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Abstract

A detailed description is given of a recently-discovered edge- but not vertex-transitive
trivalent graph on 112 vertices, which turns out to be the third smallest example of such
a semisymmetric cubic graph. This graph is called the Ljubljana graph by the authors,
although it is believed that its existence may have been known by R. M. Foster. With
the help of some advanced theory of covering graphs, various properties of this graph
are analysed, including a connection with the Heawood graph which can be described
using ideals over polynomial rings.

§1 Introduction In [3] I. Z. Bouwer wrote: “R. M. Foster (private communication)
has found an edge- but not vertex-transitive cubic graph (with 112 vertices) whose girth
(equal to 10) is not a multiple of 4.” Neither its definition nor any further information
on this graph was given in that paper. Edge- but not vertex-transitive regular graphs are
now called semisymmetric. In 2001, during a brief visit by the first author to Ljubljana,
we constructed a cubic semisymmetric graph on 112 vertices, which can be described as a
regular Z3-cover of the Heawood graph. At the first author’s suggestion, we named this
graph the Ljubljana graph. A computer-based search showed that the Ljubljana graph is
the only cubic semisymmetric graph on 112 vertices, and hence the one already known to
Foster. Computations also revealed that the Ljubljana graph, which throughout this paper
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is denoted by L, is the third graph in the series of cubic semisymmetric graphs (ordered
by number of vertices). The smallest two members of this series are the Gray graph G (on
54 vertices), which was studied extensively in [10] and [11], and a biprimitive graph on 110
vertices which was described in [7]. The aim of this article is to give a precise definition of
the Ljubljana graph, to give a computer-free description of its automorphism group, and
to present some other interesting graph-theoretic properties of £. The principal means of
exploring the properties of £ will be the use of advanced covering graph techniques, as
developed in [8, 9].

82 Article layout This article is split into several small paragraphs, each being a step
in the analysis of the properties of the Ljubljana graph. Since the Ljubljana graph is a
covering graph of the Heawood graph, §3 to §5 give a short review of the Heawood graph
and its automorphism group. In order to make the article easier to read, §6 to §13 summarise
the use of covering graph techniques. This theory is then applied to define the Ljubljana
graph as a Z3-cover of the Heawood graph in §14 to §17, and to compute its automorphism
group in §18 to §22. Finally, the hamiltonicity of £ is dealt with in §23, two configurations
associated with the Ljubljana graph are discussed in §24, and some additional properties
of L are gathered together in §25.

§3 The Heawood graph The vertex-set of the Heawood graph 7 consists of two copies
of the integer ring Zr, so that V(H) = Z7 x Zs, and then the edge-set is defined by making
a vertex (7,0) adjacent to a vertex (j,1) if and only if j —4 € {1,2,4}. We shall abbreviate
the notation by writing 4 in place of (4,0), and 7' in place of (i,1), for all 1 € Zr.

84 The automorphism group of the Heawood graph Among the automorphisms
of the Heawood graph, the following three are easy to find:

p: (i,5) = (i +1,j5), for i€ Zq, j € Zo,

associated with the left regular representation of Z7 on itself, and
o: (4,7) — (24,5), for i € Zq, j € Lo,

associated with the group automorphism of Z7 arising from multiplication by 2, and
T: (4,7) = (=i, + 1), for i € Zy, j € Za,

which interchanges the two sets of the biparition. These automorphisms may also be easily
see as the following permutations:

p = (07 1’ 27 3’47 5’ 6)(0,’ 1,7 2” 3” 4’7 5” 6,)’



o= (0)(1,2,4)(3,6,5)(0")(1,2',4")(3',6",5"), and
7=1(0,0")(1,6')(2,5)(3,4")(4, 3")(5,2')(6,1").

The group I'y; = (p, o) is isomorphic to the semidirect product Z7 x Zs, and is edge- but not
vertex-transitive on H. The group I';4 = (p, 7) is isomorphic to the dihedral group D7 and
is vertex-transitive on . The group I'yo = (p, o, 7) is isomorphic to the semidirect product
Z7 X Zg and is arc-transitive on H. The full automorphism group Aut A has order 336 and
is isomorphic to PGL(2,7). It is generated by the involution 7 and the index 2 subgroup
AutyH which preserves the two sets of the bipartition. Note that Auty? is isomorphic to
PSL(2,7) 2 GL(3,2), and that Auty = (p,w), where

w = (1,5)(4,6)(0",5")(3',6")(0)(2)(3) (1) (2') (4').

