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Abstract

In this paper it is shown that for every positive integer p > 2, there
exists a compact non-orientable surface of genus p with at least 4p au-
tomorphisms if p is odd, or at least 8(p—2) automorphisms if p is even,
with improvements on 4p for p # 3 mod 12. Further, these bounds are
shown to be sharp (in that no larger group of automorphisms exists
with genus p) for infinitely many values of p in each congruence class
modulo 12, with the possible (but unlikely) exception of 3 mod 12.

1 Introduction

Some years ago Accola and Maclachlan [1, 13] showed that for every integer
g > 2, there exists a compact Riemann surface of genus g with at least 8¢+ 8
orientation-preserving automorphisms, and proved this bound is sharp by
showing that, for infinitely many values of g, 8¢ + 8 is the maximum possible
number of automorphisms for such a surface of genus g.

In this paper we derive analogous results for compact non-orientable sur-
faces without boundary. For every positive integer p let v(p) denote the
largest number of automorphisms of a compact non-orientable surface of
genus p. By work of Bujalance [4] on cyclic groups of automorphisms, it
is known that v(p) > 2(p — 1), and by Singerman’s analogue of Hurwitz’s
theorem for non-orientable surfaces [16] also v(p) < 84(p — 2), for all p > 2.

We refine these results by showing v(p) > 4p if p is odd, while v(p) >
8(p —2) if p is even. Indeed for various congruence classes mod 3 and mod 4
we can improve these lower bounds (see Table 1). The non-orientable sur-
faces admitting these groups of automorphisms are described also in terms



of regular or reflexible maps on these surfaces. For each congruence class of
p modulo 12 (other than 3) we show that the bounds given in Table 1 cannot
be improved for infinitely many values in that class (see Table 3). In the
case p = 3 mod 12, the 4p bound can be improved for many values of p (see
§3.4), but nonetheless we conjecture that 4p is sharp in that case as well.

2 Background on NEC groups

Suppose X is a compact non-orientable surface of genus p > 2, with auto-
morphism group G. Then X may be identified with the orbit space D/A,,
where D is the upper-half complex plane, and A, is a normal subgroup of
finite index in some discrete subgroup I' of the group PGL(2, R) of all con-
formal and anti-conformal homeomorphisms of D, such that A, acts without
fixed points on D and the quotient I'/A,, is isomorphic to G.

Any such subgroup I' with compact orbit space is called a non-FEuclidean
crystallographic group (or NEC group). In the case where I" lies wholly within
the conformal group PSL(2, R), it is more usually known as a Fuchsian group,
and gives rise to an orientable surface. In the above case, however, where
the orbit space is a non-orientable surface, I' contains both conformal and
anti-conformal homeomorphisms of D, and is known as a proper NEC group.

Further, the subgroup A, must have a presentation in terms of p genera-
tors d; (for 1 < i < p) subject to the single defining relation did3...d> = 1,
corresponding to the fact that X is topologically equivalent to a sphere with
p cross-caps. Any such group A, is known as a non-orientable surface group.

Note also that A, contains anti-conformal homeomorphisms of D, and so
the natural homomorphism I' — I'/A, maps the index 2 conformal subgroup
I'" = I NPSL(2,R) onto '/A, = G. The converse also holds, giving the
following theorem which is crucial to our investigations (see [5] for a proof).

Theorem 2.1 A finite group G is a group of automorphisms of a compact
non-orientable surface if and only if there is a proper NEC group I and an

epimorphism 0 : I' — G such that the kernel of 0 is a non-orientable surface
group and 0 maps T =T'N PSL(2,R) onto G.

In this case, the group G acts on the non-orientable surface D/ker. The
genus of the surface depends on the signature of I'; which corresponds to the
analytic structure of the associated surface and is determined largely by fixed
circles of reflections in I' and branch points of r.



Proper NEC groups may be classified according to their signature, and
as explained in [5] and [18] for example, there are two types, as follows:

Type (+) : Signature (g; +; [m1, ma, ... m.|; {(ni1, naay . - -, Mus;) + 1<i<k})
A group I' with this signature may be presented in terms of generators

e x;, forl1<i<r,

ec; for0<j<s;, forl<i<k,

e ¢; forl <<k,

e a;,b; forl1<j<y,
subject to the defining relations below:

e zi"=1 for1<i<r,

o =c=(cijacy)" =1 for1<j<s;, forl<i<k,

° ei_lcigei = Cig; for 1 << k, and

® T1X9...Tr€1€2...€L [CLl, bl][ag, bg] PN [ag, bg] =1.

Type (—) : Signature (g; —; [m1, ma, ..., m.]; {(ni1, N2, - - -, N4s;) : 1<i<k})

A group I' with this signature may be presented in the same way as for type
(+) above, except with the generators a; and b; replaced by generators d;
(for 1 < j < g), and the final relation replaced by

[ xle...:ETeleQ...ekdfdg...dz:1.

If A, is a non-orientable surface subgroup of finite index in a type (+)
group I', with quotient group G, then the genus p and the Euler characteristic
x of the associated surface are given by the Riemann-Hurwitz equation

2—p=x=|G] (2—2g—k—Z(1—1/mz ZZ —1/n;j) /2)

In the case of a type (—) group, the genus and characteristic are given by the
same formula, except with the term 2 — 2g — k replaced by 2 — g — k.



