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1. Introduction

A number of articles investigating the properties of groups expressible as a product AB
of abelian subgroups A and B were published in the 1950s. Perhaps the most significant
of these was a 1955 paper by N. Ito [10] in which he proved (using a surprisingly easy
argument) that any such group is metabelian. In other words, if G = AB, where A and B
are abelian subgroups, then the derived subgroup G’ is necessarily abelian.

The case where A and B are both cyclic was investigated by L. Rédei, J. Douglas, B.
Huppert and P. M. Cohn. From a careful reading of Rédei’s paper [11], one can see that
he proved that if G = AB, where A is infinite cyclic and B is finite and cyclic, then the
derived subgroup G’ is generated by an element of B and at most one other element (and
hence in particular, if G’ N B = 1 then G’ is cyclic).

Rédei also proved a similar result for the case where A and B are both infinite cyclic,
provided that one of A or B contains a non-trivial subgroup that is normalized by a non-
trivial element of the other. Building on Rédei’s work, Cohn [2] showed that the latter
condition is always satisfied, and he proved also that if G = AB, where A and B are
infinite cyclicand G'NA=G' N B = AN B =1, then G’ is cyclic.

The case where A and B are both finite and cyclic appears not to have been investi-
gated in detail, other than by Huppert [8] and by Douglas in a series of four papers [4, 5,
6, 7]. Huppert showed that if G is a p-group of odd order, then G’ is cyclic. (This also
appears as Satz III 11.5 of [9].) In the papers by Douglas, the emphasis was on conjugacy
of elements, but little was said about the structure of the group G or its derived subgroup.

Let us assume for the moment that G = AB is finite, where A and B are abelian.
Instead of limiting our attention to G’, which by Ito’s theorem we know is abelian, we
consider more generally an arbitrary abelian normal subgroup K of G. We might expect
(perhaps naively) that the group K/(KNA) should somehow be controlled by the structure
of B. We note for example that |[K/K N A| = |KA : A, and this divides |G : A|, which
divides |B|, and so at least the order of K/(K N A) is under control. If A is normal in
G, we can say more: in that case K/(KNA) >~ AK/A C AB/A %~ B/(AN B), and then
since B is abelian, we may conclude that K/(K N A) is isomorphic to a subgroup of B. In
particular, if B is cyclic and A< G, then K/(K N A) is cyclic.

It is not always the case, however, that K/(K N A) is cyclic. This is true if |K| is odd
and B is cyclic, but somewhat more generally, we will prove the following.

Theorem A. Let G = AB be finite, where A is abelian and B is cyclic. If K is any abelian
normal subgroup of G with the property that the Sylow 2-subgroup of K is contained in
G’, then K/(K N A) is cyclic.

If B is not cyclic, then K/(K N A) need not be isomorphic to a subgroup of B, even
if |K| is odd or K = G'. (We present some counter-examples in the final section of this
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paper.) Perhaps surprisingly, however, if A is cyclic then we do have such an isomorphism.

Theorem B. Let G = AB be finite, where A is cyclic and B is abelian. If K is any abelian
normal subgroup of G with the property that the Sylow 2-subgroup of K is contained in
G', then K/(K N A) is isomorphic to a subgroup of B.

It is not really necessary to assume that G is finite to establish results like these; it
suffices that B is finite. To see why this is so, observe that if B is finite, then |G : A| < oo,
and thus G = G/N is a finite group, where N = coreg(A). In this situation, NK N A =
N(KNA) by Dedekind’s lemma, and it is easy to see from this that K/(KNA) = K/(KNA).
To obtain information about K/(K N A), therefore, it suffices to work in the finite group
G. Of course, we have G = A B, and because B is finite and abelian, subgroups of B are
isomorphic to subgroups of B.

The requirement on the Sylow 2-subgroup of K in Theorems A and B does not make
sense if K is infinite, but since (G)' = G’, it is clear that everything works if we take
K = @', and so we have the following.

Corollary C. Let G = AB, where A and B are abelian and B is finite. If A or B is
cyclic, then G' /(G' N A) is isomorphic to a subgroup of B.

An easy consequence of these results is the following.

Corollary D. Let G = AB, where A and B are cyclic and at least one of A and B is
finite. Then two elements suffice to generate G'.

Proof. We may assume that B is finite, and thus G’'/(G’' N A) is cyclic by Corollary D.
Since also G’ N A is cyclic, the result follows. |

If neither A nor B is assumed to be cyclic, then although K/(K N A) need not be
isomorphic to a subgroup of B, it is nevertheless true that the structure of B does exert
some control over the structure of K/(K N A). To state one result in this direction, we
recall that the rank of a finite abelian group X is the smallest number of elements that
suffice to generate X, and we denote this by r(X).

Theorem E. Let G = AB be finite, where A and B are abelian, and let K be an abelian
normal subgroup of G. Then r(K/(K N A)) < f(r(B)) for some function f which is
independent of the group G.

As we have already mentioned, there are examples that set limits on how far one can
extend Theorems A, B and E.



Theorem F. Let p be any prime. Then there exists a p-group G expressible as AB,
where A and B are abelian subgroups, and such that G'/(G' N A) is not isomorphic to any
subgroup of B; in fact, r(G'/(G' N A)) can exceed r(B) by an arbitrarily large amount.

The structure of this paper is as follows. In section 2 we begin with some preliminary
facts about commutators and abelian normal subgroups, including Ito’s theorem. We
investigate the special case where G’ is a 2-group (and other matters) in section 3, and
in section 4 we prove some preliminary facts about groups triply factorizable in the form
UV =UK = VK where U, V and K are subgroups with pairwise trivial intersections. We
prove Theorems A and B in section 5, Theorem E in section 6, and Theorem F in section
7.

