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Efficient presentations for the Mathieu

simple group M22 and its cover

Marston Conder, George Havas and Colin Ramsay

Abstract. Questions about the efficiency of finite simple groups and their covering
groups have been the subject of much research. We provide new efficient presentations
for the Mathieu simple group M22 and its cover, including the shortest known efficient
presentation for M22 and a somewhat longer presentation which is very suitable for
computation.
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1. Introduction

Nice efficient presentations for small simple groups and their covering groups ap-
pear in [4]. Here we study the larger simple group M22 and its covering group in
more detail from a similar point of view. We give new efficient presentations for
both of these groups and we describe the computational techniques used in finding
them.

For a finite group G the group H is a stem extension of G if there is a subgroup
A ≤ Z(H) ∩ H ′ with G ∼= H/A. A stem extension of maximal order is called a
covering group of G and the subgroup A in this case is the Schur multiplier of G
denoted by M(G). The deficiency of a finite presentation P := {X | R} of G is
|R| − |X |. The deficiency of G, def(G), is the minimum of the deficiencies of all
finite presentations of G. For a good overview of Schur multipliers and related
topics, see [14] — Corollary 1.2 of which shows that rank(M(G)) is a lower bound
for def(G). The group G is said to be efficient when this lower bound is achieved.

Deciding whether a given group is efficient may be difficult; indeed the problem
is unsolvable in general [1]. Previous work has used a variety of techniques to try
to find efficient presentations. In particular, considerable effort has been put into
showing that simple groups of small order are efficient. A survey of results as at
1988 for simple groups with order up to one million was given in [5]. Subsequent
to this, L3(5) has been shown to be efficient [3].

Similarly, work has been carried out to show that the covering groups of the
small simple groups are efficient. Since, by a result of Kervaire [12], the covering
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groups of finite simple groups have trivial multiplier, a balanced presentation (that
is, one with an equal number of generators and relations) is required to show these
groups are efficient. References to balanced presentations for the covering groups
of simple groups with order up to one million, as at 1988, are also given in [5].

More recent work on nice efficient presentations for simple groups with order
up to 105 and their covering groups appears in [4]. Motivated in part by the fact

that M̂22 (the covering group of the Mathieu simple group M22) has surprisingly
short efficient presentations [9], we investigate efficient presentations for both the
simple group M22 and its cover. M22 has order 443520, its covering group has order
5322240, and its Schur multiplier is cyclic of order 12, so efficient presentations for
M22 have one more relator than the number of generators.

2. Methodology

We use three distinct techniques in our investigation. We look at short presen-
tations for perfect groups; we consider representatives of all generating pairs for
M22; and we look at one-relator quotients of free products Cm∗Cn for small m and
n. Here we explain the third method after outlining the others which are already
described elsewhere.

The first method relies on censuses of short presentations of perfect groups,
extending work by Havas and Ramsay [9]. The extension includes 2-generator
2-relator presentations of length up to 24, 2-generator 3-relator presentations of
length up to 26, and 3-generator 3-relator presentations of length up to 20 (where
length is the sum of the lengths of the relators in the presentation). A hardware-
independent indication of the resources used is the number of canonical 2-generator
2-relator presentations of length up to 24 which were considered; starting at length
10 the counts are: 1, 4, 7, 68, 78, 600, 694, 6106, 7311, 54844, 66335, 509220,
630052, 4491064 and 5655194.

The second method uses a Magma [2] program developed by Havas, Newman
and O’Brien [7], which enables us to find distinct generating sets for moderately-
sized permutation groups. (The program uses representatives from appropriately
merged orbits of the action of the automorphism group of each permutation group
studied.) We use this program to find such distinct generating pairs for groups
under consideration, and then use the built-in algorithm of Magma to find a pre-
sentation of the group on some of these generating sets.

Presentations found this way tend to have a reasonably small number of re-
lators, but are rarely efficient, even for small groups. Often, however, simply
checking all efficient-sized subsets of the relators reveals efficient presentations.
These checks are carried out by first quickly checking that a subset presents a
perfect group (for otherwise it does not present a group we are seeking). Note
that here we might be looking for either the underlying simple group or some
stem extension of it. If this test is passed, then we attempt to check by coset
enumeration that the presentation defines a group we are seeking; we use the ACE
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enumerator (Havas and Ramsay [8]), either as available in GAP [6] or Magma , or
as a stand-alone program for some more difficult cases.

Now we describe the third method in general. We consider one-relator quotients
of Cm ∗ Cn (the free product of cyclic groups of orders m and n) for coprime m
and n. By a one-relator quotient of a particular group, we mean a group obtained
by adding one extra relator to a presentation for the specified group.

