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1 Introduction

One of the most common preference orderings in economics is that of bundles
of commodities, and one of the most common problems is to rationalise
such an ordering, representing it by a numerical order-preserving function
of utilities of those commodities. The space of commodity bundles can be
naturally represented as a subset of a Cartesian product X =

∏n

i=1 Xi, where
Xi can vary depending on the model.

It is often assumed that each Xi has a very rich structure and is isomor-
phic to a subset of R, so that X becomes a subset of a finite-dimensional
Euclidean space R

n. This model corresponds to existence of n types of in-
finitely divisible goods. An element x = (x1, . . . , xn) ∈ X denotes a bundle
with n goods, and xi shows the quantity of the ith good. This case was
extensively studied by J. von Neumann and O. Morgenstern [22], J. Marshak
[13], I.N. Herstein and J. Milnor [8] and others.

Another extreme case is when elements in each Xi belong to the same
class but cannot be compared and measured in units of something, such as
when X1 = {apple, banana} and X2 = {pepsi, coca cola}. In this particular
case the Xi have no structure at all and are arbitrary finite sets. This case
was studied by Krantz et al [12] and significant progress was made on it by
P. Fishburn [7]. The case most studied is one where every Xi consists of
just two elements. In this case elements of the Cartesian product 2[n] can
be identified with subsets of [n] = {1, 2, . . . , n} and we obtain the classical
case of comparative probability orders [17, 15] for which the basic rationality
condition is the following axiom of de Finetti:

Definition 1. A linear order � on 2[n] is called a comparative probability
if it satisfies the following de Finetti axiom: for any A, B ∈ 2[n] and any
C ∈ 2[n] such that C ∩ (A ∪ B) = ∅

A � B ⇐⇒ A ∪ C � B ∪ C. (1)

There is an important intermediate case which has not been studied sys-
tematically so far. We often have n types of goods which are divisible to a
certain extent but not infinitely divisible (such as money, cars, houses etc.).
These goods can be measured only in whole units of some quantity which is
further indivisible. Let us call these goods finitely divisible. If Xi denotes the
quantity of a certain finitely divisible good, then each Xi has the structure
of the monoid of nonnegative integers N. This model has numerous useful
interpretations.

When we are in the situation of the Xi representing finitely divisible
goods, the bundle x = (x1, . . . , xn) ∈ X can be replaced with the n-tuple of
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nonnegative integers (k1, . . . , kn), where ki is the number of indivisible units
that are contained in xi. The main motivating example for this study comes
from Sertel and Kalaycıoğlu [18] and Sertel and Slinko [19, 20].

Example 1. Consider a k-member parliament or committee. There are n
political parties to which the members are affiliated. Here i is the type of
political party and ki is the number of members of this political party elected to
the parliament. The total number of elected parliamentarians in parliament
x = (k1, . . . , kn) is k =

∑n

i=1 ki. The relation x � y means that a voter
thinks parliament x is at least as good as parliament y.

Mathematically speaking, a parliament is a multiset on the set of polit-
ical parties [n] = {1, 2, . . . , n}. Unlike sets, multisets allow multiple en-
try of elements, so a parliament can be represented as a multiset M =
{1k1, 2k2, . . . , nkn}, where iki means that element i (party i) enters the mul-
tiset (the parliament) ki times. The number ki is called the multiplicity of
i in M . The multiset M can also be described as ([n], µ) where µ : [n] → N

is the multiplicity function given by µ(i) = ki for all i ∈ [n]. The sum of
multiplicities k = k1 + k2 + . . . + kn is called the cardinality of M .

The set of all multisets of fixed cardinality k on the set [n] will be denoted
by Pk[n]. The set of all multisets will be denoted P [n] =

⋃
∞

k=1 Pk[n]. The
union M1 ∪ M2 of two multisets M1 = ([n], µ1) and M2 = ([n], µ2) is again a
multiset on [n] whose multiplicity function is defined as µ1 + µ2. Similarly,
the intersection M1 ∩ M2 is given by the multiplicity function min(µ1, µ2),
where this minimum is defined pointwise on [n]. Next, we say that M1 is
a submultiset of M2, if µ1(i) ≤ µ2(i) for all i ∈ [n], and we denote this by
M1 ⊆ M2. For more information on multisets see, for example, [21].

Definition 2. An order � on Pk[n] (or on P [n]) is said to be (additively)
representable if there exist nonnegative real numbers u1, . . . , um such that for
all M1 = ([n], µ1) and M2 = ([n], µ2),

M1 � M2 ⇐⇒
n∑

i=1

µ1(i)ui ≥
n∑

i=1

µ2(i)ui. (2)

We will refer to the coefficients u1, . . . , un as the utilities; here the word
‘utility’ serves as a generic name for a number of related but distinct concepts.

Additive representability of preference orders is well-established topic of
study. A systematic discussion of this idea and its history can be found in
the monograph [23]. In the most studied case of comparative probability, de
Finetti’s axiom (1) is not sufficient for additive representability — indeed, one
needs infinitely many additional cancellation conditions [11]. Because of this,
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it is quite surprising that for an order � on P [n], the multiset analogue of
(1), in which the union is understood as the multiset union and the condition
C ∩ (A∪B) = ∅ is dropped, is nearly sufficient for additive representability.

It was discovered by Robbiano [16] and rediscovered by Danilov [3] and
Martin [14] that for any order satisfying the multiset analogue of de Finetti’s
axiom, there is an m × n matrix of weights, with m ≤ n, that can be used
to determine the order in which two multisets A and B appear in �. The
weights from the first row are used first, but if the total weights of A and
B relative to this system of weights are the same, then the weights from the
second row are used, and so on. Multisets with the multiset analogue of (1)
have been extensively studied in computer science with regard to termination
of rewriting systems; see [4].

We now note that there is an essential difference between this framework
and Example 1. In the latter, the total number of objects k =

∑n

i=1 ki

is fixed, making us deal with an order on Pk[n], and there is no obvious
analogue of de Finetti’s axiom. It is exactly the framework of Example 1
that Sertel and Slinko studied in [19, 20] and we continue to study in this
article. We are interested in additive representation of orders on Pk[n]. This
case is markedly different from the case of orders on P [n], and is much more
similar to the case of comparative probability, explaining why Fishburn’s
ideas could be made to work.

By an order we understand any reflexive, complete and transitive binary
relation, which will be denoted as �. If it is also antisymmetric, it will be
called a linear order. The notation x ≻ y will mean x � y but not y � x.

The problem considered here and in many similar situations (as in [5, 7,
11, 12] for example) is to impose minimal conditions on the order � on Pk[n]
to guarantee its representability. This means that the voter must be (to a
certain extent) rational in order for their preferences to be representable.
The question is, just how rational they should be.

The following basic rationality condition was suggested by Sertel and
Slinko [19, 20], who called it consistency. Here we give a slightly different
(but equivalent) definition of this concept, which makes it a close relative to
the concept of the Independence of Equal Coordinates [23, p.30].

Definition 3. An order � on Pk[n] is said to satisfy the Independence of
Equal Submultisets condition (IES) if for every two multisets U and V of
the same cardinality j with 1 ≤ j ≤ k−1, the relation U ∪W � V ∪W holds
for one particular multiset W of cardinality k − j if and only if this relation
holds for every multiset W of cardinality k − j.

This is also an analogue of de Finetti’s axiom for comparative probability
orders [5, 6].
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If � is an order on Pk[n] which satisfies the IES, then, for all j in the
range 1 ≤ j ≤ k− 1, it induces an order �j on Pj [n], which also satisfies the
IES. To define �j we take any W ∈ Pk−j[n], and then for any U, V ∈ P j[n],
we set

U �j V if and only if U ∪ W � V ∪ W. (3)

By the IES, this will not depend on the choice of the particular multiset W .
The orders �j will be called orders associated with �. These orders, as it
was proved in Lemma 1 of [20], satisfy the following property.

