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Abstract

Some new observations are made about imprimitive permutation groups associ-
ated with subfactors of von Neuman algebras. Of particular interest are examples of
a group G containing two maximal subgroups H and K such that G # HK, and such
that the action of G on the space of cosets of H N K has small rank (few suborbits).
The rank 6 case turns out to correspond to the action of the collineation group on
flags of a Desarguesian projective plane, and a special case of interest for rank 7
corresponds to the action of a 4-transitive group on ordered pairs of distinct points.
Some other new (and unexpected) fundamental properties of groups are described
along the way.

1 Introduction

Organising groups by the transitivity of their actions is as old as group theory itself.
The idea that highly transitive group actions are scarce is basic to the discovery and
classification of finite simple groups.

Subfactors began as an infinite dimensional non-commutative extension of Galois the-
ory. A subgroup H of a finite group G gives rise to a subfactor by choosing an (outer)
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aciton of G on a II; factor R and letting N C M be the pair of fixed point algebras
R% C RH. These are the simplest and best understood subfactors.

To a subfactor of finite index is associated a ‘standard invariant’ or planar algebra,
which is primarily a sequence P, (for n > 0) of finite-dimensional vector spaces (obtained
by decomposing tensor powers @ % M as a bimodule). The planar algebra for R C R¥ is
well understood. The vector space P, is naturally the space of functions on X" (where X
is the coset space (G : H), which we will denote by G/H), invariant under the action of
G. Thus dim P, is the number of orbits of G on X".

Before proceeding further, we should point out that (a) for the simplest II; factor R,
an outer action of a finite group is unique up to conjugacy [13], and that (b) Izumi has
shown in [11] that if the action of G on X is primitive, that is, if H is maximal in G, then
one can reconstruct both G and H from the subfactor R C RH.

Clearly the number of orbits for the action of the symmetric group Sx on X" is a lower
bound for dim P,, and to say an action is k-transitive is just to say that dim P, is equal to
that lower bound. For |X| > n this number of orbits is equal to the number of partitions
of a set of size n, called the nth Bell number, also equal to the coefficient of z"/n! in the
exponential generating function E(E(x)) + 1, where E(z) =e® — 1 (see [1] or [§]).

For a subfactor not necessarily of the form R® C R¥, planar partitions still make sense,
and the universal lower bound on dim P, is the Catalan number n—il (2:), for all but small
values of n. Accordingly, subfactors can be “more transitive” than group actions. This
observation led the second author to the notion of supertransitivity, and the beginnings of
the study of subfactors from this point of view in [14] and [15].

The planar algebra encodes all the algebraically accessible data for a subfactor N C M.
The most obvious piece of extra structure that can arise for a subfactor is the existence of
an intermediate subfactor N C ' C M. In [3] it is shown that in the presence of such a T,
planar partitions can be enriched, and the necessary loss of supertransitivity is reflected
in a lower bound of 2n1+1 (37;‘) for dim P,, for all but small n. An intermediate subfactor
for RS C RY is necessarily of the form RX for some subgroup K with H < K < G. This
leads to the following (somewhat vague) group-theoretic question:

Question 1.1 What are the most transitive imprimitive actions of finite groups?

In a sense, the most highly transitive imprimitive permutation groups of given com-
posite degree d are the wreath products S, wr S, where ab = d, with 1 < b < a < d. Each
such group G is a semi-direct product of the direct product of b copies of the symmetric
group S, (acting independently on b copies of a set of size a, called the blocks) by a single
copy of the symmetric group S, which permutes the b blocks. We may take the stabilizer
of a point as the subgroup H, and the setwise stabilizer of the block containing that point
as the intermediate subgroup K.

These are rank 3 permutation groups (see [6] or [7] for example), having three orbits
on X X X: one the diagonal, one containing ordered pairs of distinct points from the same
block, and the other containing ordered pairs of points from different blocks. Moreover,



every imprimitive permutation group of degree d = ab having b blocks of imprimitivity
(each of size a), is a subgroup of S, wr Sy, and so these examples give the highest amount
of transitivity.

A generic lower bound on the number of orbits on X" is the coefficient of 2" /n! in the
exponential generating function E(E(E(z))) + 1, with E(z) = ¢® — 1 as before.

The next natural step in considering subfactor structure from this point of view is
to investigate more complicated intermediate subfactor lattices, following earlier work by
Watatani [18] and Watatani and Sano [17].