Finally, observe that the normalizer Nt 4,(p) of the group (p) in Aut # is the group I'so.

§5 The Heawood graph as a Cayley graph The subgroup I'yy = (p,7) = D7 of
AutH acts regularly on the vertex-set of 7. This shows that the Heawood graph is a
Cayley graph of the group (p, ), with respect to the generating set {71, 79,73} where

= pr = (0,1")(1,0")(2,6')(3,5")(4,4")(5,3')(6,2'),
o = p?7 = (0,2")(1,1")(2,0)(3,6')(4,5")(5,4')(6,3"),
13 = ptt = (0,4")(1,3")(2,2)(3,1")(4,0') (5, 6')(6,5").

§6 Voltage assignments and derived covering graphs An ordered pair (u,v) of
adjacent vertices of a graph X is called a dart (or an arc) of X. If z = (u,v) is a dart of
X then the pair 27! = (v,u) is the inverse dart of X. Let D be the set of all darts of a
graph X and let N be a finite group. A mapping (: D — N, satisfying ((z~!) = ((z) !
for every dart € D, is called a voltage assignment in the voltage group N on the graph X.
A voltage assignment ( gives rise to the derived covering graph Cov(X;(), with vertex-set
V x N and with adjacency relation given by (u,a) ~ (v,b) if and only if u is adjacent to v
in X and a='b = ((u,v). The graph Cov(X;() is also called an N-regular cover of X. The
projection V' x N — V is clearly a graph morphism p¢: Cov(X;({) — X, called the derived
covering projection. Voltage assignments (,£: D — N are said to be isomorphic if there
exists an automorphism g € Aut X and an isomorphism §: Cov(X;{) — Cov(X;¢) such
that ¢ 0 g = g o p¢. In particular, if g can be taken as the identity automorphism of X
then ¢ and ¢ are said to be equivalent. Note that the derived covering graphs of isomorphic
voltage assignments are isomorphic as graphs.

87 Voltage assignments defined on the fundamental group Let by be a vertex of
a graph X, let 7(X, by) denote its fundamental group, and let (: D — N be a voltage assign-
ment on X. The extension of ¢ to walks induces a group homomorphism ¢*: w(X, by) — N.



Note that if (* = £* then the voltage assignments (, £ are equivalent. Also, for an arbitrary
group homomorphism 7: 7(X,by) — N there exists an assignment (: D — N with (* = 7.
When convenient we can therefore consider voltage assignments (up to equivalence) as de-
fined on a fundamental group. By abuse of notation we often write ¢ for *. Observe that
Cov(X;() is connected if and only of (* is surjective. For the rest of this article we will
restrict ourselves to connected covering graphs.

§8 Abelian voltage assignments If the voltage group N is abelian, then every group
homomorphism (: 7(X,by) — N can be factored through the abelianisation of 7(X,by),
that is, through the first homology group Hi(H;Z). Further, if p is a prime and N =
Z’; is an elementary abelian group, then the group homomorphism ¢ induces a Zj-linear
transformation Hy(X;Z,) — N. In this case, the voltage assignment can be viewed as
being defined on the Z,-vector space Hi(X;Z,). In particular, for p = 2 the vector space
H,(X;Zyp) coincides with the cycle space C(X), and the voltage assignment C(X) — N is
then uniquely determined by the images of the elements of a basis of C(X).

§9 Lifting automorphisms Let p;: Cov(X;{) — X be the derived covering projec-
tion, and let g € Aut X and g € Aut Cov(X;() be such that p:g = gpc. Then we say that
g lifts along p¢ to g, and, that g projects along p¢ to g. We also say that p¢ (respectively
() is g-admissible in this case. More generally, if G < Aut X then g, (respectively () is
G-admissible if it is g-admissible for each ¢ € G. It can be shown that an automorphism
g € Aut X lifts along g if and only if it maps any closed walk with trivial voltage to a
closed walk with trivial voltage. In particular, if N = Z’; is elementary abelian and if the
voltage assignment (: H;(X;Zp,) — N is viewed as a Zy-linear mapping, then g lifts along
¢ if and only if ker { is an invariant subspace or the induced action of g on H;(X;Z,).