As the generators z;, e;, a;, b; of a proper NEC group I' represent conformal
automorphisms of D, the subgroup r'"=rn PSL(2,R) has index 2 in I" and
contains each of the generators z; (for 1 <i < 7), ¢; (for 1 <¢ < k), a; and
b; (for 1 < j < g) which appear in the presentation of I' corresponding to its
signature, but none of the generators ¢;; (for 0 < j <s;and 1 <¢ < k) or d;
(for 1 < j < g). Further, if § : T' — G is a homomorphism from T to a finite
group G such that @ maps I'" onto G, then the kernel of 6 is a non-orientable
surface group if and only if 6 preserves the orders of the generators x; and c¢;;
and the products ¢;;_1c;; (for all 7 and j) in the signature presentation of I'.
When 6 has this property, it will be called a smooth homomorphism. Also
when 6 maps I' onto G, for the purpose of abbreviation we will say that G
has the signature of T'.

3 Non-orientable surfaces having large auto-
morphism groups

In this Section we show how several families of examples of compact non-
orientable surfaces of genus p with large automorphism groups may be con-
structed, with ‘large’ meaning that the group has order at least 4p. All such
examples can be constructed by a suitable choice of finite group G, NEC
group I' and epimorphism 6 satisfying the conditions of Theorem 2.1.

In investigating the existence of regular maps on non-orientable surfaces,
some of these families were constructed in [6]. A key step in this process was
the construction of a family of finite groups as semi-direct products of cyclic
groups of varying order n by a fixed small finite group, and this method can
be extended to most of the families considered here.

There are also geometric constructions of regular maps on non-orientable
surfaces which give rise to non-orientable surfaces with large automorphism
groups, exhibited in [19]. These constructions can also be extended to the
families discussed here.

For these reasons we now briefly describe the connection with regular
maps; further details may be found in [10, 12, 19] for example.

3.1 Regular Maps

A map M on a surface X is an embedding of a connected graph into X such
that the graph separates X into simply-connected regions (discs), called the
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faces of the map. The Euler characteristic of M (or more strictly, of the
surface X) is given by V — E + F, where V| E and F are the numbers of
vertices, edges and faces of the map.

A symmetry of a map M is a permutation of the sets of vertices, edges
and faces induced by a homeomorphism of the underlying surface X. Indeed,
given any M, the surface X can be assigned a conformal or anti-conformal
structure such that every symmetry is a structure-preserving automorphism
(see [2], and also [12]).

A map M is said to be rotary if it satisfies the condition that for any
incident vertex-face pair, there are symmetries of M which cyclically permute
the edges of the face and which cyclically permute the edges incident at
the vertex. Further, a rotary map is said to be reflexible provided it has a
reflection about some edge.

If M is reflexible, then for any incident vertex-edge-face triple, there are
symmetries which act as reflections about the edge, about an axis joining
vertex to face-centre and about an axis joining face-centre to edge-midpoint.
Reflexible rotary maps are often called regular, in the sense that their sym-
metry groups act regularly (sharply transitively) on vertex-edge-face triples
(which are often called flags or blades) of the map.

Let Aut M denote the group of symmetries of M and, if X is orientable,
Aut™ M the subgroup of orientation-preserving symmetries. Note that if M
is reflexible, then Aut M has order 4F, while if M is rotary but not reflexible
(or chiral), then Aut M has order 2E. Also if G is a subgroup of Aut M
where M is compact and non-orientable, then the anti-conformal structure
yields a smooth epimorphism # : [' — G as described in Theorem 2.1.

In particular, if G = Aut M where M is a regular map on a compact non-
orientable surface of genus p, then the group G is a smooth factor group of
an NEC group whose signature has the form (0;+; [—]; {(2, n1,n2)}), where
ny and ny denote the numbers of edges incident with each vertex and each
face respectively. The pair {n,ns} is known as the type of the map.

A simple counting argument, (based on the numbers of incident vertex-
edge and edge-face pairs) shows that 2—p =V — E+ F = |G|/2n; — |G|/4+
|G|/2ny > 1 —|G|/4+1 = 2 —|G|/4, and so |G| > 4p. In fact this is a
strict inequality, since regular maps with just one vertex and one face have
dihedral automorphism groups and are orientable; hence |Aut M| > 4p for
every regular map on a compact non-orientable surface of genus p.



3.2 The cross-capping construction

Here we describe a new method of constructing non-orientable surfaces from
maps with many automorphisms.

Suppose that M is a rotary map. If we remove a disc from the centre
of each face, then Aut M also acts on this (bordered) surface. If we now
identify each pair of opposite points on the boundary circles of these discs,
then we obtain a new surface, denoted by M€, on which Aut M still acts as
a group of symmetries. This construction amounts to entering a cross-cap
into each face at its centre. Adding F' cross-caps decreases the value of the
Euler characteristic by F', so that M° has genus £ —V + 2, where E,V are
the number of edges and vertices of M.

In the cases where M is reflexible, a fundamental region for the action
of Aut M will be a hyperbolic quadrilateral ) with three right angles, as
illustrated in Figure 1.

C @

A) a B) b)

Figure 1: Quadrilateral fundamental regions

By examining two copies of the fundamental region, it can easily be seen
that if n; is the common degree of the vertices, then the signature of Aut M
corresponding to its action on the surface M€ will be (0; +;[—]; {(2,2,2,7n1)})
if the number ny of edges around a face of M is even, or (0;+;[2]; {(2,71)})
if ny is odd. (This is illustrated in Figure 1, with six edges at A) and a) and
five edges at B) and b).)

3.3 Large automorphism groups

In this subsection we establish for each p in one of a number of specific
congruence classes, the existence of a compact non-orientable surface of genus



p with a large group of automorphisms.

