}, are parts of §. Thus we have two vertices in I'(«)
!
ivj,

in I". For example if (7,j) = (1, 2) these two vertices are

corresponding to the parts z; and z;, say f3; ; and and these are adjacent

Bl,gz{al,b1|a2,b2|x3| |$,~} and 6{’2={a1,b2|a2,b1|x3| |LL‘7-},

and we notice that {12, ],} is also an edge of I'. Moreover there are no
other edges between vertices of I'(«), as any other vertex in I'(«) would differ
in at least three parts from each of f; ; and ﬂé,j. This proves the assertions
in the second sentence of the proposition, and also shows that Quad, = Kj.

If (o, B,7y) is a 2-arc in " such that «, are at distance 2, then ¢,y must
differ in either 3 or 4 of their parts. Moreover G, = S5 1S, has two orbits
on vertices at distance 2 from «, one for each of these two types (depending
on whether the vertes differs from « in 3 or 4 parts), and we therefore have
two quads generated by pairs of vertices at distance 2 to determine. Suppose
first that «, v differ in four parts. Without loss of generality we may suppose
that 8 = P12, and that «,y differ in the first four parts. Then the matrix
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M, corresponding to the pair «, 1y is

Jo 0 0
M1 == 0 J2 0
0 0 2I,_4

Writing

a = {a1,a2 |b1,by | c1,co| di,da | X},

where x denotes the remaining r — 4 parts of o, we may take
v ={a1,b1|ag, b | c1,dyi | co,do | x}.
Now Quad,; = Cy(«,y) contains both the vertices
/61,2 = {a1, by | az, by | C1, Co | di,ds | X}, /33,4 = {01, a2 | b1, by | ci,di |62, dsy | X}
in I'(a) N (%), and hence also contains the four vertices
51,2 = {a1,b2 | az, b1 | c1,c2 | di, da | x}, ﬂ:l),,4 ={a1,a2|bi,ba| c1,dz | 2, dy | x},

7’ = {alabl | as, by \ c1,dy \ c2, dy \ X}, 0= {01,52 | as, by |01,d1 \ 02,d2|X},

which form triangles on the four edges of the 4-cycle (o, f1 2,7, 83.4). It also

contains the vertex
(5, = {al, b2 | ag,bl | Cq, dg | Co, d1 | X}

which forms a triangle on the edge {3} 5,6} (and one on the edge {3 4,7'})-
Thus Ca(a,y) contains the set X := {a, B1,2, 8 9, B34, 85457, 9,6} of nine
vertices. It is not difficult to see that the induced subgraph X is isomorphic to
C3x (5. Let H = 54155 be the subgroup of Sg which leaves invariant the par-
tition {ay, az, by, b | €1, Co, d1, da} of the set Qg := {a1, aq, b1, by, 1, o, dy, do},
and consider H as a subgroup of G leaving ,, \ Qg fixed pointwise. Then X
is an orbit of H in V(2,7). We claim that there are no vertices of V'(2,7)\ X
which are adjacent to two vertices of X. Since H is transitive on X it is suf-
ficient to prove that no vertex 8 € I'(a) \ X is joined to a vertex of X \ {a}.

11



As T'(a) =2 (5) Ko, we see that § is not joined to any of the four vertices
B2, B2, Bsus Bs 4 in T'(cr), and as each of v, 7/, 4,6’ must be joined to exactly
two vertices of I'(«), and these vertices are all in X, the claim follows. Thus
we have Quad; = Ca(a,7) = X = C; x Cs.

Now we turn to the case of the quad Quad, = Cy(«,y), where this time

«, 7y differ in exactly three parts. This time we write
a = {ay,ay | by, be | c1,co | x},
where x denotes the remaining r — 3 parts of «, and take
v =A{a1,bs | by, ca|c1, a9 | x}.