The simplest situation beyond a chain of intermediate subfactors is that of a ‘quadri-
lateral’ (M;S,T; N) where S,T and N are subfactors of M such that N C SN T. In this
case we might as well always suppose that S N7 = N and that S and T generate M, for
otherwise transitivity is decreased. Further, we may suppose that ST = M and that S
and T ‘commute’; in the sense that the orthogonal projections es and ey (onto S and 7))
commute. Planar partitions can now be further enriched to give a generic lower bound of
[n%q (2:)] ? for dim P,.

In the group-theoretic context, this case involves intermediate subgroups K; and K> of
G such that K; N Ky = H is core-free in G and also

K1K2 = G, (1)
which leads naturally to the following:

Question 1.2 What are the most transitive imprimitive group actions with two interme-
diate subgroups as in condition (1)?

It is not difficult to see that in this case the group G must have at least four orbits on
X x X: one the diagonal, one containing ordered pairs of distinct points from the same
orbit of K; but different orbits of Ky, another like this but with the roles of K; and K,
reversed, and another containing ordered pairs of points from different orbits of both K;
and K5. Hence the rank of G on the coset space X = G/H is at least 4.

One family of examples is as follows: For any integer k£ > 1, let G be the direct product
Sk x (s, of order 2k!, and in this group take K; and K5 as the natural subgroups Sy 1 x Cs
(of index k in G) and Sy (of index 2 in G), so that H = K; N Ky = Sg_;. The rank
of the action of G on the coset space X = G/H is 4, with orbits on X x X of lengths
2k,2k,2k(k — 1) and 2k(k — 1).

Similarly, the factor C5 can be replaced by S; for any [ > 1, and the rank of the resulting
action is still 4. In fact it may not be difficult to prove that these are essentially the only
examples of rank 4 (or at least the largest possible examples for given indices |G : K;
and |K; : H|), but in any case, because they are direct products, the resulting subfactors
are simply tensor products of the subfactors corresponding to the coset spaces G/K; and
G/K,, and are therefore not particularly interesting.



The next case in the subfactor situation is to disallow the possibility that ST = M,
thereby decreasing transitivity.

One important point we have not mentioned so far is that for the action of G on G/H
to be as transitive as possible, we want the ‘elementary’ actions of G on G/K; and G/K,
and the actions of K7 and K, on K;/H and K5/H to be highly transitive. For subfactors
generally, we make the assumption (called “no extra structure”) that the lower bounds for
supertransitivity of the elementary inclusions are attained. Thinking about this concept
led to the surprising result in [10] that there are in fact only two possibilities for N C M if
there is no extra structure: one where N is the fixed point algebra under an outer action
of Ss, and the other where the index [M : N] is 6 + 41/2. For groups we are led to this:

Question 1.3 Among the imprimitive group actions with two intermediate subgroups K
and Ky such that K1 N Ky = H 1is core-free in G, and

KKy # KoK, (2)
which are the most transitive?

Here we have some very interesting answers. First, as will be shown later, we can
use an elementary but not well known observation (with an elegant proof due to David
Goldschmidt) that gives G # K; Ky UK, K] in this case, and it then follows that there must
be at least 6 orbits of G on X x X. Moreover, for the case where this bound is attained,
we find the following:

Theorem 1.4 Let K; and Ky be mazimal subgroups of the finite group G such that
K 1Ky # KyKy, and the action of G on the coset space X = G/H (where H = K1 N K>) is
faithful and has rank 6. Then up to isomorphism either

(a) G=S;, |[Ki|=|Ks|=2and |H| =1, or

(b) |G: K| =|G: K| =¢*+q+1and |K, : H| = |K, : H| = q+1 for some prime-power
q, and there is a 1-to-1 correspondence between points of X and the flags (incident
point-line pairs) of a Desarguesian projective plane 11 of order q, under which cosets
of K1 correspond to points of I1 and cosets of Ky correspond to lines of 11, respectively,
and G corresponds to a flag-transitive collineation group of II.