Much of this work resulted from serendipitous observations made by the first author
in the study of regular Cayley maps for finite abelian groups, and computations using the
MacGMA system [1]. (A regular Cayley map for a group A is an orientable map whose
orientation-preserving automorphism group acts regularly on the directed edge set and has
a subgroup isomorphic to A that acts regularly on the vertex set.) In turn, Corollary C
has been used to develop the theory of such regular maps; see [3]. The authors are grateful
to Tom Tucker (a co-author of [3]) for his contributions to this paper, especially Lemma
5.2 and an earlier special case of Theorem B.

2. Ito’s Theorem

For completeness, we include a proof of Ito’s theorem. (Essentially the same proof
can also be found in Huppert’s book [9].) We begin with an easy observation about the
subgroup [4, B] generated by elements of the form [a,b] = a=1b~'ab for a € A and b € B.

Lemma 2.1. Let G = AB, where A and B are abelian subgroups. Then G' = [A, B.

Proof. We have [A, B]< A and [A, B]< B, so [A, B]< AB = (. Moreover, in the group
G/[A, B] we see that the images of A and B are abelian subgroups that centralize each
other. It follows that G/[A, B] is abelian, and thus G’ C [A, B]. The reverse containment
is obvious. |

Theorem 2.2 (Ito). Let G = AB, where A and B are abelian subgroups. Then the
derived subgroup G’ is abelian.

Proof. By Lemma 2.1, we see that G’ is generated by commutators of the form [a, b]
where a € A and b € B, and therefore it suffices to prove that any two such commutators
commute.

Let a,c € A and b,d € B and write b¢ as a product ef, where e € A and f € B.
Similarly, write a® as a product hg where h € B and g € A. Then we have

[a, 0] = [a%,6]% = [a,ef]? = [a, f]* = [a?, f9] = [hg, f] = [g, f],
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where the third equality holds because a and e commute in A and the last equality holds
because f and h commute in B. Similarly,

[a,b]% = [a%,b%]° = [hg, b]° = [g,b]° = [¢%,b°] = [g,ef] = [g, f]

since h and b commute in B, and g and e commute in A.
We now have [a, b]°? = [a, b]%°, and thus [c71,d™!] = cdc™1d! centralizes [a, b] for all

choices of elements ¢ € A and d € B. The result follows. l

We close this section with another standard fact about commutators and abelian
groups.

Lemma 2.3. Let K be an abelian normal subgroup of G, and let a € G. Then [K,a] =
K/Ck(a) and [K,a] = (K({a))'.

Proof. Since K is abelian, the map = — [z,a] is an endomorphism of K with kernel
Ck (a) and image [K,a]. Thus [K,a] = K/Ck(a), as claimed.

Since [K,a]* = [K% a] = [K, a], we see that (a) normalizes [K,a]. But a, and hence
also (a), acts trivially on K/[K,a], and thus we have [K,a] D [K, (a)] = (K({(a))', where
the latter equality holds by Lemma 2.1. The reverse containment is clear. |

3. The special case of 2-groups

As is apparent from the statements of Theorems A and B, extra complications arise
when the prime 2 is involved. The following lemma on commutators will be helpful to
handle that situation. In the statement of this result, the extended commutator [u, v, w]
denotes the element [[u, v], w], and in the proof we use two standard commutator identities,
namely [uv,w] = [u, w]’[v, w] and its inverse, [w, uv] = [w, v]|[w, u]’.

Lemma 3.1. Let K be an abelian normal subgroup of G, and suppose that ¢,y € G and
that [z,y] € K. Then [z™,y, x| = [z,y,x™] for every integer m > 0.

Proof. The assertion is trivial if m = 0, and so we may assume that m > 0 and proceed
by induction on m. Observe first that since z and y commute modulo K, the elements x"
and y also commute modulo K, and therefore [z",y| € K for every positive integer r. We
now find that

[z™,y] = 2™ e, y] = (o™ Y]l y] = 2™ y) 0,
where a = [z,y] € K. It follows that
2™, y, 2] = [[2™7, y]%a, 2] = [z, )", 2]°[a, 2],

and hence that

m

[.’Em,y,:l?] = [["Em_lay]’m]ma[a’x] = ['73 —l,y’x]wa[a,x]_
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But [z™~!,y] and hence also [[z™~!, y], z]® lies in the abelian normal subgroup K, and
therefore [x™~ !y, z]® is centralized by a € K. Thus

(2™, y, 2] = [y, 2], ] = [, y, 2]7[a, z).
Our inductive hypothesis is that [z™ 1, y, z] = [z,y,2™ '] = [a,2™ "], and so we obtain
2™, y, 2] = [a, 2™ ]%[a, 2] = [a, z][a, 2™ ]® = [a, 2™ 2] = [a,2™],

as required. |

Next, we introduce what we shall call the standard notation. Given a normal
subgroup K of G = AB, where A and B are subgroups of G, we write H = KANK B, and
we set U = HNA and V = HN B. Our next result establishes some basic facts about this
situation. In its proof, we appeal several times to the following elementary consequence of
Dedekind’s lemma: if X, Y and H are subgroups of some group and X C H C XY, then
H=XHnNY).

Lemma 3.2. Suppose that K is a normal subgroup of G = AB, and assume the standard
notation. Then H = KU = KV = UV. Also if H is finite, then |H| divides |K|?|U N V.

Proof. Observe first that K C H since H = KANKB. We have K C H C KB,
and so by Dedekind’s lemma, H = K(H N A) = KU, and similarly, H = KV. Also
since B C KB C G = AB, Dedekind’s lemma yields KB = (KBN A)B. But KBNA =
KBNKANA=HNA =U, and thus we have KB = UB. Moreover, U C H C KB =UB,
and a further application of Dedekind’s lemma yields H = U(H N B) = UV, as required.