Then the matrix M> corresponding to the pair a7 is

Y. 0 101

My = 3 where Y3=11 1 0
0 2I,_3

011

The quad Quad, = Cs(a, ) contains the three vertices

51,2 = {a1,b2 | by, a2 c1,co | x},
/Bé,,?, = {a17a2 | blac2 ‘ Clvb2 ‘ X}7
5{,3 ={a1,c2|b1,b2] c1, 00| x}

of I'(a) N T'(y), and hence it also contains the six vertices

51,2 = {01, by | as, by | C1, Co | X}a
Bos = {a1,a2 | b1, c1| b, c2 | x},
P13 = {a1, 1| by, ba | a, co | x},
71,2 ={a1,by | b1, c1 |y, 00 | X},
Va3 = {a1,c1]b1, c2 | az, by | x},
V1,3 = {a1,01 b2, ca | ag, e1 | x},
which form triangles on the six edges which make up the three 2-arcs from

a to . It also contains the vertices

Yi,2 = {al,b1 |0L2, (&) | by, c1 | X}a
V2,3 = {al,CQ | bi,c1 \ ag, by | X},

Y13 = {a1,¢1|b1,a2]bs, co | X},

12



which form triangles on the edges {512,713}, {823,712} {151,3, 75,3} respec-
tively, and finally it contains

v = {a1,ca|bi,az | c1,be | X},

which is adjacent to all three of 7 2,723, 71,3- Thus Co(c, y) contains the set
X consisting of all the 15 vertices of I' which have z,4,...,z, as parts. In
this case the setwise stabiliser H in G of g := {aq,as, b1, be,c1,co} has X
as an orbit in its action on V' (2,7). We claim that there are no vertices of
V(2,7)\ X which are adjacent to two vertices of X. Since H is transitive on
X it is sufficient to prove that no vertex 8 € I'(«) \ X is joined to a vertex
of X \ {a}. AsT'(a) = (5)K,, we see that 3 is not joined to any of the
six vertices 12, 8], P23, B23, B1,3, 813 in I'(r), and as each of the vertices
Y, vij and v; ; (for 1 <4 < j < 3) must be joined to exactly three vertices
of I'(«), and all of these vertices are known to lie in X, the claim follows.
Thus we have Quad, = Cy(a, ) = X.

We have seen that the vertex set X of Quad, may be identified with the
set of 15 partitions of the 6-set (g into 3 parts of size 2; such partitions
are called synthemes of (0. Moreover under this identification we have seen
that two synthemes in X are adjacent in Quad, if and only if they have one
part in common. Now Quad, admits the group H acting arc-transitively
as HX = Sg on synthemes. To identify Quad, with the complement of the
Johnson graph J(6,2), we apply an outer automorphism o of Sg. Such a
map o interchanges synthemes and unordered pairs from g, and maps two
synthemes with a common part to two unordered pairs with no common

element. Thus o induces an isomorphism from Quad, to J(6,2)¢. B

This result prompts one to ask whether these partition graphs might be
the only arc-transitive graphs for which the quads are precisely K3, C3 x C3
and J(6,2)°. One might begin to understand the situation by asking this
question in the case where an arc-transitive automorphism group induces
the same local action as for the partition graphs I'|y, ).
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Question 6 IfI' is a connected G-arc-transitive graph of girth 3 and valency
r(r—1), for somer > 4, such that each quad is K3,C5 x Cy or J(6,2)¢, and
such that G4, induces the natural action of S21S, on I'(a) = () Ka, then is
' isomorphic to the partition graph I'iy,1?

Remark 3 The proof of Proposition 2 shows that I' = I'[y, is isomorphic to
J(6,2)¢, and that in this case ['(a) = 3 - K5, Quad, = K3, and there is only

one orbit on pairs of vertices «, § at distance 2, giving Quad; = Cy(c, 8) = V.

6 Some partition graphs with r =3

In this section we investigate the partition graphs I'[y,,), where

m—1 1 0
M, = 0 m—1 1 for each integer m > 2.
1 0 m—1

For m = 2 this graph is the complement of I'\y,}, and hence by Remark 3,
[y = J(6,2). This graph has just two quads, namely Quad, = K3 and
Quad; = I'[5,). We note that I3y, is somewhat degenerate within this sub-
family since its valency is 8 = 2%, whereas the valency of I';y;,,) turns out to
be 2m? for all m > 3. A computational investigation of the quads of I'[,,] for
small values of m using MAGMA suggested to us that certain properties for
graphs in this sub-family might hold for all m, leading to the following result.
Its proof will be followed by further observations about the degenerate cases
m = 2 and 3.