In a sense, this theorem provides an analogy to doubly-transitive permutation groups.
For tramsitive groups of degree > 1, the minimum rank is 2, attained only when the
group is 2-transitive. For groups satisfying the condition given by (2), the minimum rank
is 6, attained only by flag-transitive collineation groups of Desarguesian finite projective
planes. The corresponding analogue for primitive group actions of rank 3 would be a full
classification of examples satisfying (2) with 7 orbits on X x X (where X = G/H). We do
not have that, but we do have a complete list in a non-trivial special case:



Theorem 1.5 Let K; and Ky be mazimal subgroups of the finite group G such that
KKy # K)Ky, and |G : Ki| > |G : Ks|, and such that the action of G on the coset
space X = G/H (where H = K1NKs) is faithful and has rank 7, with two orbits on X x X
of length | X|. Then

(a) | X|=|G: H| = s(s+ 1) for some integer s, and
(b) |G:Ky|=s+1,and |G: Ki|=s+1 ors(s+1)/2, and

(c) the action of G on G/ K, is 4-transitive, and the action of G on X is equivalent to
its action on ordered pairs of distinct points of G | Ko, while the action of G on G/ K;
is either equivalent to that on G/K, or equivalent to the action of G on unordered
pairs of distinct points of G/ K, and

(d) G is isomorphic to the alternating group Asyq or the symmetric group Ssy1, or to
one of the Mathieu groups My, Mio, Mz or Moy.

Conversely, if G is one of the Mathieu groups M1, Mg, Maz or My, or the alternating
group Ay (for k > 5) or the symmetric group Sy (for k > 4), then the action of G on
ordered pairs of distinct points (in its natural action) gives rise to subgroups Ki and Ko
satisfying the above conditions.

We arrived at these theorems following observations made about examples investigated
with the help of the MAGMA system [5].

2 Preliminaries

Before proving Theorems 1.4 and 1.5, we prove two preliminary facts that are fundamental
to the study of imprimitive group actions of the types discussed in the Introduction, and
introduce some additional notation.

Proposition 2.1 If K and L are mazximal subgroups of the finite group G for which KL #
G, and the actions of G on the coset spaces G/K and G/L are both 2-transitive, then
|IG:K|=|G:L|.

Note that H = K N L does not appear in the statement of this result, and so there is
no need for K N L to have any particular properties.

The proposition can be proved in several ways. One way is to use Schur’s lemma from
group representation theory (see [9] or [12] for example).

Let V be the vector space of functions from G to a field C of zero characteristic. Let
p denote right translation on V, and define p = Y° ., p(z) and ¢ = >_ ., p(y). Then gp
takes right K-invariant functions to right L-invariant functions, and commutes with the
left action of G. But since KL # LK, the composite gp is non-zero on the orthogonal



complement of constant functions, and so by 2-transitivity and Schur’s lemma, ¢p is an
isomorphism. Hence the dimensions of the spaces of functions from G/K and G/L to C
are the same.

Another proof (pointed out to us independently by Peter Cameron and Geoff Robinson)
goes as follows: Let {x; : 1 < i < m} be the irreducible characters of G over C, with x;
trivial, and let xx and x be the permutation characters for the actions of G' on the coset
spaces G/K and G/L. Then by 2-transitivity, xx = X1 + x; and xz = x1 + x; for some
i,7 > 1, with inner product (xg, XL) =1+ (xi,x;) = 1 unless 4 = j. On the other hand,

(XK,XxL) = Gl ZXK 9)xw(g) |G| ZFlXG/K( )Fixg/1(9) |G| ZFIXG/KXG/L( )s

geG geaG geG

which by Burnside’s lemma is the number of orbits of G on G/K x G/L. As G # KL,
this number of orbits is at least two, so (xx,xr) > 1, and hence i = j, so xx = X1, and
therefore |G : K| = |G : L| (and in fact K and L are conjugate subgroups in G).

Finally, we have a third proof, offered to us by Primoz Potoc¢nik, using the theory of
block designs (see [2]): The coset spaces G/K and G/L can be taken as the point-set and
block-set of a block design, with incidence given by non-empty intersection

Kz ~ Ly if and only if Kz N Ly # 0.

By 2-transitivity of G on G/K, any two points lie in the same number of blocks, so this
is a 2-design, and since G # KL, the design is incomplete. Now by Fisher’s inequality
(provable by considering the ranks of the incidence matrix M and the product MMT)
there are at least as many blocks as points, so |G : K| < |G : L|. But the same argument
applies to the dual design, and so |G : L| < |G : K|; hence equality.

Proposition 2.2 If K and L are subgroups of the finite group G such that KLU LK is a
subgroup of G, then also KL is a subgroup of G.

