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1 Introduction

There is no doubt that the use of computers in recent years has revolutionised
many branches of science, not the least of these being mathematics. Even in
pure mathematics, where often quite subtle and sophisticated arguments are
required for the solution of problems, computers have become an invaluable,
almost indispensible tool.

In this paper I will describe in more detail some aspects of the impact of
computing on research in pure mathematics, and in particular on the use of
specialist software to solve mathematical problems.

I will briefly discuss computer-based proofs with reference to two famous
examples: the 4-colour theorem, and the non-existence of a projective plane
of order 10, and will also mention a few of the major developments within
mathematics that have resulted from the influence of computing. Finally
I will outline some of the ways in which I have used computer software in
my own research, with the aim of illustrating the potential of experimental
approaches to questions in pure mathematics.



To begin with, however, it is appropriate to make some general comments.
First, it may be said that computers were originally developed to perform
calculations which were essentially pure mathematics, and hence it is natural
that they continue to be used in this area. On the other hand, their use will
always be limited, for by Turing’s 1936 answer to Hilbert’s 3rd problem,
there can be no universal machine to decide the truth or falsity of every
mathematical statement.

Since the design of computers for cracking secret cyphers in World War
IT, major areas and directions of pure mathematics have altered considerably.
The renaissance of number theory (through cryptography) is a notable ex-
ample, and others include matrix algebra (resulting from extensive research
on the solution of linear and differential equations) and combinatorics. More
generally, we have witnessed a gradual discretization of pure mathematics,
although not necessarily at the expense of continuous mathematics.

Computer-based proofs have become common, if not always popular, and
much effort is being poured into the areas of constructive mathematics, algo-
rithms, special-purpose mathematical software, and experimental pure math-
ematics. Some of these will be dealt with in the following two sections.

2 Computer proofs

In recent years a number of long-standing questions and conjectures in pure
mathematics have been settled: the Four Colour Theorem, Mordell’s con-
jecture, the Bieberbach conjecture, and of course Fermat’s Last Theorem.
Of these perhaps the proof of the Four Colour Theorem has been the most
controversial, in that the use of a computer was necessary to complete it.
Here are some observations about this and another example of interest:

Example 2.1: The Four Colour Theorem

The Four Colour Theorem (or 4CT for short) states that only 4 colours are
required to colour the regions of any plane map in such a way that every two
neighbouring regions have different colours. This was conjectured by Guthrie
in 1852, and had a long history of fallacious “proofs” (and attempted proofs),
until it was settled with the help of a computer in 1976.



Appel and Haken’s proof [AH] came in two parts: Part I being a classi-
fication of unavoidable configurations, and Part Il verifying the reducibility
of each configuration (to show there is no minimal counterexample). Part
I involved enumeration by hand of some 1400 cases, while Part II used a
computer to verify reducibility in each case.

Ironically Part II caused the most controversy, with many eminent and
highly-respected mathematicians raising the possibility of computer errors,
yet Part I was much more prone to human error — and some say Part I has
never been independently verified!

Nevertheless the 4CT is now believed to be true, and in 1994 a simpler
proof was constructed by Robertson, Sanders, Seymour and Thomas [RS],
replacing Part 1T of Appel and Haken’s proof by a machine-readable and
verifiable list of 633 cases.

Example 2.2: There is no projective plane of order 10

A finite projective plane of order n is an incidence structure made up of
n? +n + 1 points and n% 4+ n 4 1 lines, such that any two points lie together
on exactly one line and any two lines intersect in exactly one point. Such
a plane is known to exist whenever n is a prime-power, however there is no
known plane of non prime-power order n.

It was proved by Tarry in 1900 that there is no projective plane of order
6, but it then took until 1989 to show there is no projective plane of order
10. This was achieved by Lam, Thiel and Swiercz [LT], using a computer
search for 19-point configurations (corresponding to codewords of length 19
in the associated binary code).

Their search required over 2000 hours of computing time, with the obvious
implication of hardware errors. In fact they admit the detection and correc-
tion of such errors, but included checks in their programming so that even
with one error per 1000 hours, the probability of their proof being incorrect
would be at most 1 in 500, 000.

Example 2.1 indicates a change in the interpretation of “proof”, where
we may accept a result as being very probably true. In a similar vein, a
general desire to understand how and why some theorems are true — rather
than proving by contradiction that they cannot be false — has stimulated



the growing field of constructive mathematics.

Along with this is a growth industry in automated reasoning (artificial
intelligence), but also there has been a fundamental change of emphasis in
methodology. Probabilistic and experimental techniques (using random num-
ber generation) are now common, and have even appeared in some aspects
of pure mathematics.

Also with the advent of computers the need has been recognised for
polynomial-time algorithms for solving problems. For a simple instance of
this, note that when solving large systems of linear equations, the method of
Gaussian elimination is far more efficient than Cramer’s rule!

In turn new areas of mathematical research have been spawned, so much
so that now one of the burning questions in mathematics concerns the re-
lationship between problems which are polynomial-time solvable (P), and

a class of those which are polynomial-time verifiable but not known to be
polynomial-time solvable (NP): is P=NP?

3 Experimental mathematics & software

It is clear that mathematics has benefitted a great deal from the use and
influence of computers. Apart from practical considerations and the wealth
of new methods available, there is now a much greater understanding of many
avenues of research.

Of course, computers are unlikely to ever match the ingenuity and cre-
ativity of the human mind, and quite rightly, “computer proofs” may always
be viewed with some skepticism, but that should not detract from their po-
tential to contribute in many significant ways. In particular, there are many
situations in which a positive computational approach can yield new results
or throw light on old problems.