Proposition 4 Let I' = I'1y,,) where m > 4. Then I is an undirected graph
having girth 3, valency 2m3, and T'(a) = m3- K,, so Quady, = K3. The group
Sy has five orbits on unordered pairs of vertices at distance 2, and Quad; =T’

for1 <i<5.

ProOOF. First we observe that M, is equivalent to its transpose (which

can be seen by interchanging columns 1 and 3, and then interchanging rows 1
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and 3), and so I is an undirected graph. Let « = {A| B| C} € V (m, 3) where
|A| = |B| = |C] = m. For each of the m? choices of (a,b,¢c) € A x B x C,
the two vertices

Bave ={AN{a} U{b}[ BA{b} U {c}|C\ {c} U{a}}
we = {A\{a} U{c}[B\{b} U{a}[C\{c}U{b}}

!

' e As m > 3, these 2m? vertices are

lie in T'(«), and By is adjacent to
pairwise distinct, and we conclude that I" has girth 3 and valency 2m?3.
We claim that there are no edges in I'(a) apart from the edges between

the pairs of vertices Buc, 3

he- oince Goacts transitively on arcs of I, it is

sufficient to fix a triple (a,b,c) and prove that Sg. is not adjacent to any
vertex Byye or fly. with (@', 0, ) # (a, b, c). Without loss of generality we
may assume that o’ # a. Then the first parts of S, and 5., intersect in
a subset of size m — 2 and so these vertices are not adjacent. For the same
reason Pupe and [y are not adjacent if b # b', so suppose that b = b'. If
also ¢ = ¢ then the second parts of 3,4, and By y~ Will be equal and so these
vertices will not be adjacent, while if ¢ # ¢/, then the third parts of S, and
Baye have exactly m — 2 points in common, so again they are not adjacent.
Thus the claim is proved, and we have established that m ~m3 . K, and
that Quad, = Kj.

Next we note that the five orbits of S,, on unordered pairs of vertices at
distance 2 correspond to the following matrices M, for 1 < i < 5:

m—-2 1 1 m—-2 2 0
M = 1 m-2 1 , M2 = 0 m-2 2 :
1 1 m-2 2 0 m-—2
m—1 0 m—2 1
M® = 0 m 0 , MO = 1 m-=1 0 :
1 0 m-—1 1 0 m-1
m— 2 2 0
M) = 1 m-2 1
1 0 m—1
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As m > 4, clearly these five matrices are pairwise inequivalent.
Now write A = AU {a,d'},B = BU{b,b'}, and C = CU {c,c'}. Then
there is a path of length 2 from « to each of the following five vertices:

n={Au{btu{c} [Bu{a}u{c}|CU{a}U{t'}},
12 ={AU{b} U{V'} | BU{c}U{c} CU{a}U{da'}},
13 ={Au{a}u{c} BU{B}U{V}|CU{a} U{c}},
ya={Au{d} U{c} [BU{a} U{t'} | CU{a} U{c}},
15 ={AU{b U{t'} | BU{a} U{c} [CU{a} U{c}}.

Moreover, for each 4, the matrix corresponding to the pair (7y;, @) is MY,
and it follows that the ~; lie in pairwise distinct G,-orbits of vertices at
distance 2 from «, for 1 <7 < 5. To see that these are the only G,-orbits of
vertices at distance 2 from «, consider an arbitrary such vertex . Because
of the definition of adjacency in I' we may order the parts of v so that, for
j € {1,2,3}, the j* parts of o and v have at least m — 2 common points.
The only matrices in M(m, 3) with each diagonal entry at least m — 2 are

equivalent to one of the matrices M,,, M{1) ... M or to

m—2 2 0
MO = 2 m-2 0
0 0 m

If however (v, a) corresponds to M) then it is not difficult to show that
there is no path of length 2 joining v to a.