Proof (a simplification of an unpublished one by David Goldschmidt). Let M = LK UKL,
and define J = {geM : KLg = KL}. Then J is a subgroup of M, with L C J C KL, and
M=KJUJK,and KJ = KLJ = KL. Now assume JK # M, and let g be any element
of M\JK. Then LgN JK = (for otherwise g would be an element of LJ/JK = JK), but
M=KJUJK, and so Lg C KJ. It follows that KLg C KJ = KL, so by definition of J
(and finiteness of G), we find g € J and hence g € JK, contrary to the hypothesis on g.
Thus JK = M, so JK is a subgroup of G, giving KL = KJ = JK, which in turn implies
that KL is a subgroup of G (and KL = LK). O

Now suppose that G is a transitive but imprimitive permutation group on a set X of
size d, and that H = (G, the stabilizer in G of some point x € X. Also suppose that
the stabilizer H is contained in two different maximal subgroups K and L of G, such that
KL # LK (or equivalently, such that KL is not a subgroup of G), and that K N L = H.
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Observe that the condition KL # LK implies that G # KL, and the fact that H is the
stabilizer of a point in X implies that H is core-free in G.

Let k = |G : K| and [ = |G : L|, the numbers of (right) cosets of K and L respectively
in G, and similarly, let = |K : H| and s = |L : H|. Then G has a system of imprimitivity
with k£ blocks By, Bs, ..., Bg, each of size r, such that B; is the orbit of z under the
subgroup K (and the remaining k — 1 blocks B; are the images of By under elements of G),
and another system with [ blocks C;, Cy, ..., ), each of size s, such that C is the orbit of
x under the subgroup LK (and so on).

Lemma 2.3 Under the above conditions, the following hold:
(a) d=kr =ls,
(b) rs < d < kl,

c) k>s and |l > r,

)

)
()
(d) If r <s then k>1,
() BiNnCy ={z}, and

(f) [BinCj|=00r1 for1<i<kandl<j<lI.

Proof.  First note that d = |G|/|H| = (|G|/|K|)(|K|/|H|) = kr and similarly d =
(IGI/ILI)(IL|/|H[) = ls. Also |G| > |[KL| = |K|[L|/|K' "N L| = |K||L|/|H|, which gives
both d = |G|/|H| > (|K|/|H|)(|L|/|H|) = rs and kl = (|G|/|K|)(IG|/|L]) > |G|/|H| = d.
The other properties involving k, [, and s now follow easily. Next, the assumption that
KNL = H = G, implies that B; N C; = 2K Nzt = 2% = {z}. Furthermore, ify € B;NC},
then choosing g € G such that z9 = y gives B; = BY and C; = CY, and it follows that
B;NC; =B{NCY = (BiNC1)? ={z}? = {y}, and thus |B;NC;| <1foralliand j. O

Without loss of generality we may assume that » < s. Let us now label the points of
some of the blocks for K and L as follows:

B, = {xay2ay3a s ayr} C, = {.’13,22,2’3,2’4, .. .,zs}

By = {22, us2, us3. .., uzr } Co = {Y2, V22, V23, Vo4, - - . , V2s }

B; = {Z37u325u33-"7u3r} C3 = {y3,032,033,034, .- -,035}
Cr = {yr:vr2avr3avr4,---avrs}

Bs = {zs,us0, Us3 - .., Ugyr }

We can think of the blocks B; as cosets of K in G, and the blocks C; as cosets for L
in GG, respectively. Note that z and the points ¥, ys, ..., 4, of block B lie in r different



L-blocks Cj, while x and the points 2, 23, .. ., 25 of block C; lie in s different K-blocks B
by the last part of Lemma 2.3. These observations help give us a partial classification of
the sub-orbits of the given group action, as follows.

Lemma 2.4 FEach of the following sets is a union of orbits of H = G, on X:

Xy = {z},

Xo=B\X1 ={y2,¥3,-- -, Ur },

X3 = Cl\Xl = {22,23,...,23},

X4: (BQUB?,UUBS)\X;;:{UJZQSZST, QSJSS},
X5: (CQUC:}U"‘UCT)\XQ:{/Uij:QS/’:ST, 2§]S8},
Xo = X\ (X1 UXoUX;UX4UXs).