Lemma 1. Let � be an order on Pk[n] which satisfies the IES and �i be the
corresponding order on P i[n] for i = 1, . . . , k. Suppose that U, V ∈ Pℓ[n],
R, Q ∈ Ph[n], and U �ℓ V , R �h Q with ℓ+h ≤ k. Then U ∪R �ℓ+h V ∪Q.

In this paper, without loss of generality, we assume that � induces a
linear order on [n] (which is naturally identified with P1[n]), and that this
linear order satisfies the condition

1 ≻1 2 ≻1 3 ≻1 . . . ≻1 n. (4)

It is important that we rule out the possibility of indifferences here. This does
not restrict our framework, since if j ∼ i for some j > i, then we may view
the elements i, i+1, . . . , j as indistinguishable, and then we may simplify the
framework by not making any distinction between these elements.

The next definition is technical but very important.

Definition 4. We say that an order � on Pk[n] satisfies the mth cancella-
tion condition Cm if for no m distinct comparisons Ai � Bi, i = 1, 2, . . . , m,
among which Ai ≻ Bi for at least one i, there exist positive integers a1, . . . , am

such that the following two multiset unions coincide

m⋃

i=1

(Ai ∪ . . . ∪ Ai)
︸ ︷︷ ︸

ai

=
m⋃

i=1

(Bi ∪ . . . ∪ Bi)
︸ ︷︷ ︸

ai

. (5)

This is a complete analogue of the mth cancellation condition formulated
by Kraft, Pratt and Seidenberg [11] for orders on the power set 2[n]. As
in [11, Theorem 2] it is easy to show that for an order � on Pk[n] to be
representable it is necessary and sufficient that all cancellation conditions
C2, C3, . . . are satisfied. This will become obvious later, when we reformulate
this statement in vector form, in which the cancellation conditions look much
more natural.
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Example 2. The nonrepresentable linear order A4 on P2[4] given by

{12} ≻ {12} ≻ {13} ≻ {22} ≻ {23} ≻ {14} ≻ {24} ≻ {32} ≻ {34} ≻ {42}

and constructed in [19] does not satisfy the condition C3, since it contains
the following comparisons (underlined above):

{13} ≻ {22}, {23} ≻ {14}, {24} ≻ {32}. (6)

Indeed, the union of the multisets on the right and the union of the multisets
on the left are both equal to the multiset {122324}. Thus C3 is violated with
a1 = a2 = a3 = 1.

In order to convince the reader that the above cancellation conditions are
natural, we note that the IES for � follows from C2, since it cannot be true
that A ∪ W1 � B ∪ W1 and B ∪ W2 ≻ A ∪ W2. When W1 = W2 = ∅ we
obtain also antisymmetry. It is also obvious that C2 follows from the IES
and antisymmetry, and hence for antisymmetric orders, condition C2 and the
IES are equivalent. Transitivity of � is implied by C3 as it is impossible to
have simultaneously A � B, B � C, and C ≻ A.

It should be noted that, although transitivity follows from C3, it is weaker
than C3 (see Example 2). It is of special interest when the IES implies
C3, C4, . . ., and hence representability of �. For n = 3, Sertel and Slinko [19]
showed that the IES implies Ci for all i ≥ 3, and hence all orders on Pk[3]
which satisfy the IES are representable, for all k ≥ 1. This is no longer true
for n > 3 as shown in the same paper. Nevertheless, sometimes something
good can be said about � even when it is not representable.

Definition 5. We will say that an order � on Pk[n] is almost representable
if there exist nonnegative real numbers u1, . . . , um such that for all M1 =
([n], µ1) and M2 = ([n], µ2) belonging to Pk[n],

M1 � M2 =⇒
n∑

i=1

µ1(i)ui ≥
n∑

i=1

µ2(i)ui. (7)

This is a complete analogue of the almost representability condition for
comparative probability orders [11, 15].

Almost representable orders satisfying the IES need not be representable
(see [20, Sect. 3]). Such linear orders may exist only when the representable
order associated with utilities u1, . . . , um is non-linear and some multisets
are tied. There are also linear orders which satisfy the IES but still fail to be
almost representable (see [20, Sect. 4]). More precisely, examples are given
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in [20] of a non-representable but almost representable linear order in P2[4],
and a linear order in P3[4] that fails to be almost representable; both satisfy
the IES but fail to satisfy C3.

Thus it is clear that to secure representability, sometimes we have to
assume more than the IES (or C2, which is the same), and we may need also
some of the conditions C3, C4, . . .. It is important to find out how far do we
have to go, and how many cancellation conditions we need to assume before
we can guarantee the representability of an order on Pk[n]. The current
paper is devoted to this particular question. All results will be formulated in
terms of the following two functions.

For n ≥ 3 and k ≥ 2, let f(n, k) be the smallest positive integer such that
any linear order on Pk[n] which satisfies C2, C3, . . . , Cf(n,k) is representable.
Similarly, let g(n, k) be the smallest positive integer such that any almost
representable linear order on Pk[n] which satisfies C2, C3, . . . , Cg(n,k) is rep-
resentable. Clearly, g(n, k) ≤ f(n, k) for all n and k. Sertel and Slinko [20]
showed in this notation that f(3, k) = g(3, k) = 2 for all k ≥ 1.

In this paper we will completely describe the function g(n, k). Specifically,
we will show that g(n, k) = n−1 for all n ≥ 3 and k ≥ 2 apart from the pair
(n, k) = (5, 2), for which g(5, 2) = 3. As for the function f(n, k), the best
we can prove in general is that n− 1 ≤ f(n, k) ≤ n whenever (n, k) 6= (5, 2).
Computer-assisted calculations show that g(n, k) = f(n, k) for small values
of n and k (namely, for (n, k) = (4, 2), (4, 3), (5, 2), (5, 3), (6, 2) and (7, 2)),
and so we conjecture that this is true in general.

To obtain these results we take a geometric view of linear orders, and
define discrete cones (similar to those defined by Fishburn [6] for comparative
probability orders on a set). We will show that to every order � on Pk[n]
satisfying the IES there corresponds a discrete cone C(�), and vice versa.

We are grateful to an anonymous referee and the action editor Jean-Paul
Doignon for numerous valuable suggestions.

2 Discrete Cones

To define discrete cones we need the following notation. Let {e1, . . . , en} be
the standard basis of R

n, let Mk = {−k, . . . ,−1, 0, 1, . . . , k} and let Mn
k be

the nth Cartesian product of Mk. Next, for x = (x1, . . . , xn) ∈ Mn
k , define

|x| =

n∑

i=1

|xi|,

x+ = (v1, . . . , vn), where vi = max(xi, 0), and

x− = (u1, . . . , un), where ui = min(xi, 0),
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so that x = x+ + x− and |x| = |x+| + |x−|. Similarly, for any two vectors
x = (x1, . . . , xn) ∈ Mn

k and y = (y1, . . . , yn) ∈ Mn
k , let

max(x,y) = (w1, . . . , wn), where wi = max(xi, yi).

Finally, we define T n
k , a set in which the cones associated with orders on

Pk[n] will live, by

T n
k =

{
x ∈ Mn

k | |x−| = |x+| ≤ k
}

.

This consists of all vectors in Mn
k which are orthogonal to the vector n =

(1, 1, . . . , 1) and whose sum of positive entries is no greater than k.

Given a multiset M = ([n], µ) ∈ Pk[n], let χ(M) = (µ(1), . . . , µ(n))
be the characteristic function of M . Given an order � on Pk[n], for every
comparison M � N we construct a vector χ(M, N) = χ(M) − χ(N) ∈ T n

k .
We can now define C(�) to be the set of all vectors χ(M, N) for all valid
comparisons M � N , where M, N ∈ Pk[n]. Note that, if M ∩ N 6= ∅, then
for M ′ = M \(M ∩N) and N ′ = N \(M∩N) we have χ(M, N) = χ(M ′, N ′).
This means that for any order � which satisfies the IES, then C(�) is well-
defined. Now we will give an abstract definition of this object.