It remains to prove that the quad Quad, generated by {a,~;} is equal
to I', for 1 <7 < 5. We first apply the general result Theorem 1. There
are eight 2-arcs from o to 7, the intermediate vertices being f,,. for each
choice of z € {a,a'},y € {b,b'},z € {c,c'}. The matrices corresponding
to the pairs (8, Base), for 8 = Buver, Bave and Buye, are M, M and M
respectively. Hence, by part (d) of Theorem 1, Quad, is isomorphic to each of
Quad;, Quady and Quad,. Similarly, considering the 4-cycle («, 8.y, 7, Buye)
where v = {AU{a} U{c'} | BU{a} U{c}|C U {b} U{b'}}, we see that the
matrices corresponding to the pairs (v, «) and (8., Biy.) are equivalent to
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M® and M respectively, and hence Quad, = Quads. Thus all five Quad,
(for 1 < ¢ < '5) are isomorphic to each other.

Finally we use some group theory to help prove that all these quads are
equal to I'. Set @ := Cy(av, 72), and let G¢ denote the setwise stabiliser of Q)
in G. Then Gg contains Gy, = (Sy_2 X S2) L A3, with orbits AUBUC and
{a,d',b,0,c,c'} in Q,. In the previous paragraph we saw that () contains (,,,
for each choice of z € {a,d'},y € {b,V'},z € {c,c'}, and the argument there
shows in particular that @ = Cy(Base, Baver). Hence G contains Gapg,,. 8.,
which contains Sym(A4 U {a'}) x Sym(B U {¢'}). It follows that Gg N G,
contains Sy, ! As. Similarly @ = Co(Babe, Barvrer), and hence G contains any
permutation of €2, which interchanges Bq. and By . Thus G contains any
permutation which interchanges A and B, and acts on {a,d’,b,b',c,c'} as
(a,c)(d,c). It follows that Gg = G, and hence that @ =T. B

For m = 2 and m = 3 the situation is as follows. We use the same
notation M) as in the proof of Proposition 4 for matrices corresponding to

unordered pairs of vertices at distance 2.

Remark 5 As we noted earlier, for m = 2 the graph I'[5s) is isomorphic
to J(6,2), and for this case we find that [MS"] = [M{Y] = [Ms), while
[M$Y] = [215] is trivial, and [M{"] = [M{Y], giving Quad, = Tjas,)-

Remark 6 For m = 3, the graph I'[5;,) has 280 vertices. Here we find that
[M§4)] = [M§5)], giving four rather than five equivalence classes of matrices,
corresponding to four G-orbits on unordered pairs of vertices at distance 2.
Computation using MAGMA showed that each of the four quads correspond-
ing to these four orbits is equal to the whole graph I'[yz,), and that w is
a connected, bipartite, regular graph (of order 54), with valency 9, diameter
3 and girth 4. In particular, if « = {A| B|C} where |A| = |B| = |C| = 3,
and for each of the 27 choices of (a,b,¢) € A x B x C, we define B4, and

! as in the proof of Proposition 4, then the 27 edges {Bube, By} form a

perfect matching in I'[pz,)(r), and the 27-vertex quotient of I'jpz,)(cr) formed

by removing the edges of this perfect matching and identifying each vertex
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Babe With its partner /!

wbe 18 isomorphic to the 8-regular graph on vertex-set

GF(3)® with two vertices (z,y,2) and (u,v,w) adjacent if and only if they
differ in all three coordinates.

7 A family of examples where Quad, is K

We complete this paper by giving a family of examples of partition graphs
for which Quad, is a complete graph on 10 vertices (see Questionl). This

family consists of the partition graphs I'ig,), where

2 1 0
H=1 2 0 for each integer r > 3.
0 0 3L

By arc-transitivity, the vertices of any arc (o, ) in I'g,, are of the form
a = {a1,a2,a3|b1,be,b3|x} and B ={ai,as,b3|b1,bo,a3|x},

where x denotes the remaining r — 2 parts of a. Now if 7 is any vertex in
['(a) NT'(B), then v must have exactly r — 2 parts in common with each of
a and B. It follows that the » — 2 parts of x are also parts of v, and that
every such vertex 7 is of the form {u|v|x} where {u|v} is a partition of
{a1,as,a3,b1,bs, b3} into two subsets of size 3. There are (5) = 10 vertices
of this form (including both « and ), and moreover, any two of them are
adjacent in I'[y,). It follows that Quad, = Cs(c, ) is a complete graph on
10 vertices.
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