Proof. The first is obvious; the second and third follow from the fact that B = B; and
C{ = C for all g € G; the fourth and fifth follow from the fact that G, must preserve the
union of blocks B; containing a point of X3 and the union of blocks C; containing a point
of Xs; and the last now follows easily. (I

This immediately gives us a lower bound on the number of sub-orbits:

Lemma 2.5 The sets X4 and X5 are distinct, so the union X4 U X5 contains at least two
orbits of H = G, and hence the number of orbits of G, on X is at least five.

Proof. Assume that Xy = X;5. Then | ;. B; = |}, C;. Call this common union U. Next,
the subgroup K preserves the block B; and therefore preserves the set {Cy,Cs,...,C.}
of all blocks C; containing a point of By, and similarly the subgroup L preserves the set
{By, B, ..., Bs} of all blocks B; containing a point of C7, and hence the common union U
is preserved by both K and L. This, however, implies that U is preserved by (K,L) = G
(the latter following since K and L are distinct maximal subgroups of G), and so U = X,
and therefore d = | X| = |U| = rs, contradicting part (b) of Lemma 2.3. O

But further, we have the following, as a consequence of Proposition 2.2:

Lemma 2.6 The set Xg is non-empty, and hence the number of orbits of H = G, on X
must be at least siz.

Proof. First, observe that since {z}X' = C) = {x, 23, 23, 24, . . . , 25 }, every element L takes
the block 31 to one of By, Bs,..., B,, and therefore {z}*" = B} = 5 B;. Similarly
{2}t = = 1<]<TC]’ and it fOHOWS that {2} 0% = 5 BiU 1 ,C) = 155 Xe

Proposmon 2 2 gives G # KL U LK, however, and so X = {z}¢ # {g}IVIE =, 4 X,
Thus Xg is non-empty, and the rest is easy. O



3 The rank 6 case

We now prove Theorem 1.4, using the notation and preliminary results of the previous
Section.

Suppose G, has exactly six orbits on X. By what we have seen above, these must
be X1, Xs, X3, X and two other orbits whose union is X, U X5. Moreover, since | X4| =
| X5] (= (r—1)(s—1)) but X4 # X5, we see that each of X,;\ X5 and X5\ X, is non-empty,
while X, N X5 = 0 (for otherwise X; U X5 would contain three different orbits of G,),
and hence the six orbits of G, have to be X, X5, X3, X4, X5 and Xg4. Note here also that
X5 U Xg must be the union of all the blocks B; containing a point of X5, and similarly
X4 U X must be the union of all the blocks C; containing a point of Xj.

Furthermore, the subgroup K acts transitively on the block B; = {z, y2,¥3, - - -, Yr }, and
therefore contains elements that take points of X3 = C;1\ X7 = {29, 23, ..., 25} to points of
X5 ={v;;:2<i<r, 2<j<s}, and as these elements take the blocks By, Bs, ..., B, to
blocks B; for s < 7 < k, it follows that the orbits of K are X; UX,, X3U X5 and X, U Xg.
Similarly, the orbits of L on X are X; U X3, X, U X, and X5 U Xjg.

In particular, if g is any element of K that takes one of the blocks B, B, ..., B to
some block B; for s < i < k, then B; contains exactly one point of X5 (the image under
g of a point of X3) and r — 1 points of X4 (the images under g of » — 1 points of X}).
From this it follows that the (r — 1)(s — 1) points of X5 all lie in different blocks B;, and
therefore | Xg| = |X5/(r —1) = (r — 1)(s — 1)(r — 1), and the number of blocks B; is
k=s+|X5| = s+ (r—1)(s —1). But similarly, the (r — 1)(s — 1) points of X, must all lie
in different blocks Cj, so that |Xg| = |X4|(s —1) = (r —1)(s — 1)(s — 1), and the number
of blocks C; is | = r + |X4| = r + (r — 1)(s — 1). Comparison of the expressions for | Xs|
now givesr = s, and alsok=1=s+(s—1)(s—1)=s*— s+ 1.

Now consider the blocks B; as ‘points’ and the blocks C; as ‘lines’ of an incidence
structure in which the point-line incidence relation is non-empty intersection (that is, so
that B and C are incident if and only if BN C' is non-empty). Then what we have is a set
of k£ points and a set of k£ lines, such that every point is incident with s lines and every line
is incident with s points. We claim also that every two points are together incident with
a unique line, and that every two lines are together incident with a unique point.