Definition 6. A subset C ⊆ T n
k is said to be a discrete cone (or simply, a

cone) in T n
k if the following conditions hold:

D1. ei − ei+1 ∈ C \ (−C) for 1 ≤ i ≤ n − 1,

D2. 0 ∈ C, and for all x ∈ T n
k \ {0} either x ∈ C or −x ∈ C (but not both),

D3. x + y ∈ C whenever x,y ∈ C and |max(−x−,y+)| ≤ k.

We note that if m ≤ k and �m is the order on Pm[n] associated with �,
then C(�m) ⊆ C(�). Furthermore:

Proposition 1. If a linear order � on Pk[n] satisfies (4) and the IES, then
C(�) satisfies conditions D1 to D3 and so is a discrete cone. On the other
hand, every discrete cone C ⊆ T n

k defines a linear order � on Pk[n] which
satisfies (4) and the IES, and in which A � B if and only if χ(A, B) ∈ C,
for every two multisets A, B ∈ Pk[n].

Proof. Let � be a linear order on Pk[n] which satisfies (4) and the IES. Then
(4) implies conditions D1 for C(�) and D2 obviously holds for C(�) since �
is linear. Only D3 is not immediately clear.

So suppose that x = (x1, . . . , xn) = χ(A, B) ∈ C(�) and that y =
(y1, . . . , yn) = χ(D, E) ∈ C(�), with |max(−x−,y+)| ≤ k. We may choose
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such representations of x and y for which A ∩ B = ∅ and D ∩ E = ∅. In
doing this, suppose that A and B have cardinality s, and D and E have
cardinality t, where s ≤ k and t ≤ k. Then x+ = χ(A) and −x− = χ(B)
while y+ = χ(D) and −y− = χ(E), and |x−| = |x+| = |A| = |B| = s while
|y−| = |y+| = |D| = |E| = t.

This means that A, B ∈ Ps[n] and D, E ∈ Pt[n] with A �s B and
D �t E, where �s and �t are the orders induced by � on Ps[n] and P t[n],
respectively. The fact that |max(−x−,y+)| ≤ k implies that there exist two
multisets F1 and F2 such that F1 ∪B = F2 ∪D, and the cardinality ℓ of this
common union is not greater than k. By Lemma 1,

F1 ∪ A �ℓ F1 ∪ B = F2 ∪ D �ℓ F2 ∪ E,

and hence by transitivity, F1 ∪ A �ℓ F2 ∪ E. It now follows that

x + y = χ(A ∪ D, B ∪ E) = χ(A ∪ F2 ∪ D, B ∪ F2 ∪ E)

= χ(A ∪ F1 ∪ B, B ∪ F2 ∪ E) = χ(A ∪ F1, F2 ∪ E) ∈ C(�).

For the second part, let C be any cone in T n
k . We define an order on each

of the sets Pℓ[n] for ℓ ≤ k by setting for any two multisets A, B ∈ P ℓ[n]

A �ℓ B whenever χ(A, B) ∈ C.

By its definition, the order �k (=�) on Pk[n] will satisfy the IES, but we need
to prove its transitivity. So suppose A � B and B � D for some A, B, D ∈
Pk[n]. Let x = χ(A, B) and y = χ(B, D). Then |max(−x−,y+)| ≤ k since
each entry of both −x− and y+ is bounded above by the corresponding entry
of χ(B), and |χ(B)| = k, so χ(A, D) = χ(A)−χ(B)+χ(B)−χ(D) = x+y ∈
C, and therefore A � D.

Example 3. For the linear order � on P2[4] from Example 2, the three
vectors

x = (1,−2, 1, 0), y = (0, 1,−2, 1), z = (−1, 1, 1,−1) (8)

belong to C(�), which is a cone in T 4
2 . These vectors correspond to the three

comparisons given in (6). Note that for each pair of distinct vectors u,v in
the set {x,y, z} we have |max(u+,v−)| = 3, and that explains why no sum
of two vectors from this set belongs to C(�).

We can reformulate now the cancellation conditions as follows:

Proposition 2. An order � satisfies the mth cancellation condition if and
only if for no m-subset {x1, . . . ,xm} ⊆ C(�) do there exist positive integers
a1, . . . , am such that

a1x1 + a2x2 + · · ·+ amxm = 0. (9)
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Proof. If m distinct comparisons Ai � Bi exist as in Definition 4, then we
take vectors xi = χ(Ai, Bi) ∈ C(�) for 1 ≤ i ≤ m, and condition (5) implies
that a1x1 + a2x2 + · · ·+ amxm = 0. The converse is also clear.

Definition 7. Suppose for an order � on Pk[n] there exists a set of m vectors
{x1, . . . ,xm} ⊆ C(�) and positive integers a1, . . . , am such that (9) holds.
Then we say that the order � violates the mth cancellation condition for
vectors x1, . . . ,xm with multiplicities (a1, . . . , am).

Example 4. The three vectors from C(�) given in Example 3 add up to the
zero vector, hence the order � violates C3 with multiplicities (1, 1, 1), and is
not representable.

Geometrically, what is happening is clear. An order � is representable
provided there exists a positive-integer-valued vector w = (w1, . . . , wn) ∈ R

n

such that w1 > w2 > . . . > wn and such that

x ∈ C(�) ⇐⇒ (w,x) > 0 for every x ∈ T n
k \ {0}, (10)

that is, all non-zero vectors in the cone C(�) lie in the open half-space
Hw = {x ∈ R

n | (w,x) > 0} determined by the hyperplane Lw with normal
vector w. The cone C(�) in this case is a pointed cone.

Similarly, for any order � that is almost representable, there exists a
nonnegative-integer-valued vector w = (w1, . . . , wn) ∈ R

n such that both
w1 ≥ w2 ≥ . . . ≥ wn ≥ 0 and

x ∈ C(�) =⇒ (w,x) ≥ 0 for every x ∈ T n
k , (11)

so that in this case the whole of the cone C(�) lies in the closed half-space
Hw = {x ∈ R

n | (w,x) ≥ 0} = Hw ∪ Lw.
Note that in both cases, the vector w represents the vector of utilities.

3 Construction Theorem

Proposition 3. Let � be an almost representable order with a vector of
utilities w. Suppose that the mth cancellation condition is violated for vectors
x1, . . . ,xm with multiplicities (a1, . . . , am). Then all the vectors x1, . . . ,xm

lie in the hyperplane Lw.

Proof. First we note that (w,x) > 0 for all those x ∈ C(�) which do not
belong to Lw. Next, condition (9) implies that

n∑

i=1

ai(w,xi) = 0,
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and since ai > 0 for 1 ≤ i ≤ n, this can hold only when all (w,xi) = 0 for
all i, and hence we find that xi ∈ Lw for 1 ≤ i ≤ n.

Corollary 1. Any almost representable order on Pk[n] which satisfies C3,
C4, . . . , Cn−1 is representable.

Proof. Suppose that for some m, the mth cancellation condition is violated
by vectors x1, . . . ,xm ∈ C(�) with multiplicities (a1, . . . , am), that is, with
a1x1 + · · · + amxm = 0. Now since all the vectors x1, . . . ,xm belong to
the (n−2)-dimensional subspace Lw ∩ Ln, where Ln is the hyperplane with
normal vector n = (1, 1, . . . , 1), we may use standard linear algebra to reduce
the number of vectors in this linear combination to at most n − 1 vectors,
while keeping all coefficients positive. We claim that if m ≥ n, then one of
the vectors x1, . . . ,xm can be excluded from the linear combination. Indeed
in this case the set of vectors {x1, . . . ,xm−1} is linearly dependent, and so
there exist real numbers b1, . . . , bm−1 with at least one bi being positive, such
that b1x1 + · · ·+ bm−1xm−1 = 0. Hence for all ǫ ∈ R we have

(a1 − ǫb1)x1 + . . . + (am − ǫbm)xm + amxm = 0.