Now assume that H is finite. Then |[U:UNV|=|UV:V|=|KV :V|=|K: KNV|
divides |K|, and similarly |V : UNV | divides |K|. Thus |[H| = |U : UNV ||V : UNV||[UNV|
divides |K|?|U N V|, and the proof is complete. ||

Lemma 3.3. Suppose that G = AB, where A and B are abelian. Let K = G' and
suppose that Ky is a normal subgroup of G contained in K, of index |K : Ky| = 2. Then

there exist 2-elements a € A and b € B such that [b,a] ¢ K. Furthermore, neither a nor
b can liein H=KANKB.

Proof. By Lemma 2.1, we have K = G' = [B, A], and since Ky < K, we can choose
b € B and a € A such that [b,a] € K. Write a = agap where ay has 2-power order
and ag has odd order and similarly, write b = byby. Now let G = G/Kj, and use the
standard “bar” convention, in which the overbar denotes the canonical homomorphism
from G onto G. (Thus g = Kgg for every element g € G.) Observe that |(G)’'| = 2, and
hence each conjugacy class of G has size 1 or 2. It follows that elements of odd order in G
act trivially on each class, and hence such elements are central. Thus [b,a] = [bs, @3], and
S0 [ba, a2] ¢ Ky and we can therefore assume that a and b are 2-elements.
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Assuming the standard notation now, and appealing to Lemma 3.2, we see that
[H,A]=[UK, A] = [K, A] C Ky, where the second equality holds because U is a subgroup
of the abelian group A, and the containment holds since K/Kj is a normal subgroup of
order 2 in G/Ky, and hence is central. But [b, A] Z Ky, and so b ¢ H. Similarly, a ¢ H
and the proof is complete. |

We can now prove our first major theorem. Recall that if G = AB, where A and B
are abelian, then G’ is abelian (by Ito’s theorem), and so the assertion of the following
theorem makes sense.

Theorem 3.4. Let G = AB be finite, where A is abelian and B is cyclic, and assume
that G' is a 2-group. Then G'/(G' N A) is cyclic.

Proof. Assume the contrary, and that G is a counterexample of minimum possible order.
Write K =G’ and R = K N A.

We first argue that if 1 < N < G with N C K, then K/NR is cyclic. To see this,
write G = G/N, and use the “bar” convention to denote by S the image of any subgroup
S C G under the canonical homomorphism from G onto G. Note that G = A B, where A
is abelian and B is cyclic. As K = G’ = (G)' is a 2-group, the minimality of G implies
that K/(KNNA) 2 K/(K N A) is cyclic. Alsosince N C KNNA C NA, it follows by
Dedekind’s lemma that KNNA = N(KNNANA)=N(KNA)=NR, and hence K/NR
is cyclic, as claimed.

Suppose now that ®(K) > 1, so that we can take N = ®(K) in the previous paragraph.
In this situation, NR/R = ®(K/R), and so the Frattini factor group of K/R is isomorphic
to K/NR, which is cyclic. It then follows that K/R is cyclic, as desired, and so we can
assume that ®(K) = 1, and hence that K is elementary abelian.

Now let H, U and V be as in the standard notation, and observe that G’ = K C H,
so that H < G. Also U NV is centralized by both A and B (since U C A and V C B),
soUNV C Z(AB) = Z(G), and by Lemma 3.2, we find that |H : U N V| divides |K|?,
which is a power of 2. It follows that H/Z(H) is a 2-group, and so H is nilpotent and all
odd-order subgroups of H are central.

If U centralizes K, then U < KU = H. In this case, we see by Lemma 3.2 that
K/R=K/(KNU)2 KU/U=UV/U 2£V/(UNV), which is cyclic, as required. We can
assume, therefore, that Cx(U) < K. Writing Z = Ck(U), we see that Z = KNZ(KU) =
K NZ(H), and thus Z < G since H < G. Furthermore, Z is non-trivial because H is
nilpotent. Also R = KN A C Ck(U) = Z, so taking N = Z in the second paragraph
above, we find that K/Z = K/ZR is cyclic, and thus |K : Z| = 2 because K is elementary
abelian.

We argue next that A centralizes Z. To see this, let Ag be the Hall 2-complement of
A and note that [K, Ag] C Z < K since K/Z is central in G/Z (because it has order 2
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and is normal). It follows by Fitting’s lemma that Cg(Ap) is non-trivial. Furthermore,
since the 2-group A/Aj acts on the non-trivial 2-group Cg(Ap), it follows that A has
non-trivial fixed points in K, and so the subgroup Y = Cg(A) is also non-trivial. Observe
that RCY C Z and that Y = KNZ(KA)< G since KA< G (because G' = K C KA). By
our argument in the second paragraph (with N taken as Y) we find that K/Y = K/RY
is cyclic. But then |K : Y| < 2 since K is elementary, and it follows that Y = Z. Thus A
centralizes 7, as claimed.

Since Z < G and |K : Z| = 2, Lemma 3.3 applies, so we can choose 2-elements a € A
and b € B such that [b,a] € Z and b ¢ H. Let V3 be the Sylow 2-subgroup of V.= HN B
and note that V' C VoZ(H) since odd-order subgroups of H are central. Now (b) and V5
are subgroups of the cyclic Sylow 2-subgroup of B, and since (b) € V5 because b ¢ H, it
follows that V5 C (b). We can thus choose an integer m so that b™ generates V3, and in
particular, b™ € H = UK.