§10 The induced linear representation # Let (: Hi(X;Z,) — N be a voltage
assignment on X, where N = Z’;. Suppose that g € Aut X lifts along the derived covering
projection p¢: Cov(X;¢) — X. By §9 the kernel ker( is an invariant subspace for the
induced action of g on H{(X;Z,). Since N = H,(X;Z,)/ker(, there exists an induced
automorphism ¢g# € Aut N defined by g% (((C)) = ((g(C)), for every C € Hi(X;Z,).
Moreover, it can be shown that if p; is G-admissible, then the mapping #: g — g# is a
group homomorphism from G onto a subgroup G# of Aut N.

§11 Lifting a group Let {: 7(X;b) — N be a G-admissible voltage assignment on X.
Then the collection of lifts of all elements g € G constitutes a subgroup of Aut Cov(X;()
called the lift of G and denoted by G. The lift of the trivial group of automorphisms
is known as the group of covering transformations or self-equivalences of p¢, and is also
denoted by CT(gp¢). Since Cov(X;() is assumed to be connected, CT(p¢) acts regularly
on each fibre of the form pgl(v) forveV,or pgl(w) for x € D, and can be identified with
the left regular representation of N on itself. The group CT(gp¢) is a normal subgroup of
G, with each coset being the set of all lifts of one element of G. Thus, G/ CT(p¢) = G.

4



The structure of G, viewed as an extension of CT(p¢) by G, is difficult to analyse. In §12
we consider a very special case.

§12 The structure of the lifted group Let (: Hi(X;Z,) - N be a G-admissible
voltage assignment on a graph X, where N = Z’;. Let Q be the G-orbit of a base vertex by,
and let 7' denote the set of all walks in X with end-vertices in 2. Suppose further that the
elements in G' (or just the generators of G) map the trivial voltage walks from 7 to trivial
voltage walks. Then the lifted group is isomorphic to the semidirect product G- N Xy G,
where #: G — Aut N is the homomorphism defined in §10. This isomorphism is given by
the rule

g — (a,g), where a € N is defined by g(bg,0) = (g(bo),a).

Multiplication in N x4 G is given by the rule
(a,9)(b,h) = (a + g¥(b), gh) for a,b€ N, g,h € G,

and the action of N x4 G on the vertex set V(X) x N of Cov(X;() is given by the rule
(a,9)(v,0) = (9(v), a+ g% (b) + g% (C(W)) — ((9(Wy))) fora,bE N, g€G,veV(X),

where W, is an arbitrary walk from v to byp. The subgroup N x4 {1} (isomorphic to N)
corresponds to CT(gp¢) and the subgroup {1x} x4 G (isomorphic to G) corresponds to the
complement which maps the vertices above (2 labelled 0 to vertices labelled 0. In particular,
if G is a subgroup of the stabilizer of by, then G lifts as a semidirect product.

§13 Decomposing a covering projection Let (: H;(X;Z,) - N be a G-admissible
voltage assignment on X, where N = Z’;. Let K be a subgroup of N and gx: N - N/K
the corresponding quotient projection. The following can be shown: If K is invariant for
G7# then the voltage assignment qx o (: H1(X;Z,) — N/K is G-admissible and there
exists a covering projection pr : Cov(X;() — Cov(X; gk o () such that p¢ = p(g,coc) © PK-
Conversely, if ¢’ is G-admissible such that there exists p': Cov(X;¢) — Cov(X;(’) with
pc = ¢ og, then there exists a G#-invariant subgroup K in N such that ¢’ is equivalent to
gr o(. The voltage assignments qx o and gz o( are equivalent if and only if K = L. Finally,
if L = o (K) for some a € Aut X which lifts along g, then the voltage assignments gx o ¢
and gy, o ¢ are isomorphic.

§14 A Z;—cover of the Heawood graph Let H be the Heawood graph as described
in §3, and let B be a basis of its cycle space C(H), consisting of the following cycles:

e the Hamilton cycle Cy: (0,2/,1,3',2,4',3,5',4,6',5,0/,6,1',0), and



e the seven 6-cycles C;: (i — 2,4, (1 —1),(i +1),i,(i +2)',i — 2), for i € Z.

Let N be the additive group of the quotient ring R = Zs[z]/(z"—1), viewed as a vector space
of dimension 7 over Zsy. By abuse of notation, for an arbitrary polynomial f(z) € Zs[x], we
will denote the corresponding element f(z) + (z”—1) of the quotient ring by f(z). In view
of §8, let (: C(H) — N be the voltage assignment determined by the rule

C(Cx)=0 and ((C;) =2’ foric Zn.