When ǫ = 0, all coefficients in this equation are positive. If we choose the
smallest positive ǫ for which ai − ǫbi = 0 for some i, then the resulting linear
combination will not contain xi, and will still be nontrivial since am > 0.
Hence we may suppose that m ≤ n − 1. Since � satisfies C4, . . . , Cn−1, it
follows that � is representable.

Proposition 4. g(n, k) ≤ n − 1 and f(n, k) ≤ n for all n and k.

Proof. The first inequality g(n, k) ≤ n − 1 follows from Corollary 1, and
the second inequality f(n, k) ≤ n follows from a similar argument in the
(n − 1)-dimensional subspace Ln.

The following theorem enables us to construct orderings that are almost
representable but fail Cm for particular values of m.

Theorem 1 (Construction method). For m ≥ 3, let X = {x1, . . . ,xm} be a
system of m non-zero vectors from T n

k satisfying the following conditions:

(a)
m∑

i=1

aixi = 0 for some positive integers a1, . . . , am,

(b) |max(−x−

i ,x+
j )| > k for every pair {i, j} ⊂ {1, 2, . . . , m} with i 6= j,

and
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(c) no proper subsystem X ′ ⊂ X is linearly dependent with positive coeffi-
cients.

Suppose further that the m × n matrix A whose rows are the given vectors
x1, . . . ,xm has the property that Aw = 0 for some positive-integer-valued
vector w = (w1, . . . , wn) with w1 > w2 > . . . > wn > 0, and that

Lw ∩ (T n
k \ {0}) = {±x1, . . . ,±xm}.

Let � be the (nonlinear) order on Pk[n] with the vector of utilities w, and
let C(�) = {x ∈ T n

k | (x,w) ≥ 0} be the discrete cone associated with �.
Then the set

C ′ = C(�) \ {−x1, . . . ,−xm}

is a discrete cone that corresponds to an almost representable order on Pk[n]
which satisfies Cj for all j < m, but does not satisfy Cm.

Proof. First we note that {±x1, . . . ,±xm} ⊆ Lw = {x ∈ R
n | (w,x) = 0}.

Next (ei−ei+1,w) = wi−wi+1 > 0 for 1 ≤ i < n, so the property D1 holds for
the cone C ′. Property D2 holds for C ′ because it holds for C(�) and, when we
remove vectors −x1, . . . ,−xm from C ′, the vectors x1, . . . ,xm remain in C ′.
Now let us prove D3. Suppose that y, z ∈ C ′ and |max(−y−, z+)| ≤ k, but
y + z /∈ C ′. Since the cone C(�) satisfies D3 we know that y + z ∈ C(�), so
y + z ∈ C(�) \ C ′, and hence y + z = −xi for some i. Moreover, y, z ∈ Lw,
since otherwise −(xi,w) = (y + z,w) = (y,w) + (z,w) > 0. It follows
from (c) that y = xj for some j and z = xℓ for some ℓ. This contradicts
hypothesis (b), however, since |max(−y−, z+)| ≤ k. Thus D3 holds for C ′.

Suppose now that some violation of Cj occurs, say

c1y1 + c2y2 + · · · + cjyj = 0,

with positive integers c1, . . . , cj and yi ∈ C ′ for 1 ≤ i ≤ j, where j < m. If
(yi,w) > 0 for some i, then 0 = (0,w) = (c1y1 + c2y2 + · · · + cjyj ,w) =
c1(y1,w) + c2(y2,w) + . . . + cj(yj ,w) > 0, a contradiction, hence yi ∈ Lw

for all i, and therefore {y1, . . . ,yj} ⊆ {x1, . . . ,xm}, which contradicts (c).
Finally, Cm fails by hypothesis (a).

4 Characterisation of g(n, k)

In this section we will use the construction method from the previous section
and Proposition 4 to characterise the function g(n, k) as follows:
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Theorem 2. For all n ≥ 3 and k ≥ 2,

g(n, k) =

{
n − 2 if (n, k) = (5, 2),
n − 1 otherwise.

We prove this theorem partly by theoretical means and partly by direct
calculations for small n and k (with the help of the computer algebra system
Magma [1], using the same techniques of enumeration as described in [2]).
We present the theoretical results first.

As was mentioned above, the case n = 3 of this theorem was proved
in [20], so we need only consider cases where n ≥ 4. The proof of each case
will consist of constructing a matrix A which satisfy conditions of Theorem 1.
The rows of A will be denoted by v1,v2, . . . . We will use the following
notation extensively: for any vector v, let the expression xi(v) denote the
ith co-ordinate entry of v.

4.1 Proof of Theorem 2 for n = 4.

Consider the vectors v1,v2,v3 that make up the rows of the 3 × 4 matrix

A =





0 −(k − 1) k −1
1 −1 −(k − 1) k − 1

−1 k −1 −k + 2



 . (12)

It is clear that v1 and v2 are linearly independent and v1 + v2 + v3 = 0. It
can also be seen (by inspection of the first and fourth co-ordinates) that no
linear combination y1v1 +y2v2 of v1 and v2 can be a vector of integers unless
both y1 and y2 are integers. The row-space of A has a normal vector w =
(k2 − k + 2, k + 1, k, 1), satisfying the requirement w1 > w2 > . . . > wn > 0
of Theorem 1 since k2 − k + 1 > k for all k > 1. Similarly the given vectors
v1,v2,v3 satisfy the requirement that |max(−v−

i ,v+
j )| > k for every two i

and j, since 2k − 1 > k for all k > 1.
Next, because |v+

1 | = |v−

1 | = |v+
2 | = |v−

2 | = k, no proper multiple of v1 or
v2 can lie in T 4

k , and hence any vector v in Lw∩T 4
k other than 0, ±v1 or ±v2

must be of the form v = m1v1 +m2v2 with non-zero coefficients m1, m2 ∈ Z.
Now if m1 > 0 and m2 > 0, then since −k ≤ x2(v) = −m1(k − 1) − m2 < 0
we find that m1 = m2 = 1, giving v = (1, −k, 1, k − 2) = −v3. Similarly,
if m1 < 0 and m2 < 0, then inspection of x2(v) gives m1 = m2 = −1
and v = v3. On the other hand, if m1 > 0 > m2 or m1 < 0 < m2 then
x3(v) = m1k−m2(k−1) lies outside the acceptable range Mk for co-ordinates
of vectors in T 4

k . Hence the only non-zero vectors in Lw ∩ T 4
k are ±v1, ±v2

and ±v3.

13



By Theorem 1, these vectors give rise to an almost representable order on
Pk[4] which fails to satisfy C3, and by Proposition 4 it follows that g(4, k) = 3
for all k ≥ 2.

4.2 Proof of Theorem 2 for n = 5 and k ≥ 4.

Consider the four vectors v1,v2,v3,v4 forming the rows of the 4 × 5 matrix

A =







1 −(k − 1) k − 3 2 −1
0 1 −k k − 2 1
0 0 1 −k k − 1

−1 k − 2 2 0 −(k − 1)







.

We note that v1+v2 +v3+v4 = 0, any three of the given vectors are linearly
independent, and the vector w = (k3 − 3k2 + 6k − 3, k2 − k + 3, k + 1, 2, 1)
is a normal vector to the row-space of A. Also the given vectors can easily
be seen to satisfy the requirement that |max(−v−

i ,v+
j )| > k whenever i 6= j.