Next, we have [b™,a] € [UK,a] = [K,a] because the abelian group A contains both
U and a. Since a centralizes Z, we find by Lemma 2.3 that |[K,a]| = |[K : Ck(a)| < |K :
Z| = 2. Also [K,a] = (K({a))', and K{a) < G because K = G’, and hence [K,a]< G.
Since [K, a] is a normal subgroup of G of order at most 2, and contains [b™, a, it follows
that [b™,a] € Z(G), and thus [b™,a,b] = 1. By Lemma 3.1, however, we have [b™, a,b] =
(b, a,b™], and thus Vo = (b™) centralizes [b,a] € G' = K. Then V C VoZ(H) centralizes
[b, a] and we conclude that [b,a] is central in KV = H, and [b,a] € K NZ(H) = Z. This
is a contradiction, however, completing the proof. |

In order to continue our study of 2-subgroups, we make the following definition. Given
a group H, suppose that Z and K are normal 2-subgroups of H such that Z C K. We shall
say that the triple (H, K, Z) is good if K/Z is cyclic and either Z = K or H' C ®(Kj),
where K is the unique subgroup of index 2 in K containing Z. Note that if (H, K, Z) is
good and N < H is arbitrary, then (H, K, Z) is good, where H = H/N.

Theorem 3.5. Suppose G = AB, where G is finite, A is abelian, B is cyclic, and G’ is a
2-group. Let K =G’ and R = KN A, and let H= KANK B, as in the standard notation.
Then (H, K, R) is good.

Proof. First, note that R C Z(KA) since K and A are abelian, and in particular,
R C Z(H). Also, by Theorem 3.4, we know that K/R is cyclic. There is nothing to prove
if R = K, and so we assume that R < K, and we let Ky be the unique subgroup of index
2 in K containing R. We must show that H' C ®(Kj).

Let V = HN B as in the standard notation, and note that V' is cyclic. By Lemma 3.2,
we have H = KV, and thus if K is central in H, we see that H is abelian and there is
nothing further to prove. We can assume therefore that K is not central in H, and we
let Z = KNZ(H). Note that H and Z are normal in G since G' = K C H. We have
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R C 7 < K, and thus Z C Ky. But K and Z are normal in G and K/Z is cyclic, and as
Z C Ky C K, it follows that Ky« G.

As in the proof of Theorem 3.4, we observe that |H : Z(H)| is a power of 2 because K
is a 2-group. Odd-order subgroups of H are therefore central, and we have V C VoZ(H),
where V5 is the Sylow 2-subgroup of V.

By Lemma 3.3, we can choose 2-elements a € A and b € B such that [b,a] ¢ Ko and
b ¢ H. Observe that [b,a] € G’ = K and since K/Z is cyclic and [b,a] ¢ Ky, we have
K = Z([b,a]). Now H = KV, and so by Lemma 2.1, we have H' = [K,V] = [K, V3] =
[Z{[b,al), V5] = [{[b,a]), V5], where the second equality holds because V' C VoZ(H) and
the last equality holds because Z C Z(H). Since ®(Kjp) < G, we see that to prove that
H' C ®(K,), we need only show that [b,a,v] € ®(Ky) for some generator v of Va.

Now a acts on K and centralizes R = K N A, and hence by Lemma 2.3, we see that
[K,a] = K/Ck(a), which is a homomorphic image of K/R, and is therefore cyclic. Also
[K,a] = (K{a))', and since K{(a) = G'{(a) < G, we find [K,a]< G. Finally, we observe that
[K,a] C K since K/Kj is central in G/Kj.

As [K, a] is a cyclic 2-group that is normal in G, it follows that [K, a,b] C ®([K,a]) C
®(Ky). Since b ¢ H, we see that (b) Z V5 and we can argue as in the proof of the previous
theorem to conclude that Vo C (b). (This follows because V5 and (b) are subgroups of the
cyclic Sylow 2-subgroup of B.) Thus b™ generates V> for some integer m, and in particular,
b™ € H.

Now H = UK, where U = HN A as in the standard notation. We thus have [b™, a| €
[UK,a] = [K,a] and [b™,a,b] € [K,a,b]. By Lemma 3.1, we see that [b™,a,b] = [b, a,b™],
and thus [b,a,b™] € [K,a,b] C ®(Kj). But b™ generates V3, and as we have seen, that is
enough to complete the proof. ||

4. Triple factorization

As we proved in Lemma 3.2, when we consider a normal subgroup K of G = AB, we
obtain a subgroup H = KA N KB having a triple factorization H = KU = KV = UV
(where U = HN A and V = H N B). We now study this situation in a little more detail,
beginning with an almost trivial observation, followed by one that is more substantial.

Lemma 4.1. Suppose H =UV = UK = VK, where U, V and K are subgroups of H
with pairwise trivial intersections. Then |U| = |K| = |V|.
Proof. We have U|=|H:V|=|K|=|H:U|=|V|. |
Lemma 4.2. Suppose H = UV = UK = VK, where U, V and K are subgroups of
H with pairwise trivial intersections. Assume that V is cyclic and that K is a normal

subgroup of H. Then U is cyclic, and if K is a p-group for some odd prime p, then also
K is cyclic.



We note here that the final assertion of Lemma 4.2 would fail if we were to allow K to
be a 2-group. A counterexample in which K is non-cyclic can be constructed by taking H
to be the semidirect product KV, where V = (v) is cyclic of order 4 and acts nontrivially
on the elementary abelian subgroup K of order 4. If x is an element of K not centralized
by V, then U = (vz) is cyclic of order 4, but its unique involution (vx)? lies in neither K
nor V. Thus KNU =1=V NU, and hence also H =UV =UK = VK.

Proof of Lemma 4.2. Since U = H/K = V| we see that both U and H/K are cyclic,
and also by Lemma 4.1 that |U| = |K|. Thus |H| = |KU| = |K|?, and so H is a p-group.