We shall denote the derived covering projection by @: H — H. If one prefers to view the
voltage assignment as being defined on darts, then ( assigns the trivial element of N to the
darts of the cycle Cy, and the element z* to the dart (i — 2, (i + 2)'), for each i € Z7.

Figure 1: Two drawings of the Heawood graph with the voltage assignment (

§15 The lifted subgroup of Aut? By §9, an automorphism g of H lifts along & if
and only if the kernel of the voltage assignment ( is invariant for the induced action of g on
the cycle space C(H). In particular, since the kernel ker ( is the 1-dimensional subspace of
C(H) spanned by the Hamilton cycle Cp, an automorphism of H lifts along ¢ if and only
if it maps the cycle Cy onto itself. The maximal subgroup of Aut? that lifts along & is
therefore equal to Aut Cy NAut X = (p,7) = I'14. By §10, the fact that the automorphisms
p and 7 lift along ¢ implies the existence of linear transformations p#,r# € Aut N with
the property that p#( = (p and 7#¢ = (7. Explicitly,

o7 (f(z)) =zf(z) and 77#(f(z)) = f(z71), whenever f(z) € N.

Observe that a walk in # has trivial voltage if and only if it traverses each edge not con-
tained in the Hamilton cycle C'y an even number of times. This property is clearly preserved
by any element of I'14, hence by §12 the lifted group I'14 is isomorphic to the semidirect
product N x4 I'14, with multiplication given by the rule



(F(2), ) (g @), 1 71) = (f(2) +aig(a~), i+ Irk),

whenever f(z), g(z) € N, i,j € Z7 and k,l € Zy. The action of N x4I'14 on the vertex-set
V(H) x N of H is given by the rule

(f (@), p'7*) (v, 9(2)) = ((P'T*) (v), f(z) + 27g(z7F)),

whenever f(z), g(z) € N, v € V(#H), i € Z7 and k € Zy. Since 'y acts regularly on
vertices of #, the lifted group T4 acts regularly on the vertices of H, and so # is a Cay-
ley graph for the group I'i4. Recall from §5 that a generating set for the presentation
of H as a Cayley graph of I'\4 may be comprised of 7, = pr, 70 = p?7 and 73 = p*71. It
follows that the generators of A as a Cayley graph of I'14 are the lifts 71, 75 and 73 satisfying

71(0,0) = (1',0), 75(0,0) = (2,0), and  73(0,0) = (4',2?),

that is, the lifts that map the origin (0,0) € V(#) to its neighbours. Explicitly,

’7‘1 = (0,7‘1) eN X F14, ’7’2 = (0,7’2) eN P F14, and ’7’3 = (IE2,7'1) eN N F14.

§16 Decomposing the covering projection ¢ Let ¢: # — H be the covering pro-
jection as in §14. Let us find all (p)-admissible regular covering projections p: X — H, up
to equivalence, for which there exists a regular covering projection ¢': H — X satisfying
% = pog'. By §13 we have to find all p#-invariant subspaces of the 7-dimensional Zy-vector
space N = Zs[r]/(z” — 1). Recall from §15 that p# (f(z)) = zf(z) for all f(z) € N. This
implies that a subspace of N is p#-invariant if and only if it is closed under multiplication by
7 in the ring R = Zy[z]/(z"—1), that is, if and only if it forms an ideal of R. Since the ideals
of R are generated by the divisors of the polynomial z"—1 = (14 z)(1 + 22 +2%)(1+ z + z3)
in Zs[z], we obtain exactly six proper non-trivial ideals of R, namely (1 + z), (1 + 2 + z3),
(A+z+23), (M+2)1+22+23), (1+2) 1 +2+23)) and (1 +2+23)(1 + 22 +23)). In
view of §13 there are six pairwise non-equivalent regular (p)-admissible covering projections
©n/ i derived from the voltage assignments g o, where K is one of the above six ideals of
R and gk : N — N/K is the natural quotient projection. Note that the covering projection
©n/k is derived from the voltage assignment mapping according to the same rule as (,
except that its images are now computed modulo K instead of modulo (z”—1). Since

#((142z)) = (77 (1 +2)) = (1 +2° = (1 + ), and then also

(1 +z+2%) = (71 +z+2%) = (1+25+2) = (1 + 22 + 23),
it follows that the covering projections associated with (1 + z + %) and (1 + 22 + 23) are
isomorphic. The same holds for those associated with ((1+z)(1+z+23)) and {(1+2z)(1+

2?2 + 23)). As a final remark, note that N/K = Z7, where r € {1,3,4,6} is the degree of
the generating polynomial of the ideal K.