The free product Cm ∗Cn has natural presentation {x, y | xm, yn}, and we are
interested in finding simple or perfect finite quotients of this group that can be
obtained by adjoining a single extra relator. Thus we seek quotients of the form
〈x, y | xm, yn, w(x, y) 〉 where w = w(x, y) is a word in the generators x and y and
their inverses x−1 and y−1, usually of relatively small length. This method requires
the enumeration of possibilities for w, with elimination of redundant possibilities
that are either equivalent to earlier ones or of a form that will not produce a
perfect quotient.

Relators fall into equivalence classes under the obvious operations of cyclic con-
jugacy and inversion, which together make up a dihedral group of order 2m on
words of length m: cyclic shift is an operation ρ of order m (taking g1g2g3...gm

to g2g3...gmg1), and inversion is an involutory operation σ (taking g1g2g3...gm to
g−1

m ...g−1

3
g−1

2
g−1

1
), such that σ inverts ρ under conjugation. Using these observa-

tions, it is easy to eliminate cyclic conjugates and inverses of cyclic conjugates of
words considered previously in the enumeration of possibilities for w.

Relators which lead to non-perfect quotients are also easily eliminated, using
a simple check on the exponent-sum of w for each generator x and y: if w(x, y) =
xp1yq1xp2yq2 ...xpsyqs has exponent-sums Σx = p1 +p2 + ...+ps = p and Σy = q1 +
q2+...+qs = q, say, then the abelianisation of the group 〈x, y | xm, yn, w(x, y) 〉 is
〈x, y | xm, yn, xpyq, [x, y] 〉, which is non-trivial if gcd(m, p) 6= 1 or gcd(n, q) 6= 1.
Hence we require gcd(m, Σx) = gcd(n, Σy) = 1 if we wish to obtain a perfect
quotient of Cm ∗ Cn.

For each (irredundant) possibility found, we use coset enumeration to attempt
to determine the order of the quotient 〈x, y | xm, yn, w(x, y) 〉. In some cases
this is already known to be infinite, and those cases are ignored. For example,
if w(x, y) = (xy)k where 1/k + 1/m + 1/n ≤ 1, the quotient is a Euclidean or
hyperbolic triangle group, and similarly in many other cases where w is of the
form uk for some subword u = u(x, y), the quotient is a generalised triangle group,
and can be eliminated if this is known to be infinite; see [10, 13].

We have implemented Magma programs which allow us to specify m, n, al-
lowable lengths for w, and desired quotient groups. We have run such programs
seeking presentations which have M22 as a homomorphic image.

3. Results

In the following, we adopt the convention of using upper-case letters to denote
inverses. Thus, ABab denotes the commutator [a, b] = a−1b−1ab, and so on. We
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assess the presentations produced in terms of their length, their structure, and
their behaviour as targets of coset enumeration. By length we mean the total
length of the relators (after their free and cyclical reduction, as done by ACE
when applicable). We give the total number of cosets used in a successful coset
enumeration for this presentation over the trivial subgroup using the Hard strategy
of the ACE enumerator. (We use this purely as a measure of coset enumeration
performance and do not suggest that enumerations over the trivial subgroup are
the best way to compute with the presentations to gain other information about
the group.)

In 1989 Jamali and Robertson [11] published the first known efficient presen-
tation for M22, namely:

{
a, b | a2 = (ab)11, (ababb)7 = b4, (ab)2(aB)2abb(ab)2aBab(abb)2 = b4

}
.

They obtained this by amalgamating relators in a cleverly constructed 5-relator
presentation for the group. Our methods (which apply more widely than to just
M22 and its cover) produce presentations that are much shorter and presentations
that have nice forms. Such presentations can be computationally more useful since
they lead to efficient straight-line programs which can be used to check group
representations.

In 2003 Havas and Ramsay [9] published the first efficient presentation for the

covering group M̂22. Surprisingly, the cover has very short efficient presentations:
length 17. Indeed, with ‘canonical’ as defined in [9], the unique shortest canonical

presentation for M̂22 is

{a, b | aababAAB, abbbbaBaB} .