Next, we need the following:

Lemma 2. Lw ∩ T 5
k = {0,±v1,±v2,±v3,±v4}.

Proof. Clearly {v1,v2,v3} is a basis for the 3-dimensional subspace Lw∩Ln,
so every vector v in Lw∩T 5

k must be of the form v = y1v1 +y2v2 +y3v3, and
moreover, from inspection of x1(v), x2(v) and x3(v) it is obvious that y1, y2

and y3 have to be integers. Without loss of generality (since −T 5
k = T 5

k ), we
may assume that y1 ≥ 0. We proceed case-by-case:

Case 1: Suppose y1 = 0. If y2 6= 0 then y2 and y3 must have the same sign
(for otherwise x3(v) = −y2k + y3 lies outside Mk), and then inspection of
x2(v) + x5(v) = 2y2 + (k − 1)y3 forces y3 = 0 (because membership of T 5

k

requires |v−| = |v+| ≤ k). Hence either y2 = 0 or y3 = 0, giving v = 0,±v2

or ±v3.

Case 2: Suppose y1 > 0 and y2 = 0. Then inspection of x2(v) = −y1(k − 1)
gives y1 = 1. Also if y3 6= 0 then y3 > 0 (for otherwise x4(v) = 2y1−y3k > k),
but then v− = (0, −(k − 1), 0, 2 − y3k, 0) so |v−| = k − 3 + y3k > k, a
contradiction. Hence v = v1 in this case.

Case 3: Suppose y1 > 0, y2 6= 0 and y3 = 0. Then inspection of x3(v) =
y1(k − 3) − y2k gives y2 > 0, following which inspection of x4(v) = 2y1 +
y2(k − 2) gives y1 = y2 = 1, but then v = v1 + v2 = (1, −(k − 2), −3, k, 0)
so |v+| = 1 + k > k, a contradiction. Hence no such v exists in this case.

Case 4: Suppose y1 > 0, y2 < 0 and y3 6= 0. Then since −k ≤ x2(v) =
−y1(k − 1) + y2 < 0 we find that y1 = 1 and y2 = −1, and therefore
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v = (1, −k, 2k− 3 + y3, 4− k(1 + y3), −2 + y3(k − 1)). Now as x2(v) = −k,
no other co-ordinates of v can be negative, so 4− k(1 + y3) = x4(v) ≥ 0 and
−2 + y3(k − 1) = x5(v) ≥ 0. The first of these two inequalities gives y3 ≤ 0
but the second gives y3 > 0, a contradiction, so no such v exists in this case.

Case 5: Suppose y1 > 0, y2 > 0 and y3 6= 0. Then since k ≥ x4(v) =
2y1 + y2(k − 1) − y3k we find y3 > 0, so all three coefficients are positive.
If y1 = y2 = y3 = 1, then we have v = v1 + v2 + v3 = −v4. Otherwise
max(y1, y2, y3) > 1. If y2 > y1 then x5(v) = −y1+y2+y3(k−1) ≥ 1+k−1 = k
and then |v+| ≥ x1(v) + x5(v) ≥ 1 + k > k, a contradiction, hence y2 ≤ y1.
Similarly if y3 = max(y1, y2, y3) > 1, then x5(v) = −y1 + y2 + y3(k − 1) ≥
−y3+1+y3(k−1) = y3(k−2)+1 ≥ 2(k−2)+1 = 2k−3 > k, a contradiction,
and hence we may suppose that y1 = max(y1, y2, y3) > 1. Now this implies
−k ≤ x2(v) = −y1(k−1)+y2 ≤ −y1(k−1)+y1 = (2−k)y1 ≤ (2−k)2 = 4−2k,
and therefore k ≥ 4. In fact equality must occur, so y1 = y2 = 2, but then
v = (2, −4, −6 + y3, 8 − 4y3, 3y3), and requiring x3(v) ≥ −k and x5(v) ≤ k
forces the contradictory inequalities y3 ≥ 2 and y3 ≤ 1.

As these five cases cover all possibilities, the proof is complete.

By Theorem 1, there exists an almost representable order on Pk[5] which
fails C4, and by Proposition 4 it follows that g(5, k) = 4 for all k ≥ 4.

4.3 Proof of Theorem 2 for n ≥ 6 and k ≥ 3.

The proof for this case is split into a number of observations and lemmata.
Let us consider the following (n − 2) × n matrix:

A =















1 −(k−1) k−3 1 0 . . . 0 0 0 1 −1
0 1 −k k−2 1 0 . . . 0 0 0 0
0 0 1 −k k−2 1 0 . . . 0 0 0
0 0 0 1 −k k−2 1 0 . . . 0 0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
0 0 0 0 0 . . . 0 1 −k k−2 1
0 0 0 0 0 0 . . . 0 1 −k k−1















.

Let vi be the ith row of A. Clearly the vectors v1,v1, . . . ,vn−2 are linearly
independent, and therefore span a subspace of R

n of dimension n−2. Also it
is easy to check that |v+

i | = |v−

i | = k for all i, and that |max(−v−

i ,v+
j )| > k

whenever i 6= j.
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Let v =
∑n−2

i=1 yivi be a linear combination of v1, . . . ,vn−2. For later use,
we note the following:

x1(v) = y1,

x2(v) = −y1(k − 1) + y2,

x3(v) = y1(k − 3) − y2k + y3,

xi(v) = yi−3 + yi−2(k − 2) − yi−1k + yi for 4 ≤ i ≤ n − 2,

xn−1(v) = y1 + yn−4 + yn−3(k − 2) − yn−2k, and

xn(v) = −y1 + yn−3 + yn−2(k − 1).

In addition, we will use particular sums of these co-ordinates, including

x1(v) + x3(v) = y1(k − 2) − y2k + y3,

x2(v) + x3(v) = −2y1 − y2(k − 1) + y3,

x1(v) + x3(v) + x4(v) = y1(k − 1) − 2y2 − y3(k − 1) + y4,

and, for 4 ≤ i ≤ n−2, also the sums

xi(v) + xi+1(v) = yi−3 + yi−2(k−1) − 2yi−1 − yi(k−1) + yi+1,

x2(v)+x3(v)+xi(v) = −2y1 − y2(k−1)+ y3 + yi−3 + yi−2(k−2)− yi−1k + yi,

x2(v) + x3(v) + . . . + xi(v) = −y1 − yi−2 − yi−1(k−1) + yi.

All of these sums must lie in the interval Mk = {−k, . . . ,−1, 0, 1, . . . , k},
irrespective of whether their terms xj(v) are positive or negative (since, for
example, if the sum exceeds k then the sub-sum of positive terms exceeds k).

Lemma 3. Suppose that some linear combination v =
∑n−2

i=1 yivi of the vi

belongs to T n
k . Then yi ∈ Z for all i.

Proof. We have y1 = x1(v) ∈ Z, and as −y1(k − 1) + y2 = x2(v) ∈ Z we find
y2 ∈ Z. Clearly this argument can be repeated, to show yi ∈ Z for all i.

Lemma 4. There is a vector w = (w1, . . . , wn) belonging to the null space
of A such that w1 > w2 > . . . > wn > 0.