In each of the cases 3.3.1 to 3.3.5 (and 3.4.1) below, we use the letters
a, b, c,d for generators of the NEC group I' as described in §2, and letters
t,u, v, w for generators of the target finite group G.

3.3.1 A family of examples with |G| = 4p for p odd:

Let T have signature (0,4, [—];{(2,2,2,p)}), and let G denote the dihedral
group of order 4p, so that G = (u,v | u> = v = (uv)? = 1). Define 0 by

a—u, b uv?, c— P, d— uv.
) ) )

This is a homomorphism preserving the orders of the elements of finite order
in I', and the assumption that p is odd ensures that 6 is an epimorphism.
Note also that T'" maps onto G. From the Riemann-Hurwitz formula, we
find x =4p(—1/4+1/2p) =2 — p, and so the genus of the kernel of 4 is p.

To otain a geometric construction, we may take the reflexible map D(e,)
on the sphere, consisting of two vertices (the north and south poles) and p
edges which are great semi-circles joining them, and then carry out the cross-
capping construction to obtain the non-orientable surface D(e,)¢ of genus p.
As explained in §3.2, the signature of the resulting automorphism group
is (0,+,[—];{(2,2,2,p)}), and its order is still 4p. Note that there is no
restriction on the value of p in this construction, so that a group of order
4p exists for all p, although it will not be dihedral in all cases. For even p,
however, this bound can be further improved, as we now show.

3.3.2 A family of examples with |G| = 8(p — 2) for p even:

Let T have signature (0;+;[—];{(2,2,2,4)}). This time let H be the direct
product of a dihedral group of order 8 generated by v and v such that u? =
v* = (uv)? = 1, and a cyclic group of order 2 generated by ¢, and let K be
a cyclic group of order n = p — 2 generated by w. Now form the semi-direct
product K x H where each of the generators u, v, t of H conjugates w to its
inverse, and define # by the assignment a ~ tu, b+ v2, ¢+t and d — uv.
Let G denote the image of this homomorphism. Since 0(da)? = v? = 6(b)
and 0(ac)? = w?, we see w? generates a normal cyclic subgroup of G of order
(p — 2)/2 with quotient isomorphic to D4 X Zs, and so |G| = 8(p — 2). Also
r maps onto GG, and the Riemann-Hurwitz formula shows that the kernel
of 6 has genus p.



Alternatively the same family of surfaces can be obtained by applying
the cross-capping construction to reflexible regular maps on the orientable
surfaces of genus ¢ admitting the maximum number 8(g + 1) of orientation-
preserving automorphisms (described in [1, 13]), as follows. The map is
oppB(4, 2¢), a special case of the maps oppB(2k,2c¢) in [19], and may be
described with the help of a schematic diagram on a torus.

On the torus draw a 4 x 2c¢ rectangle of squares, then darken and la-
bel every other horizontal edge in each row, the rows alternating as shown
(with each row of squares labelled with an arrow pointing right and left al-
ternately). From this schematic diagram, the map may be constructed with
the faces corresponding to the horizontal rows of squares and the arrows in-
dicating clockwise directions. Thus each face is a 2c-gon with edges labelled
in clockwise order given by the corresponding arrow. The resulting map is
illustrated in Figure 2 for the case ¢ = 3.

1 2 3
- 10 11 12
— 7 8 9
- 4 5 6
— 1 2 3

Figure 2: Scheme and Map oppB(4,6)

It is shown in [19] that this map oppB(4, 2¢) is reflexible and orientable.
The vertices correspond to the vertical ‘ladders’ in the schematic diagram
(such as 2-4-8-10-2). Thus E = 4¢, F = 4, and V = 2¢. Note that,
if ¢ = g + 1 then we have |G| = 16(¢g + 1), and from a triangle connecting
a face-centre with an adjacent edge-midpoint and vertex we see Aut M has
signature (0;+;[—]; {(2,4,2(g+ 1))}). The group Aut*(M) is precisely that
constructed by Accola and Maclachlan in [1, 13].

Now carry out the cross-capping construction on M, with ¢ = (p — 2)/2,
to obtain the non-orientable surface M° of genus p. As before, Aut M has
signature (0;+;[—];{(2,2,2,4)}), and order 16¢ = 8(p — 2).

3.3.3 A family of examples with |G| = 8(p + 2) for p =1 mod 3:

Let I have signature (0;+;[—];{(2,4,3n)}). Take the semi-direct product
K x H of a cyclic group K of order 3n generated by w by the group H = S,
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in such a way that every odd permutation in S, conjugates w to w™'. As
in 3.3.2 above and described in [6], one can obtain a homomorphism from I'
into this group K x H, with image G of order 24n satisfying the conditions
of Theorem 2.1 and with kernel of genus p = 3n — 2.

Alternatively, this is the automorphism group of the non-orientable map
I, illustrated in Figure 3. This map is reflexible (see [19]), and has 6n edges,
3n four-sided faces, and 4 vertices.

Figure 3: The non-orientable map I',

Restricting the above homomorphism (from I' to the semi direct product
K x H) to the orientation-preserving subgroup I'" shows that AutT, is
also isomorphic to the orientation-preserving group of automorphisms of the
compact orientable surface of genus ¢ = 0 mod 3 admitting the maximum
possible number of 8(¢g+3) automorphisms for such g, as described in [1, 13].