The proof is by coset enumeration. It is also straightforward to use coset enumera-
tion to find coset representatives for central elements having order 12 in this group.
(This can be done by simple brute-force: test all of the elements.) A shortest such
representative gives

{a, b | aababAAB, abbbbaBaB, aabABBAABBAbbABabbABabbABAb}

as a presentation for M22 itself.
Note that this presentation has length 44 compared with length 82 for the

Jamali-Robertson presentation. Furthermore, for coset enumeration this presen-
tation is quite easy, requiring a total of only 448968 cosets to enumerate the 443520
cosets of the trivial subgroup. This compares with a total of 907059999 for the
Jamali-Robertson presentation and thus it is much superior from a computational
perspective.

3.1. Method 1.

Our first method readily reveals the following presentations for the cover with
length up to 21 (among others), given in Table 1 (including the shortest canoni-

cal 2-generator presentation for M̂22). These presentations from censuses of short



Efficient presentations for M22 and its cover 5

presentations arise with relators in a canonic form, as described in [9]. We list
the presentations in length order but do not analyze them individually in detail.
However we do provide some commentary. We number the presentations for con-
venience and refer to them as Pn in accord with this numbering. The “Total
cosets” column gives total cosets for a successful enumeration over the trivial sub-
group. Note that we did not find any 2-generator, 3-relator presentation for M22

(as distinct from presentations for the cover) using this method.

Table 1: M̂22 from Method 1
No. Relators Length Total cosets
1 aababAAB, abbbbaBaB 17 21611026
2 aaaaabbb, aababABABab 19 23024264
3 aaaaa, bbb, aababABABab 19 12902711
4 aaaaabbb, aabABababAB 19 24442031
5 aaaaa, bbb, aabABababAB 19 13063356
6 aababAAB, aaaaaabbbbb 19 40304685
7 aababAAB, aaaaaa, bbbbb 19 17917189
8 aaaabAbAb, aabABabbAB 19 23098382
9 aababABAB, abbabbaBBB 19 28017778
10 aaaaa, ababab, abbAbABB 19 11181678
11 abc, aaBcAb, acccBCaC 19 19102618
12 abc, aaBcbb, acBcBCCC 19 19426579
13 aabAABB, aaabbabAbAbAb 20 29179041
14 aabAABB, aabaBABABABab 20 22226752
15 aabAABB, ababAbbABBBAb 20 20068916
16 aabaabAAB, ababababaBB 20 24018995
17 aaaaa, ababab, aabABBabAB 21 13063072
18 aaaaa, ababab, abaBaBaBBB 21 38353459
19 aaaaa, ababab, abbAbAbbbb 21 37692724

The presentations in Table 1 should be considered in the context of the following
three results about relator amalgamation which appear in [4] with proofs and
various applications. These results enable us to build efficient presentations for
covering groups from deficiency-one presentations for related groups.

Theorem 3.1. Let G be a finite simple group. Suppose that G, or some stem

extension of G, can be presented by

P = {a, b | ap = bq = w(a, b) = 1} .

Then the covering group of G, all stem extensions of G, and G itself, are efficient.

Corollary 3.2. Let G be a finite simple group. Suppose that G, or some stem

extension of G, can be presented by

P = {a, b | u(a, b)p = v(a, b)q = w(a, b) = 1} .



6 Marston Conder, George Havas and Colin Ramsay

Suppose also that u(a, b) and v(a, b) generate the free group on a and b. Then the

covering group of G, all stem extensions of G, and G itself, are efficient.

Theorem 3.3. Let G be a finite simple group. Suppose that G, or some stem

extension of G, can be presented by

{a, b | u(a, b)p = v(a, b)q = w(a, b) = 1} .

In addition, suppose the group G̃ presented by
{
a, b | u(a, b)kpv(a, b)lq = w(a, b) = 1

}

is perfect, and is generated by u(a, b) and v(a, b). Then G̃ is the covering group of

G.

Presentation P1, which is the shortest canonical presentation for M̂22, can be
obtained by amalgamating the power relations in a variant of P10. (We use a vari-
ant because we have different rules for producing canonical forms for presentations
on different generating sets and varying numbers of relators.) Likewise P2 comes
from P3, while P4 comes from P5, and P6 comes from P7, and P8 comes from (a
variant of) P17. In a similar way, P16 is the result of amalgamating relators in a
one-relator quotient of C3 ∗ C5 with length 22. Notice that relator amalgamation
here makes coset enumerations about twice as hard.

The two 3-generator presentations P11 and P12 can be converted to variants of
P1 by eliminating b from P11 and a from P12 using the short relator. Applying the
reverse operation, by adding a generator to our 2-generator presentation for M22

with length 44 (which is a quotient of P1), yields shorter 3-generator presentations,
of length 38. An example is

{a, b, c | cba, aaCbAc, abbbCBaB, abcBAcBAbbcabbcabbcAC}

which enumerates quite nicely, using a total of 458114 cosets.