We proceed by induction on |K| to prove that K is cyclic. Suppose that L is any
proper subgroup of K such that L < H. Since H = UV, we can apply Lemma 3.2 to
find a subgroup W C H such that W = LX = LY = XY, where X = W NU and
Y=WnNV. Since LC K, X CUandY C YV, we see that L, X and Y have pairwise
trivial intersections, and that Y is cyclic. Since |L| < |K]|, it follows by the inductive
hypothesis applied in the group W that L is cyclic.

Now assume that the subgroup K itself is not cyclic. Since K< H and H is a p-group,
we can choose L< H with L C K and |K : L| = p. By the result of the previous paragraph,
L is cyclic, and thus K has a cyclic maximal subgroup. It follows from the known structure
of non-cyclic p-groups of odd order with cyclic maximal subgroups that the set of elements
of K of order dividing p forms a non-cyclic characteristic subgroup of K of order p2. This
subgroup is normal in H, and by the observations made in the previous paragraph, it
cannot be proper in K. Hence we can assume that K is elementary abelian of order p?.
Also |V| = |U| = |K| = p?, and we recall that V is cyclic.

Let Z C K have order p, with Z C Z(H). Then |K/Z| = p, and so K/Z C Z(H/Z).
Since H/K is cyclic, it follows that H/Z is abelian, and so H' C Z. Now let v generate V'
and write v = uk, with w € U and k € K. Take z = [k, u] and note that z € Z, and hence
that z is central in H. As ku = ukz, an easy induction gives v? = uPkPzP(P—1/2_ But p
is odd and z? = 1 = kP, so we conclude that v?» = uP. Thus v» € UNV = 1, which is a

contradiction since v generates the cyclic group V of order p?. |

Lemma 4.3. Let H=UV = UK = VK, where U, V and K are subgroups of H with
pairwise trivial intersections, and where K is finite and normal in H. If V and K are
cyclic, and V = (v) where v = uk withu € U and k € K, then K = (k).

Proof. Let L = (k) and note that L < H (since K <« H and K is cyclic). As H =UV,
it follows by Lemma 3.2 that there exist subgroups X C U and Y C V such that LX =
LY = XY. The pairwise intersections of L, X and Y are trivial, and so we have |L| = |Y|
by Lemma 4.1. Also, since k € L, we can write k = zy, with z € X and y € Y, and we
have u='v = k = zy. But since UNV = 1, each element of UV is uniquely expressible as
a product of an element of U with an element of V', and hence v = y. As v generates V, it
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follows that Y = V, and thus |L| = |Y| = |V| = | K|, where the last equality follows from
Lemma 4.1 applied to H. We conclude that K = L = (k), as required. ||

5. Isomorphisms

In this section, we prove Theorems A and B. We shall need an elementary number-
theoretic lemma, and to establish it, we begin with the following well known observation.

Lemma 5.1. Let s = 1+ pfm, where p is prime and pf > 2. Then sP = 1+ pf+1n, where
n =m mod p.

Proof. It suffices to show that s? =1+ pf*lm mod pf*+2. We have
sP=004+p'mP=1+p'Ttm+ (§>p2fm2 mod p?7,

and since 3f > f + 2, it therefore suffices to show that (g) p%f is divisible by pf+2. If p is
odd, then this holds because the binomial coefficient is divisible by p, and 2f +1 > f + 2.
If p = 2 then by assumption f > 2, so 2f > f+2, and the result holds in that case too. |

It is convenient to introduce a little notation. If r and s are positive integers, we write
gs(r) =1+ s+s?+---+s"1. Note that if s > 1, then g;(r) = (s" —1)/(s — 1).

Lemma 5.2. Let q = p®, where p is prime and e > 0. Fix a positive integer s, and assume
that gs(q) is divisible by q. In the case where p = 2, assume in addition that the number
9s(q/2) is not divisible by q, and if ¢ = 2, assume that s = 1. Then gs(q)/q is not divisible
by p, and if p = 2 then s = 1 mod 4.

Proof. If s = 1, then gs;(¢) = g and there is nothing further to prove. We can assume,
therefore, that s > 1. By assumption, ¢ divides gs(q) = (s? —1)/(s — 1), and so p divides
s9 — 1. Hence s = s? = 1 mod p, where the first congruence holds by Fermat’s theorem
because ¢ is a power of p. We can thus write s = 1 + pfm, where f > 1 and p does not
divide m.

Now assume that pf > 2. By e applications of Lemma 3.2, we can write s9—1 = pf*¢n,
where n = m # 0 mod p. Thus gs(¢) = (s?—1)/(s — 1) = p°n/m, and so the integer
9s(¢)/q = n/m is not divisible by p, as required. Also, if p = 2 in this case, then f > 2
and so s = 1 mod 4.

To complete the proof, we assume that pf = 2 and derive a contradiction. Here we
have s = 1 4 2m, where m is odd, and since s is odd, we can write s2 = 1 + 85 for
some integer j. Also since s > 1, we have ¢ > 2 by assumption, and thus e > 2. Now
51/2 = (52)2/4 and applying Lemma 3.2 a total of e — 2 times, starting with s? in place
of s, we obtain s%/2 =14 203+(=2)y for some integer n. Thus s9/2 — 1 = 2¢*1n, and so
gs(q/2) = (2¢t1n)/(2m) = 2°n/m. But 2°n/m is an integer and m is odd, so it follows
that g,(¢/2) is divisible by 2° = ¢, which is contrary to hypothesis. ||
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Theorem 5.3. Let H = KU = KV = UV, where K is an abelian normal p-subgroup
of H, and where U is abelian, V is cyclic,and VN K =1=V NU. If p = 2, assume in
addition that the triple (H, K, Z) is good, where Z = K NU. Then U = K.