§17 The Ljubljana graph as a Z3-cover of the Heawood graph With the as-
sumptions and the notation of §16, let p,: £ — H be the covering projection arising from
the ideal K = (1 + z2 + z3). Recall that the voltage group N = N/K = Z3 is the additive
group of the quotient ring Zs[z]/(1 + 22 + z3), and the voltage assignment (r = g o ( is
congruent to ¢ modulo 1+ 22 + 3 (see Figure 1). The covering graph £ is cubic, bipartite
and has order 14 - 23 = 112.

§18 The maximal group which lifts along p,: L - H Let M be the maximal
subgroup of Aut# which lifts along the covering projection p,: £ — H as introduced in
§17. We know that p € M. By §9 an automorphism g € Aut H belongs to M if and only if it
preserves the kernel of (.: C(H) — Z3. Clearly, the kernel ker ;. consists of all elements of
C(H) with {-voltages in K, and has dimension 5. Now set W = Cj + C3 + C3 and observe
that ((p'(W)) € K for each i € Z7. Since {Cg,p(W),p>(W),p> (W), p>(W), p*(W)} is
linearly independent it follows that ker (. is spanned by Cg and p'(W), for i € Zy. A
straightforward calculation gives

o(Cr) =) p'(W) and o(p'(W)) = p"(a(W)) = Cn + p" (W),
€27

which implies that o € M. On the other hand, 7(C;) = C_; for i € Z7, and so {¢(T(W)) =
Cc(Co+C1+C3) =1+ z+ 2% #0. Similarly, (£ (w(Cx)) = 22 # 0. Hence 7,w & M. We
now prove that M = (p,0) = I's;. As already shown, I'y; < M, and hence | M| =3-7-2",
where r € {0,1,2,3,4}. If r = 4 then M = Aut#, contradicting the fact that 7 ¢ M.
If r = 3 then M is a normal subgroup of index 2 in Aut# and M N Auty? is normal in
Autg’H =2 PSL(2,7). Since this intersection is non-trivial and since PSL(2,7) is simple,
we find M = AutgH, contradicting the fact that w & M. Let k be the number of Sylow
7-subgroups of M. By Sylow’s theorem, k£ = 1 mod 7, and k divides 3-2". If £ > 1, then we
have r > 3, a contradiction. This shows that M is contained in the normalizer N 1, (p)
of (p) in Aut#H. Next recall from §4 that Np ;4 (p) = (p,0,7) = T'y2. Since 7 ¢ M, the
group M is a proper subgroup of I'yo, and so M = I'91, as required.

819 The girth of £ We show that the girth of £ is 10, and that there are exactly
3.7-23% =168 cycles of length 10. To this end suppose that C is a cycle in £ of length
n < 10, and let C' = p,(C) be its projection. Since the girth of the Heawood graph H
is 6, C' is also a cycle of length 6, 8 or 10. As the arcs of H with trivial voltages induce
a Hamilton cycle (of length 14), C’ contains at least one arc with non-trivial voltage.
Now besides the zero polynomial 0 and the cyclotomic polynomial 1 + z + ... + z%, the
ideal (1 + 22 + 23) of Zs[x] contains seven elements of the form z* + z+? + z'*3 and
seven elements of the form z* + z'™3 4+ z'** 4+ 2'*5 where i € Z7. Since the sum of
voltages of edges of C' is the trivial element of the ring Zo[z]/(1 + 2% + z3), it follows
that there is some i € Z7 such that the set of the non-trivial voltages of the edges of C’
is either {z%, 2'72 '3} or {z?, 2*+3 2'T* 275}, A closer inspection of the cycle structure
of H then reveals that the length of C’ is 10, and moreover, that it belongs to one of the



three orbits of the automorphism p containing the cycles 4; = (0,4',3,5',1,2',5,0',6,1',0),
As = (0,2',5,6',4,5',1,3,2,4’,0) and B = (1,5,4,6',2,4',3,0',5,2',1). Since each of these
cycles lifts to 23 disjoint 10-cycles in £ and each of these three p-orbits contains seven cycles,
the total number of 10-cycles in £ is 3 -7 - 23 = 168.