To prove these claims, we can argue as follows. First, the point B; is incident with the
s lines C1,Cs, ..., C,, while each point B; for 2 < ¢ < s is incident with C; and s — 1 of
the lines Csy1,Csio,...,C;, and each point B; for ¢+ > s is incident with just one of the
lines Cy,Cs,...,Cs and s — 1 of the lines Cs11,Cs19,...,C;. Thus By and any given B;
for 2 < ¢ < s are together incident with only the line C;, and B; and any given B; for
1 > s are together incident with only one of the lines Cy, C}, ..., C;, and therefore the first
claim holds when one of the points is B;. But the group G acts transitively on the set
{By, By, ..., By} of blocks for K, and as the definition of incidence is independent of the
choice of z, it follows that the first claim holds for every point B;. The second claim holds
by exactly the same argument, with points and lines interchanged.



It follows (by a standard definition) that this incidence structure is a finite projective
plane, of order ¢ = s — 1, with k = ¢> + ¢ + 1.

If s = 2, then ¢ = 1 and this plane is just a triangle, and so we have case (a) of our
theorem. From here on we will suppose that s > 2.

Now the group G acts on this plane II as a group of incidence-preserving automorphisms
(or collineations); indeed G acts primitively on both the set of ¢ + ¢+ 1 points (the blocks
B; for the maximal subgroup K) and the set of ¢*> + ¢ + 1 lines (the blocks C; for the
maximal subgroup L), and transitively but imprimitively on the set of incident point-line
pairs (flags), which correspond to the original elements of X.

By a theorem of Kantor on flag-transitive projective planes [16], it follows that either
IT is Desarguesian (with ¢ a prime-power, and with G involving PSL(3, ¢)), or otherwise G
is a Frobenius group, ¢*>+ ¢+ 1 is prime, and |G| divides (¢*+¢+1)(¢+1) or (¢*+ ¢+ 1)g.
In our case, the second of these is impossible, because it would imply that K and L have
order ¢ + 1 or ¢, yet we know that K acts 2-transitively on B; (since G, is transitive on
Xy = B;\{z}) and so |K]| is divisible by s(s — 1) = (¢ + 1)g. Hence, by Kantor’s theorem,
our incidence structure is a Desarguesian projective plane, of prime-power order ¢, and
with PSL(3, ¢) involved in its collineation group.

This completes the proof.

4 The rank 7 case

A similar approach can be taken to prove Theorem 1.5. Again using the notation of Section
2, suppose that GG, has exactly seven orbits on X, two of which have size 1. By our previous
observations, each of the sets X1, Xy, X3, X4, X5 and Xg must be a non-empty union of
orbits of G, with |X4| = |X;5| = (r — 1)(s — 1) but Xy # X5, and X, U X; must be the
union of at least two such orbits. Hence there are just two possibilities to consider:

4.1 Suppose X, N X5 # 0.

In this case the seven orbits of G, on X must be X7, Xo, X3, X4\ X5, X4 N X5, X5\ X4
and X4, and one of these apart from X; has size 1.

At this stage we make the observation that each of | X\ X;5|, | X4 N X5| and | X5\ X4
must be divisible by both » — 1 and s — 1. For suppose the block C; containing the point
y; (of X5) contains also the points pi,pa,...,p of X4 N X5, and y; is any other point of
Xy. Then there exists an element g € G, taking y; to y;, and as this element must take C;
to C; it follows that g takes the ¢ points py, ps,...,p; (of X4 N X5) lying in C; to ¢ points
of X4 N X5 lying in C;. Hence all of the  — 1 blocks Cs, Cs, ..., C, (containing a point of
X3) contain the same numbers of points of X; N X5, and so | X, N Xj5| is divisible by r — 1.
The analogous argument for the blocks Bs, Bs, ..., Bs containing points of X3 shows that
| X4 N X5| is divisible by s — 1, and since | X,| = | X;5| = (r — 1)(s — 1), it follows that also
both | X4\ X;| and | X5\ X,| are divisible by » — 1 and s — 1 as well.
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Now if | X3| = 1, then 7 = 2, but then the above observation gives [ X, N X5 =s—1=
| X4|, and so X; = X3, a contradiction. Thus s > r > 2. In particular, this rules out the
possibilities that |X3| =1 or [X4\X5| =1 or | X3y N X5| =1 and | X5\ X4 = 1, and so we
conclude that |Xg| = 1.