3.3.4 A family of examples with |G| = 8(p — 2) for p = 2 mod 3:

In this case, take I' with signature (0;+;[2];{(2,4)}), generated by four
involutions a,b,c and z, satisfying the relations (ab)? = (bc)* = 1 and
x taz = ¢, and let G be the same subgroup G of the direct product Cs, x Sy
as described in 3.3.3 above. The homomorphism 6 from I' to G taking
a— v: b tv, ¢c+— tv? and = — wut has the required properties,
and the kernel has genus p when 3n = p — 2. Alternatively, this example can
be described in terms of the group Autl', acting on the surface I'¢, where
[', is as in Figure 3.

3.3.5 A family of examples with |G| = 6(p + 1) for p =1 mod 4:

Here we take I' with signature (0;+;[—];{(2,6,2n)}), and G = C,, X Dg a
semi-direct product of a cyclic group of odd order n by the dihedral group of
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order 12. This family is described in [6], and in each case we have G acting
on a non-orientable surface of genus p where 2n = p + 1. Alternatively, for
odd ¢ we may view G as the group of a map opp*B(3, 2¢), similar to that
described in 3.3.2 above; for details, see [19].

3.4 Summary

The following table summarises the information on the families of large au-
tomorphism groups of non-orientable compact surfaces constructed in §3.3.
In the final column, the dot merely indicates an extension (which is not
necessarily split).

Genus Signature Order Group
p=1mod3 (0; +; [-]; {(2,4p+2)}) 8(p+2) Lp+2)/3 - S
p=2mod3 (0; +; [2]; {(2,4)}) 8(p—-2) Lp-2)/3" S1
p=1mod4 (0; +; [ {(26,p+1)}) 6(p+1) Zp+1)/2 Do
p=0mod2 (04 [ {(2224))  8(p—-2) Zg s (DixCh)
p=1mod2 (0;+; [~} {(2,2,2,p)}) 4p Doy

Table 1: Families of large groups

Note that these show that v(p) > 8(p+2) for p = 1,4,7,10 mod 12, while
v(p) > 8(p—2) for p=0,2,5,6,8,11 mod 12, and v(p) > 6(p+1) for p=9
mod 12. It will be shown in the next section that these bounds are sharp for
infinitely many values of p in each congruence class modulo 12.

This leaves the case p = 3 mod 12, for which the best lower bound we
have is v(p) > 4p. We now show that for some values of p in this congruence
class, the latter bound can be improved.

3.4.1 A family of examples with |G| = 6(p — 2) for certain p = 3 mod 12:

al a2

Suppose p is an integer such that p = 3 mod 12 and p — 2 = p{'ps? ... p¥ m?
where each p; is a prime congruent to 1 mod 6, each exponent q; is odd,
and ged(p;, m) = 1 for 1 < i < r. Let ' have signature (0;+;[2,3]; {(1)}),
so that [' has presentation (a,b,c | a®> = b® = ¢* = [ab,c] = 1). Next let

al a2

K, = (u) be cyclic of order p{'p3? . ..p¢r, so that K; admits an automorphism
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of order 6 taking u +— u® where o> — a + 1 = 0 mod p{'ps?...p%, and let
Ky = Zy X Ly, be generated by v and w (each of order m) so that K, also
admits an automorphism of order 6, given by v — w and w — v~*w. Now
let H be a cyclic group of order 6 generated by ¢, and form the semi-direct
product G = (K; x Ky) x H with H acting on K; X K, in the obvious
way. Then |G| = 6(p — 2), and the assignment a — uvt3, b — uvt?, ¢ — 3
induces an epimorphism 0 : I' — G such that 0 also maps I'" onto G. By
the Riemann-Hurwitz formula, ker € has genus p.

Alternatively, consider the torus map M = {6,3},., which is always
rotary, and is reflexible precisely when ¢ = 0 or b = ¢ (see [10]). This map M
has D faces, 2D vertices and 3D edges, where D = b%+bc+c?. Thus M€ is a
non-orientable surface of genus D + 2, and admits a group of automorphisms
of order 6D. Note that a positive integer can be written in the form b?+bc+c?
precisely when it is of the form pip,...p,m? or 3pip;...p,m?, with each
p; = 1 mod 6. Further, when p — 2 = m? or 3m? the surface M¢ admits a
group of order 12(p — 2), since M is then also reflexible; in that case, I has
signature (0; +;[—];{(2,2,2,3)}), and G may be obtained as a semi-direct
product of Z,,, X Zy, or Zzy X Z,, by a dihedral group of order 12.

There are still, however, infinitely many values of p = 3 mod 12 for which
we have no better lower bound than v(p) > 4p.

4 Signatures for large groups

Suppose G is a group of automorphisms of a compact non-orientable surface
X of genus p > 2. Then G also acts as a group of orientation-preserving
automorphisms of the orientable 2-sheeted covering surface X whose genus

is p — 1 since x(X) = 2x(X) =4 — 2p.

On the other hand, given a group G of orientation-preserving automor-
phisms of a compact orientable surface, G may or may not extend to act on
a related compact non-orientable surface (if there is one). In particular, the
groups of order 8(g+1) used in [1, 13] do not extend in this way, while those
of order 8(g + 3) in cases where ¢ = 0 mod 3 (as discussed in [1, 13]) do so
extend; see 3.3.3 above.

In view of the examples in §3.3, let us assume that |G| > 4p, so that
0 < —x(X)/|G| < 1/4. The Riemann-Hurwitz formula then severely restricts
the possibilities for the signature of the NEC group I'. In particular, it forces
k <1 and 7 < 2, and a straightforward but detailed analysis shows that I’
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must have one of the signatures listed in Table 2.