3.2. Method 2.

Our second method revealed 104037 representative generating sets for M22. We
investigated about 3000 of these and found the seven 2-generator, 3-relator pre-
sentations for M22 given in Table 2. These present the simple group itself, and
not its cover or any other stem extension. We give the presentations as produced
by Magma without modification. We list the presentations in order of discovery
(which is somewhat arbitrary) but do not analyze them individually in detail.

3.3. Method 3.

Our third method enables us to look at longer one-relator quotients of Cm ∗ Cn

than we can readily handle with the census based approach of Method 1. Indeed
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Table 2: M22 from Method 2
No. Relators Length Total cosets
1 BAbABBAABBBABAB, BABBabbaabbabAba,

abAbabbaaBAbabAB 47 13364969
2 a11, aBaBaaaaBabAAb, AbbAAAAABAbaBaB 40 21880459
3 ABBBABABaaBB, AABaBAABABBab,

bAAbABAABABabaa 40 2697010
4 b5, AbbAbAAABBABAbb, aBabbAAAbaBBaBB 35 9346952
5 AAABaaaBABaB, babaBaaababbab,

BAbABAAABBabABA 41 13205478
6 (Ba)5, bAbbaaabbaBA, AAABaaaaBaaaaBA 37 39388893
7 BabAbbaababABa, BabaabaaBabAbA,

AbabABAABBabAAB 43 1770844

it revealed variants of presentations found using Method 1. (Again we obtained
variants because of different canonical orderings used.)

From the representative sets constructed by Method 2, we determined that a
complete list of possible ordered pairs (m, n) for use with Method 3 is: (2, 5),
(2, 7), (2, 11), (3, 5), (3, 7), (3, 8), (3, 11), (4, 5), (4, 7), (4, 11), (5, 6), (5, 7), (5, 8),
(5, 11), (6, 7), (6, 11), (7, 8), (7, 11), (8, 11). Indeed we applied Method 3 for each
of these pairs, hoping to find a one-relator quotient of Cm ∗Cn which presents M22

rather than its cover, but so far without success.
Even though this method has not yet given us what we sought here (the problem

to which it was first applied), it has been used elsewhere with excellent outcomes.
In [4] efficient presentations for many simple groups have been found as one-relator
quotients of Cm ∗ Cn, including the smaller Mathieu groups M11 and M12.

3.4. Nice central elements.

It has already been observed [4] that many nice deficiency-zero presentations for
covering groups of simple groups can be viewed as resulting from Theorem 3.3.
Motivated by this and by our first presentation for M22, we continued by investi-
gating such presentations for M̂22 revealed by Methods 1 and 3. In particular, we
looked for nice central elements of order 12 in M̂22.

For 〈P4〉 we find that (aaB)7 is a central element of order 12 which gives as a
presentation for M22 the following:

{a, b | a5b3, aabABababAB, (aaB)7}.

This presentation has nice structure, with orders of a, b and aaB easy to see. Suc-
cessful coset enumeration over the trivial subgroup uses a modest 777798 cosets.
Introducing new generators x = aaB and y = a gives the following shorter pre-
sentation:

{x, y | x7, yyXY xyXyyyXY x, y5(Xyy)3}.
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Its length is 34 (six letters shorter), but coset enumeration over the trivial subgroup
is harder, using 1147382 cosets.

Finally, for 〈P8〉 we find that b11 is a central element of order 12 which gives
the following as a presentation for M22:

{a, b | aaaabAbAb, aabABabbAB, b11}.

This presentation too has very nice structure, with orders of a, b and aB easy to
see. Successful coset enumeration over the trivial subgroup uses 2104858 cosets.
This is the canonical version of the shortest presentation for M22 we have found,
with length 30.

4. Review

We have shown how to find very many efficient presentations for M22. These in-
clude a reasonably short one (simply constructed from the unique shortest canon-
ical presentation for its cover) which has length 44 and which allows quite easy
enumeration of cosets. We also have a shorter presentation, with length 30, which
has nice structure but which is somewhat worse for coset enumeration. For M̂22

we have various presentations as one-relator quotients of the free product of two
cyclic groups; these have appropriate structure to give efficient presentations for
M22 and all of its stem extensions.

The following questions arise. What is a shortest efficient presentation for
M22? (Even though we do not know the answer to this question, we do know the

answer for M̂22, a much larger group.) Does M22 have efficient presentations that
are one-relator quotients of the free product of two cyclic groups? (Again, we do

know the answer for M̂22.)
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