Figure 2: The three types of 10-cycles of H and L

§20 Cycles of length 12 in £ Let C be a cycle in £ of length 12, and let C' = p.(C)
be its projection. As the girth of H is 6, the graph C’ can be either a 6-cycle or a 12-cycle
with trivial voltage. Observe that there are four p-orbits of 6-cycles in H, with the following
respective representatives:

Dy =(0,2',1,3',2,4,0),

D2 = (07 4’7 27 6,7 47 1’7 0)7

D3 = (0’ 1” 47 5,’ ]" 2” O)’

Dy =(0,2',5,6',4,1",0).

Observe further that each of these cycles lifts to exactly four 12-cycles in £, and that if C’
is a 12-cycle then the voltage of C' must be trivial. By a similar argument as used in §19,
we can show that all 12-cycles with trivial voltage in H belong to the same p-orbit, with
representative

E=(0,4,2,3,1,2,50,3,5,4,1',0).
A lift of a cycle in the p-orbits of D; (or E) will be referred to as a cycle of type D; (or

Figure 3: The five types of 12-cycles of £

of type E, respectively). Since each 6-cycle of type D; lifts to four 12-cycles while each



12-cycle of type FE lifts to eight 12-cycles, it follows that there are (4-4+48)-7 = 168 cycles
of length 12 in the Ljubljana graph L.

8§21 Blocks of imprimitivity of £ For a vertex u of H, let the fibre of u be the set
of eight vertices of £ which project by g, to u. In this Paragraph we prove that fibres
are blocks of imprimitivity of the action of Aut £ on the vertices of L. First observe that
two antipodal vertices of a cycle of type E lie on a common 10 cycle of £. (It suffices
to check this for lifts of F; for example the lifts of vertices 0 and 5 lie on a lift of the 10
cycle p(B).) Next observe that the 12-cycles of types D;, Dy and D3 do not have this
property. This implies that there are no automorphisms of £ mapping a 12-cycle of type
E to a 12-cycle of type D1, D2 or Ds. Let us now define an equivalence relation R on the
vertex-set of £ by the rule: w Rv if and only if 4 = v or 4 and v are antipodal vertices of a
12-cycle of type D;, for i € {1,2,3}. The above-mentioned fact about 10-cycles shows that
R is an (Aut £)-congruence, which implies that the equivalence classes of R are blocks of
imprimitivity for Aut £. As it is easy to see that the equivalence classes of R are exactly
the fibres of the covering projection gp,: £ — H, our claim follows.

§22 The structure and the action of Aut L By §21, the fibres of p,: L — H are
blocks of imprimitivity of Aut £, and so Aut £ projects along p,. By §18, the maximal
group that lifts along @, is the metacyclic group I's; = (p,o). Hence Aut £ = [y is an
extension by T's; of the additive group N of the quotient ring Zs[z]/(1 + z2? + z3). As
IT21| =21 and N = Z3, the group Aut £ has order 2%-3-7 = 168. Moreover, since I'y; acts
edge- but not vertex-transitively on 7, the Ljubljana graph is semisymmetric. Next recall
that there is a natural embedding :: N — Aut £, given by t(a)(v,b) = (v,a + b), which
maps N isomorphically onto the group of covering transformations. Clearly the extension
N — Aut £ — Ty splits, by the Zassenhaus lemma [12]. For the the sake of completeness
we give a self contained proof that Aut £ = N x4 21, and give its explicit action on vertex
set V(H) x N of L. First, by §10 there exists a homomorphism #: T'y; — Aut N satisfying
g# (e = (g for every g € T'g;. An explicit calculation involving the generators C; defined
in §14 for C(H) shows that

o7 (f(z)) = zf () and o (f(z)) = 28 f(z?) whenever f(z) € N.
Let p and & be the respective lifts of p and o mapping the vertex (0,0) € V(H) x N to

vertices (1,0) and (0,w_6), respectively. In view of §12, the actions of the automorphisms
p,0 € 'y on V(H) x N are given by the rules

p(v, f(2)) = (p(v),2f(z)) and &(v,f(2)) = (o(v),2° +2°f (2?) + (£ (0(Wh))),

where W, is a trivial voltage walk in H from v to 0. To calculate the values {;(c(W,)) we
can choose the walks W, to be contained in the Hamilton cycle C'y. Since the automor-
phism o maps Cg to the cycle (0,4',2,6',4,1',6,3',1,5",3,0',5,2',0), the values (. (c(W,))
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are partials sums of the sequence z2, x4, 2%, 28, 210, 12, 2'4(= 1). More precisely,