Similarly if we assume |G| > 6(p+1) or |G| > 8(p—2) or |G| > 8(p+2),
then the possible signatures for the group I' will be restricted to a subset of
the possibilities given in Table 2.

Case Signature Group order
@) (1 =23 {}) 6(p —2)

(b) (0545 [2,3]; {(}) 6(p —2)

(c) (05 +5 [2]; {(n1,n2)}), 2< 1 <ma <p i (p — 2)
d 0+ [3]; {(2,2)}) 6(p —2)

(e) (0545 [m]; {(n)}), m >3 and n > 2 e (p = 2)
(f) (0; 45 [=]; {(2,n1,m2)}), 3<n1 <mo e (p — 2)
(g) (05 +; [=]; {(3,n1,m2)}), 3 <n1 <mo A (p — 2)
() 0+ [k {(Gmm)), A<n Sma<p  tmE (52
(i) (0; + [-]; {(5,n1.m2)}), 5 <y <mp <9 tIE o (p — 2)
) 0; +5 [ {(2,2,2,n)}), 3<n<p o (p—2)

k) (04 [ {(2,2,3,1)}),3<n <5 oz (p — 2)

Table 2: Signatures for large group orders

To show that the lower bounds given in §3.4 are sharp (with the possible
exception of the case p = 3 mod 12), we will produce an infinite family
of values of p in each residue class of integers mod 12 (other than 3 mod
12), for which no group of order exceeding the bound acts on a compact
non-orientable surface of genus p. This means that for every NEC group I'
with signature in the appropriate subset of Table 2, there is no epimorphism
0 : ' — G satisfying Theorem 2.1 for any value of p in the chosen family.

Remark: This type of problem has been solved for certain restricted
classes of groups. For cyclic groups, the bounds are 2p if p is odd and
2(p — 1) if p is even (see [4]). For dihedral groups, Example 3.3.1 and a
similar argument for all even p show that the bounds are 4p if p is odd and
4(p—1) if p is even. For abelian groups, the bounds are 2p if p # 6 and 16 if
p = 6; these can be deduced from the results in [11], or proved directly using
the same sorts of arguments as in [4] and this paper.
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5 Sharpness of bounds

In this section we show that for each of the eleven residue classes mod 12
covered by Table 1 in §3.4, the bound is sharp. The general methodology is
more or less the same in each case, although the chosen values of p which
exhibit the sharpness differ from case to case. Accordingly we have elected
to give details for only one case — indeed one of the more difficult cases,
where p = 9 mod 12 and the bound is v(p) > 6(p + 1). Complete details of
the other cases may be found in the third author’s PhD thesis [17].

The Schur-Zassenhaus Theorem (see [14] for example) is used extensively,
as are its following two consequences, proofs of which can be found in [13]
and [9] respectively.

Theorem 5.1 (Schur-Zassenhaus) Let N be a normal subgroup of a fi-
nite group G. If the order |N| and the indez m = |G : N| of N in G are
relatively prime, then G contains at least one subgroup of order m, and any
two such subgroups are conjugate in G.

Lemma 5.2 [13] Let H be a cyclic subgroup of order q and index m in a
finite group G. If s is the largest integer dividing q such that ged(s,m) = 1
and ged(s,t—1) = 1 for every divisort of m such thatt > 1, then H contains
a cyclic subgroup of order s which is normal in G.

Lemma 5.3 [9] Supposep,q and d are positive integers such that ged(p, q) =
1. Then there exist only finitely many finite groups which can be generated by
two elements x and y of orders p and q respectively, such that their product
xy generates a subgroup of index at most d; indeed |G| < p-q-d-d! for any
such group G.

The following result, which is a further application of Theorem 5.1, is
used extensively to exclude various signatures. The proof varies slightly for
each of the signatures given, however it will suffice to give the details in just
one case to illustrate the principal idea used in all cases.

Lemma 5.4 Suppose G is a finite group acting on a compact non-orientable
surface, with one of the signatures given below:

(1) (0;+;[21;{(2,3)}),
(i) (0;+4;[m];{(n)}),
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(i) (0: +5[=]{(2,n1,m2)}),
(iv) (0545 [=]: {3, m1,m2)}),
(v) (0;+;]-]:{(2,2,2,n)}), where n is odd.

Also suppose |G| = &g where q is a prime, ged(€,q) = 1, and q is relatively
prime to any integer appearing in the signature. If a Sylow q-subgroup @) of
G is normal in G, then ged(&,q — 1) > 2.

Proof. If G has signature (0; +; [2]; {(2,3)}), it has a partial presentation of
the form (x,a,b,c| x> =a>=0>=c*=1,(ab)? = (bc)® = 1,zax = ¢, ....).

Suppose that @ = (w) is a cyclic normal subgroup of G of order g.
Then conjugation by elements of G yields a homomorphism ¢:G — Aut(Q)
whose kernel is Cq(@Q), and it follows that |G/Cg(Q)| divides both & and
g—1=|Aut(Q)|.

Now assume that ged(€,q — 1) < 2, so that G/Cg(Q) has order 1 or 2.

If G/Cs(Q) has order 1, then Cg(Q) = G and then by Theorem 5.1,
there is a normal subgroup L of G such that G/L = Q. But G/L (like G) is
generated by involutions, while () is clearly not, hence this case cannot arise.