Proof. Since Z C Z(H), we can work in the group H = H/Z, and we observe that
KNU = 1. Also, Dedekind’s lemma gives ZVNK = Z(VNK) = Z, and thus KNV =1,
and similarly, U NV = 1. By Lemma 4.1, it follows that |U| = |K| = |V| = |V|, where
the last equality holds because V N Z = 1. Let ¢ be the common order of these subgroups
of H, and observe that g divides |K|, so that ¢ is a power of p. We may assume also that
q > 1, for otherwise K = Z = U and there is nothing further to prove.

Now because V 2 V is cyclic, we can apply Lemma 4.2 to deduce that U is cyclic,
and that if p is odd then K is cyclic too. If p = 2, then our assumption that (H, K, Z) is
good implies that K/Z = K is cyclic in that case as well.

The abelian groups K and U intersect in Z, and each of the factor groups K/Z and
U/Z is cyclic of order g. To prove that K = U, it therefore suffices to find an element
x that generates K modulo Z, and an element y that generates U modulo Z, such that
x? = y4.

Let v be a generator for the cyclic group V', and write v = uk with v € U and k € K.
Since k* € K and K/Z is cyclic of order g, we can write k* = k®z for some element z € Z
and some integer s with 1 < s < gq. We prove now by induction that k% = k* 29:(")
for every positive integer r. First, note that this is true when r = 1 because k" = k°z
and gy(1) = 1. Assume now that r > 1 and that k% = k*  29:("~1_ Then because
z€ KNU C Z(H), we have

r r—1

B = (Y = (5 e Dy
— (k)" 9 )
— (k52)" 29D
— ST s s (r—1)
— kS 59s(r) ’
as required.

Next, set hs(1) = 0 and write hs(r) = gs(1) + 95(2) + -+ - + gs(r — 1) for » > 1. Since
v = uk, an easy calculation gives

o7 = (uk)" = uTkEUEY kY = T 9s(r) pha(r)

for all » > 1. Because v generates V (which has order ¢) and K NV = 1, we know that
v" € K for 0 < r < ¢, and hence that u” ¢ Z for integers r in this interval. In other
words, u generates U modulo Z. Also we can apply Lemma 4.3 to the group H = H/Z,
to conclude that k generates K modulo Z.
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Now take r = ¢ in the previous calculation. Since v? = 1 and u? € Z, we have
k9:(0) ¢ 7Z. But K/Z is cyclic of order ¢ and k generates K modulo Z, and therefore g
divides g,(q). Also, since VNU = 1, we see that v" ¢ U for 0 < r < ¢, and thus k9:(") ¢ Z
for integers r in the same range. It follows that ¢ does not divide g4(r) for 0 < r < g.

We conclude from Lemma 5.2 that the number m = g5(q)/q is not divisible by p, and
that if p = 2 then s = 1 mod 4. (Note that if ¢ = 2, then the assumption 1 < s < ¢ implies
that s = 1, and hence Lemma 5.2 does apply.)

We now claim that the quantities gs(r) are distinct modulo ¢ for 0 < r < ¢. If
gs(a) = gs(b) mod g with 0 < a < b < ¢, then ¢ divides g;(b) —gs(a) = s*+sFT14... 5071 =
s%gs(b — a), and then since p does not divide s, it follows that ¢ divides gs(b — a). This is
not the case, however, because b — a < ¢. In particular, as gs(¢) = 0 mod ¢, we see that
the numbers g4(1), 95(2),...,9s(¢ — 1) are congruent mod ¢ to the numbers 1,...,¢— 1 in
some order, and thus hs(¢) = ¢(¢—1)/2 mod g. Hence if p is odd, then h,(g) is a multiple
of ¢, and if p = 2 then 2h,(g) is a multiple of q.

Next, since V has order ¢ we have

1 = v = 9k9:(@) yha(a) — uqkquhs(‘]),

where p does not divide m. If p is odd, then hs(q) = tq for some integer ¢, so we find
(u—l)q — pmahs(@) — (kmzt)q’

and since m is coprime to p, this implies that the gth power of a generator u~! of U
modulo Z equals the ¢ th power of a generator k™z* of K modulo Z. It follows in this case
that the abelian groups U and K are isomorphic, as required.

Now suppose p = 2, so that by assumption, (H, K, Z) is good. Since ¢ > 1, we have
Z < K, and thus H' C ®(Kj), where K(/Z is the subgroup of index 2 in the cyclic group
K/Z, and hence all commutators in H are squares in Kg. We have k* = k®z, and so
kS=lz = k71k* = [k, u], and therefore k°~ 'z is a square in K. Moreover, we know that
s—1 is a multiple of 4, and since k? € Ky, it follows that k*~! is a square in K,. We deduce
from this that also z is a square in Ky, say z = y2 with y € Ky. Writing 2h,(q) = tq for
some integer ¢, we find

(u—l)q — kmayhs(a) — kmqy%s(q) = (k™y")9,

and since m is coprime to 2, again this means that appropriate generators of U and K
modulo Z have equal g th powers. The proof is now complete. ||

If we drop the assumption that VN K =1 =V NU in Theorem 5.3, we can no longer
conclude that K = U. We do have the following, however.
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Corollary 5.4. Let H=UV =UK = VK, where K is an abelian normal p-subgroup of
H, and where U is abelian and V' is cyclic. Write R= K NU and S = KNV and assume
that (H, K, R) is good if p=2. Then K/S is isomorphic to a subgroup of U, and K/R is
isomorphic to a subgroup of V.

Proof. We first show that K /S is isomorphic to a subgroup of U. Since S = KNV C Z(H),
we have S< H, and so we can work in H = H/S, which clearly satisfies the hypotheses with
respect to U, V and K. (Note that since U is abelian, every subgroup of U is isomorphic
to a subgroup of U.) It follows that for this part of the proof, we can assume that S =1,
and hence need only show that K is isomorphic to a subgroup of U.