By definition of Xg, it follows that the number of blocks B; for K is K = s+ 1 and the
number of blocks C; for L is [ = r 4+ 1. In particular, d = kr = r(s +1) = rs+r while also
d=1ls=(r+1)s=rs+s, and therefore r = sand k =1l =s+1 and d = s(s+ 1).

Now consider the action of G on the set £ = {C},Cy,...,C;} of blocks for L. First
the subgroup K permutes transitively the s blocks Cj, Cs, ..., containing a point of
By, so fixes C; = Cgy (setwise), and therefore G is 2-transitive on £. Furthermore, the
subgroup G, fixes each of C; and C;y4 (setwise) and permutes transitively the s — 1 blocks
Cs, Cs, ..., s containing a point of Xy, so G is 3-transitive on L.

Next, clearly the subgroup G, = K N L is the stabilizer of the ordered pair (C, Csy1)
in this action of G on L, and it follows that the original action of G on X is equivalent to
its action on ordered pairs of distinct members of £. Letting « = C} and w = C; 1, we
now see that K and L are the stabilizers in G of w and « respectively, and that the seven
orbits of G, on X must be equivalent to the following:

01 = {(o,w)},

={(\w): A e L\{a,w}},
— {(@ ) : A € L\{o,w}},
04 - {(w7 )‘) A€ ﬁ\{aaw}}v
Os ={(\a): Xe L\{o,w}},
06 = {()\,u)) A€ L\{a,w}, A # p}, and

={(w, )}

(In fact 01, 02, 03, 04, 05, 06 and 07 are equivalent to Xl, XQ, Xg, X4\X5, X5\X4, X4ﬂX5
and X respectively; and the orbits of K are O;UO; (= X;UX,), O3U0;U0O¢ (~ X3UX5)
and O4UO7 (=~ (X4\X5)U Xs), while the orbits of L are O;UO;5 (= X1 U Xj3), O2U0,UO4
(% XoU X4) and 05 U 07 (% (X5\X4) U Xﬁ))

In particular, as G, = K N L = (G,, has to be transitive on the set Og, it follows
that G is 4-transitive on £. By the classification of 2-transitive finite groups, all finite
4-transitive permutation groups are known; see [6] or [7]. Accordingly, the action of G on
L is equivalent to the natural action of either one of the Mathieu groups My, M9, Mss or
Moy, or the alternating group Ay (for £ > 5) or the symmetric group Sy (for £ > 4). As
each of these groups is ‘almost simple’, the permutation group induced by the action of G
on ordered pairs of members of £ is isomorphic to the permutation group induced by the
action of G on L, and therefore G itself is isomorphic to one of them, as required.

4.2 Suppose Xy N X5 = 0.

In this case one of X5, X3, X4, X5 and Xg is a union of two orbits of (G, while the four
others and X; = {z} are all single orbits of G,.
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Now if X5 is the union of two orbits of G, say U and V, then also X5 will split into
two orbits of G, (one consisting of points of X5 from blocks C; containing a point of U
and the other consisting of points of X5 from blocks C; containing a point of V), so X,
must be a single orbit. Similarly, X3 is a single orbit.

Next, just as in the proof of Theorem 1.4, we can show that X; U X, and X3 U X5 are
orbits of K, and that X; U X3 and X, U X, are orbits of L. (Note: the possibility that
X4 or X; is a union of two orbits of G, does not affect the argument, since X, and X3 are
orbits of KN L = G, and only one of X, X5 and X is not.) Moreover, again we find that
the (r — 1)(s — 1) points of X5 all lie in different blocks B; (for s < ¢ < k), and that the
(r —1)(s — 1) points of X, must all lie in different blocks C; (for r < j <1).

Now if X¢ were a single orbit, then it would have to consist of all the points in the blocks
Bgi1,Bsio, ..., By other than those already lying in X5, and at the same time consist of
all points in the blocks C,i1,Crya, ..., other than those already lying in X4, and in
particular, we would have |Xg| = | X5/(r — 1) and | Xg| = | X4|(s — 1) in this case. But if
p and ¢ are any points of X lying in different blocks B; and B;, and g is any element of
G, taking p to g, then g takes B; to B; and therefore takes the unique point of X5 in B;
to the unique point of X5 lying in Bj, and it follows that X5 forms a single orbit of G.
The analogous argument for the blocks C,.1,C,9,...,C; shows that X, is a single orbit
of G,. It follows that GG, has only six orbits, a contradiction. Thus Xjg is the union of two
orbits of G, while X, and X; are single orbits of G.