If G/Cs(Q) has order 2, then Cg(Q) is one of up to three possible sub-
groups of G of index 2, namely (a,zaz,b, zbzx), (ax,bzr) or (z,ba,ca). If
Cs(Q) = {(a,zazx,b, xbzx), then C(Q) is generated by four involutions, and
so cannot map onto . Similarly if C¢(Q) = (z, ba, ca), then we find Cg(Q)
can be generated by the three involutions z, ba and zca (by noting that
(zca)? = zcazca = rcxa = 1), so cannot map onto Q.

Hence the only possibility is Cg(Q) = (u,v) where v = ax and v = bz,
so that (uv™')? = (vu)® = 1. In this case, the epimorphism Cg(Q) — Q
provided by Theorem 5.1 maps both uv ! and vu to the identity, so that if
the images of u and v are w® and w” respectively, then o = 8 mod ¢ and
a = —f mod ¢, but together these imply o = 8 = 0 mod ¢, a contradiction.

Thus ged(§,g — 1) > 2 in this case. The general methodology for the
groups with other signatures is similar. For full details, see [17].

The theorem below establishes the sharpness of the bound v(p) > 6(p+1)
for one congruence class of genera modulo 12:

Theorem 5.5 For p =9 mod 12, there are infinitely many values of p such
that no group of order greater than 6(p + 1) is a group of automorphisms of
a compact non-orientable surface of genus p.
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Proof. We choose p to belong to the following set of integers, for reasons
which should become clear during the course of the argument:
P = {149¢+2 | ¢ is prime, ¢ = 11 mod 288, ¢ = 2 mod 5-72, ¢ > 3000,
and ¢ =3 mod r for every prime r in the range 11 < r < 400 }.
Note that, by Dirichlet’s Theorem, there are infinitely many primes ¢ which
satisfy these conditions. Also for simplicity of expression, we have indulged
in a certain amount of overkill in restricting the choice of g. A much smaller
subcollection of primes in the range 11 < r < 400 would suffice (see [17]).

Now if G is a group of automorphisms of a compact non-orientable surface
X of genus p and |G| > 6(p+1), then the signature of the corresponding NEC
group [ is one of those described in Table 2. Since Table 2 gives all signatures
for which |G| > 4p, some cases can immediately be eliminated, namely (a),
(b), (d), (i) and (k). We treat each of the remaining cases in turn, using the
same labelling as in Table 2. The proof consists of determining the possible
values of the parameters (among ny, ne, m and n) in the given signature such
that |G| > 6(p+1), and then eliminating each of these by reaching a suitable
contradiction, usually based on Theorem 5.1 or one of Lemmas 5.2 to 5.4.

Type (c): Here the NEC group I has signature (0; +; [2]; {(n1,n2)}) and the
order of G is given by |G| = =22 (p—2). Clearly n; = 2, n € {3,4,5}
and |G| € {12-149q, 8-149¢, 20 - 149¢/3 }.

The case ny = 5 can be easily be eliminated as |G| needs to be an integer.
When ny = 3, we have |G| = £¢ where £ = 12 - 149, but our choice of ¢
ensures that ged(€, ¢ — 1) = 2, in contradiction to Lemma 5.4. This leaves
only the case no, = 4 to consider.

In this case a Sylow g-subgroup () of G is normal in G since g is large,
and then also the factor group G/@ has a normal subgroup of order 149,
so that G possesses a normal subgroup of odd order 149¢q and index 8. It
follows that G is a smooth homomorphic image of the group with presentation
(r,a,b| 2* = a®> = b?> = 1, (ab)? = (bwaz)* = 1). Every normal subgroup of
index 8 in this group, however, can be shown to contain the element (braz)?
of order 2, and hence there is no such smooth image.

(Remark: The final observation in the above case can be verified by us-
ing Reidemeister-Schreier theory, or more conveniently, by using one of the
group-theoretic computational systems GAP [15] or MAGMA [3]. Alterna-
tively, the low index subgroups procedure available in these packages has
been adapted in [7] for finding only normal subgroups, and in this and simi-
lar cases it is even more convenient to use this adaptation.)
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Type (e): Here I has signature (0; +; [m]; {(n)}), so |G| = —222—(p—2).
Clearly m € {3,4,5} or n = 2. The possibilities when m = 4 or 5 or n = 2
can all be eliminated by Lemma 5.4 (or the condition that |G| be an integer).

If m = 3, then n > 4 and |G| = 6';4%. We consider here the possi-
bility that ¢ does not divide n — 3. In this case n — 3 divides 6 - 149 and
so we have n = 4,5,6,9,152,301,450 or 897, and correspondingly |G| =
3576q, 2235¢q, 1788¢, 1341¢q, 912¢q, 903¢q, 900g or 897¢. As G contains elements
of order 2, its order must be even, so n = 4,6,152 or 450. In each of these
cases, however, |G| = £q where the largest prime factor of £ is 149, and hence
we obtain a contradiction by Lemma 5.4 and our choice of g.

Next suppose that ¢ does divide n— 3, so that n—3 = sq where s | 6-149.
Again those values of s which make |G| odd can be eliminated, leaving the

following possibilities:

s n |G|
1 q+3 6 - 149(q + 3)
3 3¢g+3  2-149(3¢+3)

149 149¢+3  6(149¢ + 3)
447 A47q+3 2447+ 3) .

When s = 1, we see that G has a cyclic subgroup H of order n = ¢ + 3 and
index 6 - 149. By Lemma 5.2 and our choice of ¢, it follows that G has a
normal cyclic subgroup K of order (¢ + 3)/10. Likewise when s = 3,149 or
447, we find G has a cyclic normal subgroup K of order |K| = (¢ +1)/12,
(149g + 3)/2 or (447g+ 3)/8 respectively.