Now let D = UNV C Z(H), and redefine H = H/D. Then H satisfies the hypotheses,
and we note that K = K since DNK C S=1. Also D=SD=(KNV)D=KDNV by
Dedekind’s lemma, and so KNV = 1. Again using the fact that subgroups of homomorphic
images of U are isomorphic to subgroups of U, we can replace H by H, and this puts us
into the situation of Theorem 5.3. Thus K = U, and the first part of the proof is complete.

We now return to the original situation, and show that K /R is isomorphic to a sub-
group of V. Observe that U/R = H/K = V/S is cyclic. Reasoning as in the first part of
the proof, we can pass from H to H/R, and therefore we can assume that R = 1 and that
U is cyclic. We can now interchange the roles of U and V', and deduce from the first part
of the proof that K is isomorphic to a subgroup of V, as required. ||

We are now ready to prove Theorems A and B of the introduction, which we combine
as follows.

Theorem 5.5. Let G = AB be finite, where A is abelian and B is cyclic. If K is
any abelian normal subgroup of G with the property that the Sylow 2-subgroup of K is
contained in G', then K/(K N A) is isomorphic to a subgroup of B, and K/(K N B) is
isomorphic to a subgroup of A.

Proof. Let p be a prime divisor of |K| and let P be the Sylow p-subgroup of K. It
suffices to show for each choice of p that P/(P N A) is isomorphic to a subgroup of B and
that P/(P N B) is isomorphic to a subgroup of A. We can assume, therefore, that K is
a p-group. If p = 2, then by hypothesis, K C S, where S is the Sylow 2-subgroup of the
abelian group G'. But K/(KNA) and K/(K N B) are isomorphic to subgroups of S/(SN A)
and S/(S N B) respectively, and so it is no loss to assume that K = S in this case. Finally,
let H, U and V be as in the standard notation and observe that K N A = K NU and
KNB=KnV.

If p is odd, then the existence of the desired isomorphisms is immediate from Corol-
lary 5.4. We can assume, therefore, that p = 2 and that K is a Sylow 2-subgroup of
G'. Next, we let M be the Hall 2-complement of G’ and we argue that it suffices to con-
sider G = G/M in place of G. Tt is clear that G satisfies the hypotheses, and also since
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K N M =1, we see that the map z — Z from K to K is an isomorphism. The pre-image
in K of KN Ais KN AM, which equals K N A since every normal 2-subgroup of AM is
contained in A. Thus K/(K N A) =2 K/(K N A), and a similar isomorphism holds with B
in place of A. We observe also that K = G’ = (G)'. It follows from all of this that we can
replace G by G, as claimed, and thus we can assume that K = G’ is a 2-group.

By Theorem 3.5, the triple (H, K, R) is good, where R = K N A and H is as in the

standard notation. The required result now follows by Corollary 5.4. ||

6. Ranks and Theorem E
In this section we prove a strong form of Theorem E. We begin with the following.

Lemma 6.1. Let G be a p-group such that G = KA = KB, where K is an elementary
abelian normal subgroup of order pt, and AN B = 1. Then the exponent of each of A and
B is less than p?t.

Proof. By symmetry, it suffices to prove the result for A. Let C' = Cg(K), and write
R=CnNAand § = CNB. Now R is the kernel of the action of A on K by conjugation, and
thus A/R can be isomorphically embedded in GL(t,p). As is well known, each p-element
of this general linear group is conjugate to I + U, where [ is the ¢ x ¢ identity matrix
and U is some strictly upper triangular matrix. If I + U has order p®*!, then we see that
UP® #£ 0, and thus t > p®. Tt follows that each element of A /R has order less than pt, and
so to prove that the exponent of A is less than p?t, it suffices to show that R has exponent
at most p.

Observe that K C C C G = KB, and so C = K(CN B) = KS by Dedekind’s lemma.
Also RNS CANB=1,and S« C since K C Z(C). It follows that R 2 RS/S C C/S =
KS/S= K/(KNS). But K has exponent p, and so R also has exponent p, and the proof
is complete. |

Recall that the rank of an abelian group is the minimum number of elements needed
to generate it, and that we are writing (X)) to denote the rank of X.

Lemma 6.2. Let H = KU = KV = UV, where K is an elementary abelian normal
subgroup of order p*, V is abelian, and UNK =1=UNV. Then r(V) > t/(2 +log,(t)).
Proof. We have |[H: K|=|U|=|H:V|since UK =H=UV andUNK=1=UnNYV.
Thus |V| = |K|, and in particular, V' is a p-group, and hence also H = KV is a p-group.
By Lemma 6.1, the elements of V all have order less than p?¢, and thus |V| < (p%t)", where
r = r(V). But |V| = |K| = p?, and this yields p* < (p*t)". The result now follows by
taking logarithms with base p. |}

The following establishes Theorem E, and indeed shows that the bound in that theo-
rem can be taken to be very nearly linear.
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Theorem 6.3. Given € > 0, there exists a positive real number N (depending on €) such
that whenever K is a normal abelian subgroup of the finite group G = AB, where A and
B are abelian and r(B) = r, then r(K/(K N A)) < Nrite

Proof. Write 1/(1 +¢€) = 1 — 4. Since § > 0, we see the function (2 + log,(z))/x°
has the limit 0 as x — oo, and so this function attains some maximum value M for
z > 1. It follows that 2 + log, (z) < 2 + log,(x) < Ma® for every prime p, and this yields
Mz /(2 +log,(z)) > #'7°. Therefore

1+€
r < MM <#>
- 2 + log, ()

for all z > 1 and for every prime p. Now let N = M'*¢ and suppose that G is a minimal
counterexample to the assertion that r(K/(K N A)) < Nrite

Since K/(K N A) is abelian and has “large” rank, it follows that a Sylow p-subgroup
of this group has equally large rank for some prime p. Now if P is the Sylow p-subgroup
of K, then P/(PNA) is isomorphic to the Sylow p-subgroup of K/(K N A), and so we can
replace K by P, and assume that K is a p-group.