Proof. The null space of A has dimension 2 (since v1, . . . ,vn−2 are linearly
independent), and contains the vector n = (1, 1, . . . , 1). To construct another
vector u = (u1, . . . , un) in this null space, let us set un = 0 and un−1 = 1.
Then from orthogonality with the last row of A we see that un−2 = k. We
proceed by reverse induction to prove that ui > 2ui+1 for 2 ≤ i ≤ n − 1.
This is clearly true for i = n − 1, and for i = n − 2 since k > 2. Now let
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us assume that ui+1 ≥ 2ui+2 and ui+2 ≥ 2ui+3 for some i ≤ n − 3. Then by
orthogonality with the ith row of A we have the inductive step

ui = kui+1 − (k − 2)ui+2 − ui+3

= 2ui+1 + (k − 2)(ui+1 − ui+2) − ui+3

≥ 2ui+1 + (k − 2)ui+2 − ui+3

≥ 2ui+1 + ui+2 − ui+3

≥ 2ui+1,

as required. Similarly, orthogonality with the first row of A gives

u1 = (k − 1)u2 − (k − 3)u3 − u4 = 2u2 + (k − 3)(u2 − u3) − u4

≥ 2u2 + (k − 3)u3 − u4 ≥ 2u2 − u4 > u2 + u3 − u4 ≥ u2.

Thus we have u1 > u2 > . . . > un = 0, and we can simply take w = u +n to
satisfy the requirement that all co-ordinates of w are positive.

Lemma 5. Lw ∩ T n
k = {0,±v1,±v2, . . . ,±vn−2,±vn−1}, where vn−1 is the

vector −(
∑n−2

i=1 vi) = (−1, k − 2, 2, 0, . . . , 0,−k + 1).

Proof. Clearly {v1,v2, . . . ,vn−2} is a basis for the (n − 2)-dimensional sub-
space Lw ∩ Ln, so every vector v in Lw ∩ T n

k is of the form v =
∑n−2

i=1 yivi,
and by Lemma 3, all the yi are integers. To find all possibilities for v, we
may assume without loss of generality that y1 ≥ 0 (since −T n

k = T n
k ). As

before, we consider several cases:

Case 1: Suppose y1 = 0. If yi = 0 for all i then v = 0. Otherwise let j be
the smallest positive integer for which yj 6= 0. Then without loss of generality
we may suppose that yj ≥ 1. With these hypotheses, we will prove that v is
one of v2,v3, . . . ,vn−3 or vn−2. To do so, assume the contrary, and further,
suppose that

∑n−2
i=2 |yi| is as small as possible.

Now assume also for the time being that yj ≥ 2. If j = n − 2, then
xn(v) = −y1 + yn−3 + yn−2(k − 1) = 0 + 0 + yn−2(k − 1) ≥ 2(k − 1) > k, a
contradiction, and so j ≤ n − 3. The requirement xj+1(v) ≥ −k then gives
yj+1 ≥ yjk − k ≥ 2k − k = k ≥ 3. But now if yℓ ≥ 3 and yi ≥ 2 whenever
j ≤ i < ℓ, where 3 ≤ ℓ ≤ n−3, then x2(v)+x3(v)+ . . .+xℓ+1(v) ≥ −k gives

yℓ+1 ≥ −k + y1 + yℓ−1 + yℓ(k − 1) ≥ −k + 0 + 2 + 3(k − 1) = 2k − 1 ≥ 3,

and hence by induction, yℓ ≥ 3 whenever j < ℓ ≤ n−2. This, however, gives

xn(v) = −y1 + yn−3 + yn−2(k − 1) ≥ 0 + 2 + 3(k − 1) = 3k − 1 > k,
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another contradiction. Hence yj = 1. Also j 6= n− 2, since we have assumed
v 6= vn−2, and therefore 2 ≤ j ≤ n − 3.

Next, because xj+1(v) ≥ −k we have yj+1 ≥ yjk − k ≥ k − k = 0.
Assume for the time being that yj+1 ≥ 2. If j = n − 3, then we find
xn(v) = −y1 + yn−3 + yn−2(k − 1) = 0 + 1 + yn−2(k − 1) ≥ 1 + 2(k − 1) > k,
a contradiction, and so j ≤ n − 4. Moreover, from xj+1(v) + xj+2(v) ≥ −k
we find that yj+2 ≥ 2yj + yj+1(k− 1)− k ≥ 2 + 2(k− 1)− k = k ≥ 3, and by
induction (as above), it follows that yℓ ≥ 3 whenever j + 1 < ℓ ≤ n − 2, and
again xn(v) = −y1 + yn−3 + yn−2(k − 1) ≥ 0 + 2 + 3(k − 1) = 3k − 1 > k, a
contradiction. Hence yj+1 = 0 or 1.

If yj+1 = 0, then xj(v) = xj(vj) = 1 and xj+1(v) = xj+1(vj) = −k, and
these co-ordinates cancel each other when we take the difference u = v−vj .
Moreover, as |v| ≤ 2k and |vj| = 2k we see that |u| = |v − vj | ≤ (2k − (k +
1))+(2k−(k+1)) < 2k, and since u lies in Lw (so that |u+| = |u−|), it follows
that u lies in T n

k , and hence also in Lw ∩ T n
k . But u = v−vj =

∑n−2
i=j+2 yivi,

and as
∑n−2

i=j+2 |yi| is smaller than
∑n−2

i=2 |yi| we deduce that u = 0 or u = ±vi

for some i ≥ j+2, and hence v = vj or vj±vi for some i ≥ j+2. The former
possibility has been ruled out already, and the latter possibility is easily ruled
out since xj+1(vj + vi) + xi+1(vj + vi) ≤ −k + 1 − k = 1 − 2k < −k and
xj+1(vj − vi) + xi+2(vj − vi) ≤ −k − (k − 2) = 2 − 2k < −k.

Similarly if yj+1 = 1, then xj(v) = xj(vj) = 1 while xj+1(v) = −(k − 1)
and xj+1(vj) = −k, so that when we take the difference u = v − vj , we find
|u| = |v − vj | ≤ (2k − k) + (2k − k) = 2k, and again u lies in Lw ∩ T n

k ,
but u = v − vj =

∑n−2
i=j+1 yivi, with

∑n−2
i=j+1 |yi| smaller than

∑n−2
i=2 |yi|, so

u = 0 or u = ±vi for some i ≥ j + 1, and hence v = vj or vj ± vi for
some i ≥ j + 1. In fact because yj+1 = 1 we must have v = vj + vj+1, but
then xj(v) + xj+3(v) + xj+4(v)) = 1 + (k − 1) + 1 = k + 1 > k, another
contradiction.

Hence there is no other such v; the only possibilities are v2,v3, . . . ,vn−3

and vn−2.

Case 2: Suppose y1 = 1 and y2 < 0. Then the requirement x2(v) ≥ −k gives
y2 = −1 and x2(v) = −k, so that no other co-ordinates of v can be negative.
Similarly, from x1(v) + x3(v) ≤ k we find that y3 ≤ k − y1(k − 2) + y2k ≤
k − (k − 2) − k = 2 − k ≤ −1, and from x1(v) + x3(v) + x4(v) ≤ k we
find that y4 ≤ k − y1(k−1) + 2y2 + (k−1)y3 ≤ k − (k−1) − 2 − (k−1) =
−k ≤ −3. It now follows by induction that yj ≤ −3 for 4 ≤ j ≤ n − 2,
for if yj ≤ −3 and yi ≤ −1 for 2 ≤ i < j, then from the requirement
x2(v) + x3(v) + . . . + xj+1(v) ≥ −k we find that

yj+1 ≤ k + y1 + yj−1 + yj(k − 1) ≤ k + 1 − 1 − 3(k − 1) ≤ 3 − 2k ≤ −3.

18



This, however, gives

xn(v) = −y1 + yn−3 + yn−2(k − 1) ≤ −1 − 1 − 3(k − 1) = 1 − 3k < −k,

a contradiction. Hence this case is impossible.