Computers can be used for simulation (of systems and processes), combi-
natorial searches, construction and analysis of simple examples, formulation
and testing of conjectures, and classification of small cases, for example. In
such ways they can often provide answers that can subsequently be checked
by hand, or provide a picture that points the way to a theoretical proof, as



will be illustrated in the next Section.

This form of experimental approach is becoming more common (and suc-
cessful) in a large number of areas, especially number theory, discrete alge-
bra, combinatorics, numerical computation, finite geometry, low-dimensional
topology, and even statistical mechanics.

Many software packages are available, including special purpose packages
Magma (for discrete algebra and number theory), GAP (groups, algorithms,
programming), KANT and Pari (number theory), as well as more general
purpose mathematical packages such as Maple, Mathematica, and MatLab.
Such packages are now widely used in teaching and research, with consider-
able success, in many parts of the world.

4 Some recent examples & successes

In this section I will describe three examples of ways in which I have used
computer methods in my own research, to illustrate some of the potential of
the approaches suggested in Section 3.

Example 4.1: hexagon-free subgraphs of hypercubes

For every positive integer n, the hypercube (), is an incidence structure
generalising the cube to n dimensions. Its vertices are all possible n-tuples
of 0’s and 1’s (of which there are 2"), and any two such n-tuples are joined
by an edge whenever they differ in exactly one co-ordinate.

Some years ago Paul Erdos raised the following question (which is relevant
to the study of fault tolerance properties of parallel-processing architectures):
Can the edges of the n-cube @), always be coloured using ¢ different colours
in such a way that there is no hexagon whose edges all have the same colour?
By a “hexagon” is meant a circuit of length 6, such as the one with ver-
tices (0,0,0), (0,0,1), (0,1,1), (0,1,0), (1,1,0), (1,0,0), and the question
entails finding some ¢ (independent of n) for which a ¢-colouring exists.

When T first learnt about this question, I experimented with a few possi-

bilities for suitable colourings, with the help of the GAP package in testing
them for small values of n. Eventually I stumbled on the following idea:



Consider a typical edge of @,, from the vertex x = (z1,...,2;...,2,)
to the vertex y = (21,...,%;,...,2,), where ;=1 — ;. If x has L 1’s to
the left of z; and R 1’s to the right of z;, then let us colour the edge x — y

green if L —R =1mod 3
red if L—R=2mod 3.

With this colouring, computation in small cases revealed no monochromatic
hexagons, and then it was a relatively simple matter to prove (by hand) that
for all n there are no monochromatic quadrangles or hexagons; see [C3].

{blue if L—R =0mod 3

Example 4.2: highly symmetric networks

A combinatorial graph (or network) I' is said to be symmetric if any two
ordered edges are equivalent under some symmetry of I'; and more generally,
s-arc-transitive if any two ordered paths of length s are equivalent under some
symmetry of I'.  For example, the underlying graph of the 3-dimensional
cube is 2-arc-transitive (but not 3-arc-transitive). More highly symmetric
examples include the 3-arc-transitive Petersen graph (on 10 vertices) and
Tutte’s 5-arc-transitive 8-cage (on 30 vertices).

Several years ago Tutte proved that every symmetric finite cubic (triva-
lent) graph is at best 5-arc-transitive. Furthermore, Tutte’s analysis shows
that the symmetry group of any 5-arc-transitive finite cubic graph has to
be a homomorphic image of a particular abstract group (G5, which may be
presented in terms of generators and relations as follows:

Gs = (h,a,p,q,r,s | h® = a® = p* = [p,q] = [p, s] = pgrsrs = a™'paq =
a~'ras = h=php = h=qhr = h='rhpqr = hshs = 1).

Conversely, any non-degenerate finite image of G5 is the symmetry group of
some H-arc-transitive cubic graph.

Now computer methods exist for finding small images of finitely-presented
groups such as G5 (through their low index subgroups). Using such methods,
Peter Lorimer and I were able to find several interesting examples of sym-
metric cubic graphs, providing answers to some long-standing questions; see
[CL]. Subsequent identification of some of the common features of these ex-
amples was the key to the construction of an infinite family of 5-arc-transitive
cubic graphs, dispelling any idea that such graphs are rare; see [C1].



Example 4.3: an unexpected isomorphism

Earlier attempts to find and analyse examples of symmetric graphs often
involved the imposition of additional assumptions such as the presence of
circuits whose vertices are permuted in cycles. In particular, associated with
certain 4-arc-transitive graphs containing a circuit of length 12 was the group

1*(a'?) = (h,a,p,q,r | h* = a* = p* = [p, q] = pgrqr = a™"pap =
a~'qar = h™'phq = h™'qhpq = hrhr = (ha)'* = 1).
This group became the subject of attention for some time following several
attempts to prove it is infinite.

Again computer methods revealed some aspects of its structure, and in
particular I noticed a normal subgroup of index 336 with remarkable proper-
ties. Using this subgroup I was able to construct an 8 x 8 matrix representa-
tion of 47 (a'?), and further computation showed that modulo small primes
p = 2,3 and 5, these 8 x8 matrices generate a group of order 2p*(p®—1)(p+1),
which happens to be twice the order of the 3 x 3 matrix group SL(3,p).

In turn this observation led to the following theorem, which can be proved
by hand (but which was discovered as a result of computer experimentation):
The group 4% (a'?) is isomorphic to SL(3,72).Cy, the group of all 3 x 3 integer
matrices of determinant 1 extended by its inverse-transpose automorphism.
For the details, see [C2]. Incidentally, the reason underlying this unexpected

isomorphism has been shown by Peter Neumann to have a connection with
finite projective planes; but that is another story!
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