We treat these four cases together. Since K is normal in G, so is Cg(K),
and further, G = G/Cg(K) is isomorphic to a subgroup of Aut(K) which is
abelian. As I" has presentation (x,a | 2° = a® = (azaz™!)" = 1), we see that
its abelian quotient G has to be a factor group of Zg. On the other hand,
by non-orientability we require that ker # contains a word in the generators
a and x of I" such that the number of occurrences of a is odd. The image of
this word in G must have the form a*z' where k is odd. This implies a@ = 1,
so we find a € Cq(K), and hence G = G/Cq(K) has order 1 or 3. But also
Cg(H) = L x K for some L (by Theorem 5.1), and so there must be an
epimorphism onto K from some subgroup of of I' of index dividing 3, which
is easily shown to be impossible (in all four cases).

Type (f): Here I' has signature (0;+;[—];{(2,71,n2)}), and presentation
(a,b,c|a®>=0b>=c*=1, (ab)*> = (bc)™ = (ca)™ = 1). By abuse of notation
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we will also use a, b, ¢ to denote the images in G' of the generators of I'.

First consider the cases where n; = 3, so that ny > 7 and |G| = %.

If ¢ does not divide ny — 6, then ny — 6 | 12149, and |G| = £q where ny and
¢ are given by the following table:

N 7 8 9 10 12 18
& 84-149 48-149 36-149 30-149 24-149 18-149

N 155 304 453 602 900 1794
£ 1860 1827 1812 1806 1800 1794

In all of these cases, G' has a normal cyclic Sylow g-subgroup @), and further,
ged(€,9 — 1) = 2 by our choice of ¢. This contradicts Lemma 5.4. On the
other hand, if ny — 6 = sq for some s, then s | 12-149 and |G| = 12-149n,/s,
and all such cases are eliminated by Lemma 5.3 since g > 3000!.

Next suppose n; = 4, so that n, > 5 and |G| = 8'713%42‘1. If ny — 4 is not
divisible by ¢, then ny —4 | 8-149, and all possibilities for the pair (n, £) can
be calculated as above and eliminated by Lemma 5.4. On the other hand, if
ne —4 = sq where s | 8149, then we have the following possibilities, each of
which requires a separate argument:

S 1 2 4 8

N9 g+4 2¢+4 4q 4+ 4 8¢+ 4
|G| 8-149(q+4) 4-149(2g+4) 2-149(4¢+4) 149(8q+ 4)
s 149 298 296 1192

No 149q + 4 298q + 4 296q + 4 1192q + 4
|G| 8(149q + 4) 4(298¢q + 4) 2(596q + 4) 1192¢ + 4

o If s =1192, then G is cyclic, which is clearly impossible.

e If s = 596, then |G| = 2ns, but its subgroup (a, ¢) is dihedral of order 2n,,
so that G = (a, c) is dihedral. In particular, as bc has order 4, it follows that
be lies in the maximal cyclic subgroup H = (ac) of G. Then since G is the
image of I'", we find G = (ac, bc) = H, which is a contradiction.

e If s =298 then G has a cyclic normal subgroup K of order (149¢ + 2)/3,
by Lemma 5.2. The quotient G/K has order 24 and is a smooth image of
the group {(a,b,c | a> = b* = ® = (ab)? = (be)* = (ca)® = 1). The latter
group, however, has no smooth image of order 24 in which the image of the
rotation subgroup has index 1, so this case is impossible.
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e [f s =149, then G has a normal cyclic subgroup K of order 149¢ + 4, by
Lemma 5.2. The quotient G/K has order 8 and must be a factor group of
{a,b,c | (ab)? = (bc)* = ac = 1), but the latter group has order 4.

e If s = 8 then |G| = 149(8¢ + 4) which is divisible by 4 but not by 8,
contradicting the fact that G has a dihedral subgroup (b, ¢) of order 2n; = 8.
e If s =4, then G has a cyclic normal subgroup K of order (¢ + 1)/12, such
that G = G/K has order 96-149, and G in turn has a normal cyclic subgroup
P of order 149 and index 96. The quotient G /P must then be a smooth image
of the group (a,b,c | a> = b? = ¢ = 1, (ab)? = (bc)* = (ca)*® = 1), and
hence coincides with the image of the dihedral subgroup (a,c). In this case,
however, the image of the element bc (of order 4) must lie in the maximal
cyclic subgroup of order 48. It follows that the image of the rotation subgroup
(ac, bey is cyclic of order 48 and therefore of index 2, contradiction.

e If s = 2, then G has a cyclic normal subgroup K of order ¢ + 2 with
quotient G/K of order 8 - 149, but then also G/K is a smooth image of the
group (z,y | 2 = y* = (zy)? = 1), which has order 8, so this is impossible.
e If s =1, then G has a cyclic normal subgroup of order (¢+4)/3 and index
24 - 149, but the corresponding quotient has to be a smooth image of the
group (z,y | 22 = y* = (zy)® = 1), which has order 24, contradiction.

When n; = 5, all possibilities can be eliminated using Lemmas 5.3 and
5.4, precisely as in the cases where n; = 3 above.