Case 3: Suppose y1 = 1 and y2 = 0. As v and v1 then have the same
first two co-ordinates, namely 1 and −(k − 1), these cancel each other when
taking their difference u = v − v1. Moreover, as |v| ≤ 2k and |v1| = 2k
we see that |u| = |v − v1| ≤ (2k − k) + (2k − k) = 2k, and since u lies in
Lw (so that |u+| = |u−|), it follows that u lies in T n

k . By the argument in
Case 1, we find that u = 0 or ±vi for some i ≥ 3, and hence v = v1 or
v1 ± vi for some i ≥ 3. The latter possibility, however, is easily ruled out
since x2(v1 + vi) + xi+1(v1 + vi) ≤ −(k − 1) + 1 − k = 2 − 2k < −k and
x1(v1 − vi) + xi+1(v1 − vi) ≥ 1 + k > k. Hence we have only v = v1.

Case 4: Suppose y1 = 1 and y2 > 0. Assuming y2 ≥ 2, then the requirement
x2(v)+x3(v) ≥ −k gives y3 ≥ 2y1 +y2(k−1)−k ≥ 2+2(k−1)−k = k ≥ 3.
It then follows by induction that yj ≥ 3 for 4 ≤ j ≤ n − 2, for if yi ≥ 3 for
3 ≤ i ≤ j − 1, then from

x2(v) + x3(v) + . . . + xj(v) ≥ −k we find that

yj ≥ −k + y1 + yj−2 + yj−1(k − 1) ≥ −k + 1 + 2 + 3(k − 1) ≥ 2k ≥ 3.

This, however, gives

xn(v) = −y1 + yn−3 + yn−2(k − 1) ≥ −1 + 3 + 3(k − 1) = 3k − 1 > k,

a contradiction. Thus y2 = 1.
If all yi = 1 for all i then v =

∑n−2
i=1 vi = −vn−1. Otherwise suppose

that j is the smallest positive integer for which yj 6= 1. If j = 3, then from
x2(v) + x3(v) ≥ −k we find that y3 ≥ 2y1 + y2(k − 1)− k = 1, and so yj ≥ 2
in that case, while if 3 ≤ j ≤ n−2 then x2(v) + x3(v) + xj(v) ≥ −k gives

yj ≥ −k + 2y1 + y2(k − 1) − y3 − yj−3 − yj−2(k − 2) + yj−1k

= −k + 2 + (k − 1) − 1 − 1 − (k − 2) + k = 1,

and so yj ≥ 2 in that case also. But now if yℓ ≥ 2 and yi ≥ 1 for all i < ℓ,
where 3 ≤ ℓ ≤ n − 3, then x2(v) + x3(v) + . . . + xℓ+1(v) ≥ −k gives

yℓ+1 ≥ −k + y1 + yℓ−1 + yℓ(k − 1) ≥ −k + 1 + 1 + 2(k − 1) ≥ k ≥ 3,

and hence by induction, yℓ ≥ 2 whenever j ≤ ℓ ≤ n−2. This, however, gives

xn(v) = −y1 + yn−3 + yn−2(k − 1) ≥ −1 + 1 + 2(k − 1) > k,
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a contradiction. Hence no such j exists, and we have only v = −vn−1.

Case 5: Suppose y1 ≥ 2. Then since x2(v) ≥ −k we have y2 ≥ y1(k−1)−k =
(y1−1)(k−1)−1 ≥ 2(y1−1)−1 = 2y1−3 ≥ 1, and since x2(v)+x3(v) ≥ −k
we have y3 ≥ 2y1+y2(k−1)−k = 2y1+(y2−1)(k−1)−1 ≥ 2y1−1 ≥ y1+1 ≥ 3.
It follows by induction that yj ≥ y1 + 1 ≥ 3 for 4 ≤ j ≤ n − 2, for if
yi ≥ y1 +1 ≥ 3 for 3 ≤ i ≤ j−1, then from x2(v)+x3(v)+ . . .+xj(v) ≥ −k

we find that

yj ≥ −k + y1 + yj−2 + yj−1(k − 1) ≥ −k + y1 + 1 + 3(k − 1)

≥ y1 + 2(k − 1) ≥ y1 + 1 ≥ 3.

This, however, gives

xn(v) = −y1 + yn−3 + yn−2(k − 1) > 1 + 3(k − 1) = 3k − 2 > k,

a contradiction.

As these five cases cover all possibilities, the proof is complete.

4.4 Proof of Theorem 2 for n ≥ 8 and k = 2.

Consider the n−2 vectors v1, . . . ,vn−2 that make up the rows of the following
(n−2) × n matrix:

A =

















−1 1 0 1 0 0 0 0 . . . 0 0 0 0 −1
1 0 −2 0 0 0 0 0 . . . 0 0 0 1 0
0 0 1 −2 0 1 0 0 . . . 0 0 0 0 0
0 0 0 1 −2 0 1 0 . . . 0 0 0 0 0
0 0 0 0 1 −2 0 1 . . . 0 0 0 0 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
0 0 0 0 0 0 0 0 . . . 1 −2 0 1 0
0 0 0 0 0 0 0 0 . . . 0 1 −2 0 1
0 0 0 0 0 0 0 0 . . . 0 0 1 −2 1

















.

Clearly these vectors are linearly independent, and so the row-space of A a
subspace of R

n of dimension n − 2. Also clearly |v+
i | = |v−

i | = 2 for all i,
and it is easy to check that |max(−v−

i ,v+
j )| > 2 whenever i 6= j.

In what follows, we use the Fibonacci sequence, that is, the sequence (fm)
of integers defined by f1 = f2 = 1 and fm+2 = fm+1 + fm for all m ≥ 1.

Lemma 6. There is a vector w = (w1, . . . , wn) belonging to the null space
of A such that w1 > w2 > . . . > wn > 0. In fact, such a vector is given by

w1 = 2fn−1 − 2, w2 = 2fn−1 − fn−2 − 1, and wi = fn−i+2 (13)

for 3 ≤ i ≤ n, where fm is the mth term of the Fibonacci sequence.
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Proof. Let us take wn = f2 = 1 and wn−1 = f3 = 2. Then by orthogonality
with vn−2 we have wn−2 = 2wn−2 − wn = 3 = f4. It follows by induction
that wi = fn−i+2 whenever 3 ≤ i ≤ n, for if this is true for all j such that
i < j ≤ n, then by orthogonality with vi we have

wi = 2wi+1 − wi+3 = 2fn−(i+1)+2 − fn−(i+3)+2

= 2fn−i+1 − (fn−i+1 − fn−i) = fn−i+1 + fn−i

= fn−i+2.

Next, by orthogonality with v2 we have w1 = 2w3 − wn−1 = 2fn−1 − 2, and
by orthogonality with v1 we have w2 = w1−w4 +wn = 2fn−1−2−fn−2 +1 =
2fn−1 − fn−2 − 1 = fn−1 + fn−3 − 1. Finally, it is an easy exercise to verify
that w1 > w2 > . . . > wn > 0, because (fm) is an increasing sequence of
positive integers.

Lemma 7. Lw ∩ T n
2 = {0,±v1,±v2, . . . ,±vn−2,±vn−1}, where vn−1 is the

vector −(
∑n−2

i=1 vi) = (0, 1,−1, 0,−1, 0, . . . , 0, 1).

Proof. Let v be any non-zero vector in Lw ∩ T n
2 , and let i be the smallest

positive integer such that xi(v) 6= 0. Without loss of generality we may
assume that xi(v) > 0, and therefore xi(v) = 1 or 2. If xi(v) = 2, however,
then orthogonality of v with w must correspond to an equation of the form
2wi −wr −ws = 0 with i < r < s or 2wi − 2wr with i < r, both of which are
impossible since the co-ordinates of w are strictly decreasing. Thus xi(v) = 1,
and orthogonality of v with w must correspond to an equation of the form
wi−wr−ws+wt with i < r < s < t, or wi−2wr+wt = 0 with i < r < t. These
two possibilities can be amalgamated into one by considering the equation
as wi − wr − ws + wt with i < r ≤ s < t. Again we proceed case-by-case.