Next, let U be the union of all blocks B; that contain a point of X5, and let V' be
the union of all blocks C; containing a point of Xy. Then |U| = |X5|r = r(r — 1)(s — 1)
while |V| = |X4|s = s(r — 1)(s — 1). Also U and V are preserved by G, and hence each
of U\ X5 and V'\ X, is a union of orbits of G, contained in X4. It follows that each of
(U\X5) \ (V\Xy) and (V\X4) \ (U\X5) and (U\X5) N (V\X4) is a union of orbits of G,
but at most two of these can be non-empty.

If r = sthen |U| = V] =s(s—1)?s0 |[U\X;5| = |V\X4| = s(s—1)2—(s=1)? = (s —1)3.
Now if U\ X5 # V\ Xy, then (U\X5) N (V\X,) must be empty, and hence the seven
orbits of G, are X, Xo, X3, X4, X5, U\ X5 and V\ Xy, of sizes 1, s — 1, s — 1, (s — 1),
(s —1)%, (s — 1) and (s — 1) respectively, but this makes it impossible for just two of
the orbits of G, to have size 1. Thus U\ X5 = V\ Xy = T, say. Again none of the orbits
Xs, X3, X4 and X5 can have size 1 (for otherwise r = s = 1 and then all of them have
size 1), so either T is an orbit of G, and |X4| = |T| + 1, or T = Xj is a union of two
orbits of G, one of which has size 1. In the former case, summing the orbit sizes gives
d=X|=1+(-1)+(s=1)+(s=1)2?+(s—1)2+ (s —1)>+1 =1 mod s, but since
d = ls, this gives a contradiction; in the latter case, the block B; containing both a point
of X5 and the orbit of G, of size 1 must be fixed by GG, and hence the point of X5 forms
another single orbit for G, of size 1, another contradiction.

Thus r < s. Clearly this gives |U| < |V and so |U\X5| < |[V\X4|. It follows that U\ X5
must be an orbit of G, and the seventh orbit of G, must be X\ (U\X5), which could
be either V\ X4 or (V\X4) \ (U\X5). The sizes of the seven orbits of G, are therefore 1,
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r—1,s—1,(r=1)(s=1), (r=1)(s = 1), (r — 1)*(s — 1) and either (r — 1)(s — 1)? or
(r—=1)(s—=1)(s —r). Since (r—1)(s—1) > s —1 > r — 1, the smallest of these sizes are 1
and r — 1, and so the second orbit of G of size 1 must be X5, and thus r = 2.

In particular, we now know that the orbits of G, have sizes 1,1,s—1,s—1,s—1,s—1
and either (s — 1)% or (s — 1)(s — 2). Note that the sum of first five of these is 3s — 1, so
| X6| =d—(3s—1) =d—3s+ 1. Since d = ls, however, | Xgs| = d — 3s+ 1 =1 modulo s,
so | Xg| cannot be the sum of |[U\ X5/ = s — 1 and |V \X,| = (s — 1)?, and it follows that
X = V\ X4, and the seventh orbit of G, has to be (V\X,) \ (U\X5), of size (s —1)(s —2).
Thus d = [Xg| +3s—1=(s—1)?+3s—1=s*+s=s(s+1).

Also k =d/r = s(s+1)/2, while l =d/s = s + 1.

Now consider the action of G on the set £L = {C1,Cy,...,C;} of blocks for L. Just
as in case 4.1, we see that G is 3-transitive on £, and that the action of G on X is
equivalent to its action on ordered pairs of distinct members of £. In this case, however,
if (a,w) = (C4, C}) = (C1,Cs41) then K is the stabilizer in G of {«,w} (while L is still the
stabilizer of «), and the orbits of G, on X are still equivalent to the sets O, 0y, ...,0x
defined in case 4.1. (Also O1, O3, 03,04, Os, 06 and O; are equivalent to Xy, U\ X5, X,
X5, X4, (VAX4)\ (U\X5) and X, respectively; and the orbits of K are O;UO; (= X1 UX5),
03 U 04 (% X3 U X5), 02 U 05 (% X4 U (U\X5)) and 06 (% (V\X4) \ (U\X5)), while the
orbits of L are O; UO; (= X; U X3), Os U007 (= XoUXy) and O, UO4UOg (= X5UV).)
Again G, = G, has to be transitive on the set Oy, and so G is 4-transitive on £, and the
rest follows.
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