By reasoning that we have used previously, we see that K N A®(K) = &(K)(K N A),
and hence if we write G = G/®(K), we see that K/(K N A) is isomorphic to the Frattini
factor group of K/(K N A). Moreover, as r(K/(KNA)) =r(K/(KNA)) and 7(B) < r(B),
we see that G is also a counterexample. By the minimality of G, it follows that ®(K) = 1,
and so K is elementary abelian. Next, we may redefine G = G/coreg(A) and observe that
K/(KNA)= K/(KNnA). Again r(B) < r(B) and G is a counterexample, and this time we
conclude that coreg(A) = 1, and in particular, AN B =1 since AN B C Z(AB) = Z(G).

Now assume the standard notation. We have H = UK = VK = UV, where U C A
and V C B, and we see that K N U = K N A and that »(V) < r(B). Thus H is a
counterexample, and hence we have H = G. But this implies U N K C Z(G), and thus
UNK C coreg(A) = 1. We are now in the situation of Lemma 6.2, and if we write
|K| = pt, then we have t = r(K) > Nrl*¢ and in particular, ¢t > 1.

By Lemma 6.2 we have r > r(V) > t/(2 + log,(t)), and thus

1+e€
t
Nrlte s ppite <7) >t=r(K).

2 +log,(t) - (K)

This is a contradiction, and the proof is complete. |

7. A family of examples
In this section, we prove Theorem F. Given an arbitrary prime p, we construct ex-
amples of finite p-groups G = AB, where A and B are abelian, and where r(G'/(G' N A))
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exceeds r(B) by an arbitrarily large amount. Each such example G has an elementary
abelian normal subgroup K and a triple factorization G = KA = KB = AB, with
KNA=KnNB=ANB =1, and its derived subgroup G’ has index p in K.

Proof of Theorem F. Let F be the field of order p and fix an integer n > 0. We construct
a “truncated polynomial algebra” in the indeterminate X by setting R = F[X]/(X™). If
we write x for the image of X in R, then R can be viewed as the set of polynomials in x
of degree less than n, and we see that |R| = p™. Now let A be the set of polynomials in R
with constant term 1. Then A = 1+ zR is closed under multiplication, and we see that
|A] = p™~!. Each member of zR is nilpotent since z" = 0, and thus the elements of A are
invertible in R. The inverses of these elements all lie in A, and hence A is a subgroup of
the unit group of R. Also, A is abelian since R is a commutative ring.

Next, we consider the additive group of the ring R, which of course is elementary
abelian of order p™. We intend to write this group multiplicatively, and so to avoid confu-
sion, we rename it and call it V. Since multiplication in R defines an action of A on V via
automorphisms, we can construct the semidirect product P = V A, of order |P| = p?"~1.

Now fix the element a = 14+ € A. If we take n large enough, then the order of a can be
made arbitrarily large. Specifically, if n > p® then 2P° # 0 and a?° = (14+z)P" = 1+2P" # 1,
and so the order of a exceeds p°. Since |A| = p"~!, we have |A/{(a)| < p"~!7¢, and thus
r(A/{a)) <n—1—e. It follows that r(A) < n — e, where e is unbounded.

Because P/V = A is abelian, we see that P’ C V, and so P’ is elementary abelian.
We now argue that |P’| = p"~!. In fact, we claim that P’ is exactly the subgroup W of V
corresponding to the ideal xR of R. Since (xR)(1+xzR) C xR, we see that W is A-invariant,
and hence A centralizes the factor group V/W of order p. Thus P/W = (V/W)(AW/W)
is abelian, and so P’ C W. On the other hand, if v € V corresponds to a polynomial
f € R, then [v,a] = v~'v® corresponds to —f + (1 + z)f = zf. But multiplication by =
maps R onto zR, and thus W = [V, a] C P'. Tt follows that W = P’, as claimed.

Let u € V be the element corresponding to 1 € R, and write C = Cp(ua). Then
|P : C] is the size of the conjugacy class of ua in P, and thus |P : C| < |P'| = p™~!. On
the other hand, C N A = C4(u) is trivial (because u corresponds to 1 € R and the action
of A is by multiplication in R). Hence |P : C| > |A] = p™ !, and therefore |P : C| = p"~*
and |C| = p™. Also |P : C| = |A]|, and since AN C =1, it follows that AC = P.

Next, write Z = C NV = Cy(ua). Since u € V, we find Z = Cy(a), and this
corresponds to the annihilator in R of x. This annihilator is the 1-dimensional subspace
Fz™~ ! and hence |Z| = p, and we note that Z C W = P’. Since |C| = p" = |V, it follows
that |CV| = |C||V|/|Z| = p?>"~! = |P|, and thus CV = P. Also, Z< C and V is abelian,
and thus Z < P.

We can now define G = P = P/Z, so that |G| = p?*~2. Since Z C V, we see that
ZNA=1,andso A= A and we may identify A with A, and view A as a subgroup of G.
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Writing B = C and K = V, we observe that each of A, B and K has order p”~!. Also
G = KA = KB = AB, and the pairwise intersections of these three subgroups are trivial.
We see that K is elementary abelian, G’ has index p in K, and B 2 G/K = A, so that B
is abelian and the rank of B falls short of n by an arbitrarily large amount.

Finally, note that G'NA =1 and 7(G') = n— 2. Thus r(G'/(G'NA)) = n—2, and so
if we take n to be large enough, this will exceed r(B) by an arbitrarily large amount. In
particular, if n is sufficiently large, then G'/(G’' N A) cannot be isomorphic to any subgroup
of B. This completes the proof. ||
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