Celo(Wy)) = Ce(o(Wisy1y)) = 24zt 4.+ 2¥ =251+ 2%%), forseZy

1 1 ~2

Since opo~! = p? it follows that there exists an element a € N such that 556 1 = 1(a)p?.
The element a can be computed using the equality 6p = «(a)p?G at the vertex (0,0):

First  5(5(0,0)) = &(1,0) = (2,2% + 25 - 0+ 25(1 + 22)) = (2, 7),
and second  ¢(a)(5°(5(0,0))) = 1(a)(5*(0,2°)) = 1(a)(2,z).

This shows that a = 0, and so & normalizes p. Consequently, the group (5, ) is isomorphic
to I'9; and is a complement of ((N) < I'y;. The automorphism group Aut £ is therefore

an internal semidirect product ¢(N) X (p,5), isomorphic also to the external semidirect
product N X4 (p,o) with multiplication given by the rule

(f (@), p'o¥) (g(2), o) = (f (z) + & 2 Fi¥g(a™), g2k H),

§23 Hamiltonicity of £ and its LCF code The LCF code [6] of a hamiltonian cubic

graph relative to one of its Hamilton cycles (vg,v1,v2,...,v5-1,v9) isalist LCF[ag,a1,. .., an_1]
of elements of Zj, \ {0,1,n — 1} such that v; is adjacent to v;;4, for every i € Zj,. In addi-
tion, if there exists a proper divisor r of n such that a; = a;4, for all ¢ € {0,1,...,r—1}

n

and k € {1,2,...,7—1}, then the notation can be simplified to LCF|[ag,a1,-..,a,—1]7. In
this case we say the LCF code is periodic, and call the integers r and 7 the period and the
exponent of the LCF code, respectively. When searching for a Hamilton cycle of £ with
a periodic LCF code, the following observations are immediate. First, the non-identity
elements of Aut £ have orders 2, 3, 6 and 7. In particular, Aut £ contains no semiregular
elements of order 3 or 6 (semiregular meaning that all cycles of the permutation have the
same length), and therefore there is no LCF code of £ with exponent 3 or 6. On the other
hand, Aut £ does contain semiregular elements of orders 2 and 7. All elements of order 7
are conjugate however, and as is easily seen from Figure 6, the quotient graph of £ relative
to an element of order 7 is not hamiltonian. Consequently, £ has no LCF code of exponent
7. The only remaining possibilities for the LCF codes of £ are therefore an aperiodic LCF
code, corresponding to a Hamilton cycle which is fixed by no automorphism of £, and an
LCF code of exponent 2, corresponding to a Hamilton cycle fixed by a semiregular invo-
lution, that is, an element in the group of covering transformations Z3. It transpires that
both possibilities do occur. The following is an aperiodic LCF code for £, which gives rise
to the first drawing of £ given in Figure 4:

LCF[11,565,—23,31,11, -9, 55, 17,39, —23,31, —11,9, —31, —23, —11, —53, 31, —47, 35,
11,-9,55,13, —17, —45,17,47,—29, —39, —53, —11,13, 39, —31, 49, —13,21, —55, 49,
13,-31,25,—17,35,—13,11, —39, —31, —51, 21,29, 49, —13, —35,51, —55, —11, —21, 9,
21, 55,11, 23,29, 35,43, —25, —9, 21,35, —21, —39, —11, —47,53,23, —55,9, —35,

11
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Figure 4: Three drawings of the Ljubljana graph: the first one exhibiting an asymmetric
Hamilton cycle, the second exhibiting a Hamilton cycle with central symmetry, and the
third exhibiting the existence of a semiregular automorphism of order 7

—29,-21,15,47, —49,19, —23, —9, —49, 53, —21,23, 45, —29, 31, 55,11, —15, 23, —23,
—35,—49,39,23, —19, —35, —51, —11,9, —43, 51, 29]

On the other hand, the LCF code given below has exponent 2, and therefore gives rise to
a central symmetry of £ as shown in the second drawing in Figure 4:

LCF[47,—23,—31,39,25, —21, —31, —41,25,15,29, —41, —19, 15, —49, 33,39, —35, —21,
17,—33,49,41,31, —15,—29,41,31, —15, —25,21,31, —51, —25,23,9, —17, 51, 35, —29,
21,-51,—39,33, —9, —51,51, —47, —33,19, 51, —21, 29, 21, —31, —39]2

§24 A dual pair of Ljubljana configurations A (v3)-configuration is an incidence
structure having v points and v lines with the following properties: each line contains
exactly 3 points, each point belongs to exactly 3 lines, and any two lines intersect in at
most one point. Such a configuration determines a cubic bipartite graph with a black and
white vertex colouring, where black vertices correspond to points and white vertices to lines
of the configuration. Further, two vertices are adjacent if and only if they correspond to
an incident point-line pair. Such a graph is called the Levi graph of the configuration (see
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[4, 5]). Conversely, each cubic bipartite graphon 2v vertices of girth at least 6 is the Levi
graph of a dual pair of (vs3)-configurations, and these two configurations are isomorphic
if and only if there is an automorphism of their Levi graph which interchanges the two
bipartite sets. Since L is bipartite of girth 10 and semisymmetric it gives rise to a dual pair
of non-isomorphic quadrangle-free configurations, shown in Figure 5. Observe that the two

Figure 5: The Ljubljana and the Dual Ljubljana (563) configurations

drawings exhibit a rotational symmetry of order 7. Each was produced by applying theory
of polycyclic configurations as outlined in [4]. The reason that such theory can be used in
this context resides in the fact that £ is a Zr-cover of a bipartite base graph (see Figure 6).
Indeed as we have seen, £ has a semiregular automorphism of order 7, and the quotient
graph with respect to this is bipartite.

Figure 6: The Ljubljana graph L is a Z7 cover over this graph

8§25 Some further properties of the Ljubljana graph Here we gather some fur-
ther interesting properties of £. First, if one wants to check that the Ljubljana graph is
not vertex-transitive it suffices to show that there exist two vertices with different distance
sequences (the sequences which give the numbers of vertices at successive distances from a
given vertex). A direct computation shows that the vertices in one set of the bipartition
have have distance sequence (1,3,6,12,24,34,24,7,1), while the vertices in the other bi-
partition set have distance sequence (1,3,6,12,24,34,25,7).
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Next, since the automorphism group of £ has order 23.3.7 = 168, and £ is edge-transitive
with 168 edges, it follows that the line graph L(L) is a graphical regular representation
(GRR) for the group Aut £. More precisely, L(L) is a Cayley graph for the group of order
168 with presentation (z,y | 23 = ¢% = zyzy toyz ly lz 1yt =1).

Finally, for a graph X let X (2) denote the graph on the same vertex-set as X, and with
two vertices adjacent in X(? if and only if they are at distance 2 in X. If X is connected
and bipartite the graph X2 has exactly two connected components, X 52) and X§2), corre-
sponding to the two sets of the bipartition. In the case where X is the Levi graph of a pair
of dual configurations C and C?, the graphs M(C) = X 52) and M(C?%) = X§2) are called the
Menger graphs of C and C%, respectively.

The Menger graphs associated with the pair of Ljubljana configurations are non-isomorphic
%-arc-transitive Cayley graphs for the group I'; & 73 x Z7 of order 56 (the lift of the cyclic
group (p) as described in §22), and with automorphism group isomorphic to Aut £. These
two graphs may be represented as Cayley graphs Cay(f‘7,{t,t_1,t$, (t_l)x,t$2, (t_l)xz})
and Cay(T7, {t,t 1, (til)y,t?ﬂ, (til)y2 }), where z and y are the two elements of order
3 introduced above as generators for Aut £, while ¢ = zy~!. In each of these two Menger
graphs, every vertex belongs to three triangles, which are cyclically permuted by the corre-
sponding vertex stabilizer in the automorphism group. Also since t¥ = t¥ = y~ 'z, the two
graphs contain a common 4-valent GRR of I'7, namely the graph Cay (L7, {t,t71, 1%, (t=H)}).

8§26 Acknowledgements The authors wish to thank Marko Boben for constructing
the drawings of the configurations in Figure 5, and to acknowledge the use of the MAGMA
system [2] in determining some of the properties of the Ljubljana graph £ decribed in this
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