When n; = 6, we have also ny > 6, and |G| = %. All cases where
ns—3 is not divisible by ¢ can be eliminated by Lemma 5.4, so we may suppose
that ny—3 = sq where s | 6-149. Also since |G| must be even, s must be odd,
and as |G| > 6(p+ 1) = 6(149¢ + 3) we find ny < 149¢ + 3 and so s < 149.
This leaves only the possibilities s = 1 and 3, with |G| = 6 - 149(¢ + 3) and

2 -149(3q + 3) respectively. Again we deal with each case separately:

e If s =1, then G has a normal cyclic subgroup K of order (¢ + 3)/10 by
Lemma, 5.2, and the quotient G of order 60-149 has a normal cyclic subgroup
P of order 149 and index 60. The centraliser Ci(P) is normal in G and its
quotient is abelian, and is a factor group of (z,y | 22 = y% = (zy)!® = 1), so
its order divides 4. Hence Cg(P) has index 1, 2 or 4 in G. Also by Theorem
5.1 we know Cg(P) & L x P for some L, and so Cg(P) has a cyclic factor
group of order 149. It is easily checked, however, that no subgroup of index
dividing 4 in G admits an epimorphism onto Z4g.

e If s = 3, we can apply a similar argument (as above) to a normal cyclic
subgroup K of order (¢ + 1)/12, noting that since G/Cg(P) is isomorphic to
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a subgroup of Aut(Zag), its order divides 4.

In all remaining cases, namely ny = 7,8,9,10 or 11, either |G| fails to be
an even integer, or n; = no = 8, and this can be eliminated by Lemma 5.4.

Types (g), (h) and (j): All of these can be eliminated using arguments
similar to those above, requiring no new methods, and so we omit the details.

This completes the proof of Theorem 5.5.

For other congruence classes of genera modulo 12, different infinite sets
of values of p need to be chosen to prove sharpness. We list these in the
table below, again defining more restrictive sets of values than are necessary
in order to simplify the description. In this table, ¢ and r are primes.

p
0 2942
1 q+2
2 12g+2
4 2-89q+2
5 3g+2
6 4-149g+2
7 q+2
8 6g + 2
9 149q + 2
10 4+ 2
11 3g+2

Conditions
g = 11 mod 72; ¢ =2 mod 35; ¢ > 25!
g =11 mod 12; ¢ =2 mod 35; ¢ > 13!

g = 11 mod 144; ¢ = 2 mod 5% - 7?;
g=3 modr for 11 < r < 50; g > 145!

g =11 mod 144; ¢ =2 mod 25; ¢ =4 mod 7; ¢ > 2200!;
g=3modr for 11 <r <89 and r =179, 181, 1423

g = 5 mod 48; ¢ = 2 mod 25; ¢ =4 mod 49;
g =3 mod 11; ¢ =2 mod 23; g > 40!

g = 11 mod 432; ¢ = 3 mod 25; ¢ =4 mod 49; g > 7200!;
g =4 mod r for 11 <r < 400 and r = 599,1193, 2383

q = 5 mod 24; ¢ =2 mod 35; g > 13!

¢ = 11 mod 144; ¢ =2 mod 52 - 7%;
g =3 mod r for r = 11,13,23,47; ¢ > 75!
see Theorem 5.5
g =11 mod 72; ¢ =2 mod 35; ¢ = 2 mod 31; ¢ > 50!
g =11 mod 72; ¢ =2 mod 5% - 7%;
g =3 mod r for r = 11,23; g > 40!

Table 3: Sharpness values of p

Remarks: Almost all the possibilities that arise in the cases listed in
Table 3 can be eliminated using variations of those arguments described
above for the case of genus p = 9 mod 12. There are however, a couple of
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additional arguments which are necessary but are not included above. We
now illustrate these in three cases where p = 5 mod 12 and I' has signature
(0;+;[-]; {(2,4,n9)}) with ny —4 = sq for some s. For full details, see [17].

When s = 3, we find G has a normal cyclic subgroup K of order (3¢+4)/5
and index 40, by Lemma 5.2, and the corresponding factor group G/K has
signature (0;+;[—];{(2,4,5)}), which gives a reflexible regular map of type
{4,5} on a non-orientable surface of genus 3. Likewise when s = 6, we
obtain a reflexible regular map of type {4,14} and genus 7. Such regular
maps, however, do not exist (see [8]).

When s = 4, the group G has signature (0;+;[—];{(2,4,4(¢ + 1)}) and
has order 24(q + 1). This cannot happen, however, as it can be shown more
generally that if G has signature (0; +; [—]; {(2,4,A)}) where A > 36, then G
cannot have order 6. One proof of the latter assertion is an adaptation of
a result in [1], and again may be found in [17].

Finally, as noted earlier, we have not yet resolved the case where the genus
p = 3 modulo 12. The bound of v(p) > 4p in this case is sharp for p = 3,
but not for p = 15,27,39,51,63 or 75 as these are values of the genus for
which 3.4.1 applies. We have been able to prove the bound is sharp again for
p = 87, however our proof requires a detailed analysis of dozens of sub-cases,
and even a summary would be too long to provide here.

We conjecture that the bound v(p) > 4p is sharp for infinitely many
values of p of the form 83q + 2 where ¢ comes from an infinite set of large
primes satisfying conditions like those given in Table 3.

In particular, for one such infinite set we have been able to eliminate all
possibilities for the signature from Table 2, with the exception of type (f),
namely signature (0;+;[—];{(2,7n1,n2)}), for which the order of the group
G is given by |G| = %(p — 2). The problem with this signature
type is that both of the parameters n; and ny, are unbounded, making it very
difficult to apply the sort of arguments described above (except for specific
choices of ny or ny). Of course the difficulty here is related to the question
of the precise spectrum of genera of regular maps on non-orientable surfaces,
which is also unresolved, and our conjecture should be seen in the context of
this question and the results of [6, 8.
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