Case 1: Suppose i = 1. Then w1 = wr+ws−wt < 2wr so 2fn−1−2 < 2fn−r+2

and therefore fn−1 < fn−r+2 + 1, which implies r ≤ 3. Next, if r = 3 then
w1 = w3 + ws − wt < w3 + ws, so 2fn−1 − 2 < fn−1 + fn−s+2 and therefore
fn−s+2 > fn−1 − 2, which implies s ≤ 3 (because n ≥ 8), giving r = s = 3
and then wt = 2w3 − w1 = 2fn−1 − 2fn−1 + 2 = 2, so t = n − 1 and
v = (1, 0,−2, 0, . . . , 0, 1, 0) = v2. Similarly, if r = 2 then we find that
w1 = w2 + ws −wt < w2 + ws, so 2fn−1 − 2 < 2fn−1 − fn−2 − 1 + fn−s+2 and
therefore fn−s+2 > fn−2−1, which implies s ≤ 4. If r = s = 2, however, then
wt = 2w2 − w1 = 2(2fn−1 − fn−2 − 1) − 2fn−1 + 2 = 2fn−1 − 2fn−2 = 2fn−3,
which is impossible (since 2fn−3 > fn−3 + fn−4 = fn−2 while also 2fn−3 <
fn−3 + fn−2 = fn−1). Similarly, if r = 2 and s = 3 then wt = w2 + w3 −w1 =
2fn−1 − fn−2 − 1 + fn−1 − 2fn−1 + 2 = fn−1 − fn−2 + 1 = fn−3 + 1, which is
also impossible (since n − 3 ≥ 5). Hence if r = 2 then s = 4, in which case
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wt = w2 + w4 − w1 = 2fn−1 − fn−2 − 1 + fn−2 − 2fn−1 + 2 = 1, giving t = n
and v = (1,−1, 0,−1, 0, . . . , 0, 1) = −v1.

Case 2: Suppose i = 2. Then 2wr > wr + ws − wt = w2 so

2fn−r+2 > 2fn−1 − fn−2 − 1 = 2(fn−2 + fn−3) − fn−2 − 1

= fn−2 + 2fn−3 − 1 > fn−2 + fn−3 + fn−4 = 2fn−2,

and therefore r ≤ 3, so r = 3, and

ws − wt = w2 − w3 = fn−1 − fn−2 − 1 = fn−3 − 1.

If s ≥ 6, then n− s+2 < n−3 and so ws −wt = fn−s+2 − fn−t+2 < fn−3 −1,
a contradiction, hence 3 ≤ s ≤ 5. If s = 5, then fn−3 − 1 = ws − wt =
fn−s+2 − fn−t+2 = fn−3 − fn−t+2 so fn−t+2 = 1, giving t = n, and then
v = (0, 1,−1, 0,−1, 0, . . . , 0, 1) = vn−1. If s = 4, then fn−t+2 = wt =
ws − fn−3 + 1 = fn−2 − fn−3 + 1 = fn−4 + 1, which is impossible since n ≥ 8.
Finally (in the case where i = 2) if s = 3, then t ≥ 4 so wt ≤ fn−2 and
therefore ws − wt ≥ fn−1 − fn−2 = fn−3 > fn−3 − 1, another contradiction.

Case 3: Suppose i ≥ 3. If r ≥ i+2, then fn−s+2 = ws > ws−wt = wi−wr ≥
wi − wi+2 = fn−i+2 − fn−i = fn−i+1, which implies n − s + 2 > n − i + 1, so
s < i + 1 < r, a contradiction. Thus r = i + 1, and ws − wt = wi − wr =
fn−i+2 − fn−i+1 = fn−i. In particular, fn−s+2 = ws > ws − wt = fn−i, so
n − s + 2 > n − i, giving s < i + 2, and therefore r = s = i + 1. It
follows that fn−t+2 = wt = wr + ws − wi = 2wi+1 − wi = 2fn−i+1 − fn−i+2 =
fn−i+1 +(fn−i+1 − fn−i+2) = fn−i+1 − fn−i = fn−i−1, and thus either t = i+3
(if i ≤ n − 3) or t = i + 2 = n (if i = n − 2), giving v = vi in both cases.

Hence the only non-zero vectors in Lw∩T n
2 are ±v1,±v2, . . . ,±vn−1.

By Theorem 1, we have g(n, 2) = n − 1 for all n ≥ 8.

4.5 Remaining cases

The results for the remaining cases were obtained with the help of the com-
puter algebra system Magma [1], using the same techniques of enumeration
as described by Fishburn in [6, Section 4], but also checking the results for
both representability and almost representability (using techniques of linear
programming) as in [2].

In the case where n = 5 and k = 2, we have found that there are precisely
286 orders on P2[5] which satisfy the IES, of which 114 are representable and
172 are not, and that all of the latter fail C3, and all but 40 are all almost
representable. One example of an almost representable order that fails C3
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is the following (in which ij denotes the obvious multiset of cardinality 2):
12 � 12 � 13 � 14 � 22 � 15 � 23 � 24 � 32 � 34 � 25 � 35 � 42 �
45 � 52; this is almost representable via the vector w = (6, 4, 3, 2, 1). Thus
f(5, 2) = g(5, 2) = 3.

For n = 5 and k = 3, there are precisely 68820 orders on P3[5] satisfying
the IES, of which 6588 are representable and 62232 are not. Of those which
are not representable, 62208 fail C3, while 24 satisfy C3 but fail C4. All
of the latter 24 are almost representable, and one such example is given by
13 � 122 � 123 � 124 � 125 � 122 � 123 � 124 � 132 � 125 � 134 � 23 �
142 � 135 � 223 � 145 � 224 � 232 � 152 � 225 � 234 � 242 � 33 � 235 �
324 � 245 � 342 � 325 � 252 � 43 � 345 � 425 � 352 � 452 � 53; this is
almost representable via w = (20, 10, 6, 4, 1). Thus f(5, 3) = g(5, 3) = 4.

For n = 6 and k = 2, there are precisely 33592 orders on P2[6] which
satisfy the IES, of which 2608 are representable and 30984 are not. Of those
which are not representable, 30980 fail C3, while the other four satisfy C3

and C4 but fail C5. All of the latter four are almost representable, and one
such example is 12 � 12 � 13 � 14 � 15 � 22 � 23 � 24 � 32 � 34 �
16 � 25 � 42 � 35 � 45 � 26 � 36 � 52 � 46 � 56 � 62; this is almost
representable via w = (12, 8, 7, 6, 4, 1). Thus f(6, 2) = g(6, 2) = 5.

For n = 7 and k = 2, there are 23178480 orders on P2[7] which satisfy
the IES, of which 107498 are representable and 23070982 are not. Of those
which are not representable, 23069816 fail C3, 1138 fail C5 but satisfy C3 and
C4, and 28 fail C6 but satisfy C3, C4 and C5. Also, of the 1138 that fail C5

but satisfy C3 and C4, 1078 are almost representable, while the other 60 are
not almost representable. Finally, all of the 28 that fail C6 but satisfy C3,
C4 and C5 are almost representable; one such example is 12 � 12 � 13 �
14 � 15 � 16 � 22 � 23 � 24 � 25 � 32 � 34 � 17 � 35 � 42 � 45 � 26 �
52 � 36 � 46 � 56 � 27 � 37 � 47 � 62 � 57 � 67 � 72; this is almost
representable via w = (22, 14, 12, 11, 10, 6, 1). Thus f(7, 2) = g(7, 2) = 6.

This completes the proof of Theorem 2. It is interesting to note that for
each of the cases (n, k) = (5, 2), (6, 2) and (7, 2), there are no orderings that
fail C4 but satisfy C3. We do not yet understand why that happens.

5 A Conjecture

The results of this paper give us reason to formulate the following:

Conjecture 1. f(n, k) = g(n, k) for all n ≥ 3 and k ≥ 1.
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