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Abstract

An enumeration result for orientably-regular hypermaps of a given type with
automorphism groups isomorphic to PSL(2, q) or PGL(2, q) can be extracted from a
1969 paper by Sah. We extend the investigation to orientable reflexible hypermaps
and to non-orientable regular hypermaps, providing many more details about the
associated computations and explicit generating sets for the associated groups.

1 Introduction

A regular hypermap H is a pair (r, s) of permutations generating a regular permutation
group on a finite set, and provides a generalisation of the geometric notion of a regular
map on a surface, by allowing edges to be replaced by ‘hyperedges’. The cycles of r, s and
rs correspond to the hypervertices, hyperedges and hyperfaces of H, which determine the
embedding of the underlying (and connected) hypergraph into the surface, and their orders
give the type of H, say {k, l, m}. The group G generated by r and s induces a group of
automorphisms of this hypergraph, preserving the embedding, and acting transitively on
the flags (incident hypervertex-hyperedge pairs) of H.

The theory of such objects is well-developed, and thoroughly explained in [5, 6]. With-
out going into too much detail, we need to make a few basic observations. First, the group
G has a presentation of the form G = 〈 r, s, t | rk = sl = tm = rst = . . . = 1 〉, and (so) is a
finite quotient of the ordinary (k, l, m) triangle group. For simplicity, we will say that such
a group G has type (k, l, m), provided that k, l, m are the true orders of the correspond-
ing elements r, s, t. There is a bijective correspondence between (isomorphism classes of)
groups of type (k, l, m) and (isomorphism classes of) regular hypermaps having hyperver-
tices, hyperfaces, and hyperedges of order k, l, and m, respectively; the group G itself is
then the ‘rotational symmetry group’ of the corresponding hypermap. For further details
of representing hypermaps in the form of cellular decomposition of closed 2-dimensional
surfaces and visualising the rotational symmetries, we refer the reader to [6].

A regular hypermap may admit a symmetry that induces a reversal of some local ori-
entation of the supporting surface. At the group theory level, this is equivalent to the
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existence of an automorphism ϑ of a (k, l, m)-group G presented as above, such that ϑ
inverts two of the three generators. Such regular hypermaps are called reflexible. If ϑ
is actually given by conjugation of some element of order 2 in G, then the correspond-
ing regular hypermap admits two kinds of surface realisations: one on a non-orientable
surface S, with G being the full automorphism group of the hypermap, and another one
on an orientable surface which is a double cover of S, with the full automorphism group
isomorphic to the direct product of G and the cyclic group of order 2. The Euler charac-
teristic χ of the regular hypermap of type (k, l, m) associated with a rotational symmetry
group G of type (k, l, m) is given by χ = |G|(1/k + 1/l − 1/m) in the orientable case, and
χ = |G|(1/k + 1/l − 1/m)/2 if the supporting surface of the hypermap is non-orientable.

In 1969, Sah [10] extended some work of Macbeath [9] by enumerating orientably-regular
hypermaps of a given type (k, l, m) with automorphism groups isomorphic to PSL(2, q) or
PGL(2, q). Further results in this area were obtained in [7, 8], where certain necessary and
sufficient conditions for existence of an orientably-regular map of a given type were found.
The aim of this paper is to extend the investigation to orientable reflexible hypermaps and
to non-orientable regular hypermaps and provide much more details about the associated
computations, including explicit generating sets for the associated groups. In a forthcoming
paper [2] we will apply the results of this refined approach to the classification of all regular
maps (that is, hypermaps in which one of the parameters k, l, m is equal to 2) of Euler
characteristic equal to −p2 for some prime p. For completeness, we mention that to the
best of our knowledge, the only other classes of classical groups for which a (partial)
classification of regular maps has been considered are the Suzuki groups and Ree groups
(see [3, 4]).

A triple (k, l, m) is called hyperbolic, parabolic, or elliptic, according to whether 1/k +
1/l +1/m− 1 is negative, zero, or positive. We will restrict ourselves to hyperbolic triples.
The reason for this restriction is that in the parabolic case (where 1/k + 1/l + 1/m = 1),
the only case where G is a projective linear group is G ∼= PSL(2, 3) ∼= A4

for the triple (3, 3, 3), and for the elliptic type (where 1/k + 1/l + 1/m > 1), there
are only four such cases, namely G ∼= PSL(2, 2) = PGL(2, 2) ∼= S3 for the triple (3, 2, 2),
G ∼= PSL(2, 3) ∼= A4 for the triple (3, 3, 2), G ∼= PGL(2, 3) ∼= S4 for (4, 3, 2), and G ∼=
PSL(2, 4) ∼= PGL(2, 4) ∼= PSL(2, 5) ∼= A5 for (5, 3, 2). Note that in a hyperbolic triple the
smallest element cannot be less than 2; if it is equal to 2 then the remaining entries are at
least 3.

2 Conjugacy classes of representative triples

Let (k, l, m) be a fixed hyperbolic triple and let f be an isomorphism taking a finite (k, l, m)-
group G with a partial presentation of the form G = 〈 r, s, t | rk = sl = tm = rst = . . . = 1 〉
onto PSL(2, F ) or PGL(2, F ′) where F and F ′ are fields of characteristic p. From the point
of view of the associated computations with matrices f(r), f(s) and f(t) it turns out to
be of advantage to consider first the situation in the special linear group SL(2, K) where
K is an algebraically closed field of characteristic p. The results will then be carried over
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to PSL(2, K) by the natural projection given by M 7→ M = ±M for any 2 × 2 matrix
M ∈ SL(2, K), which will also help determine the subfields F and F ′. To facilitate the
exposition, any of the two matrices M,−M ∈ SL(2, K) will be called a representative of
M ∈ PSL(2, K).

The next few observations will address orders and conjugacy classes of elements in
SL(2, K). If p is odd, then SL(2, K) contains exactly one involution, namely, −I, where I
is the 2 × 2 identity matrix. All elements of order p and 2p in SL(2, K) are known to be
conjugate to the transvections U and −U , respectively, where

U =

[

1 1
0 1

]

(1)

and there are no elements of order divisible by p for any other multiple of p. Equivalently,
if p is odd, the order of an element J ∈ SL(2, K) is p (respectively 2p) if and only if
J 6= ±I and the trace tr(J) of J is equal to 2 (respectively −2). If p = 2, then all elements
in SL(2, K) of order 2 are conjugate to U , and there are no elements there of any even
order greater than 2. For any prime p, an element of SL(2, K) of order i, where i ≥ 3 and
gcd(i, p) = 1, is known to be conjugate to one (and hence to both) of the matrices

V (ξ) =

[

ξ 0
0 ξ−1

]

and W (ω) =

[

0 −1
1 ω

]

(2)

where ξ is a primitive i th root of unity over Kp = Fp, and ω = ξ + ξ−1. In other words, an
element J ∈ SL(2, K) has order i, where i is as above, if and only if tr(J) = ω = ξ + ξ−1

for some primitive i th root of unity ξ over Fp. Note that if i ≥ 3, we have ω /∈ {2,−2}.
Returning to the isomorphism f introduced at the beginning, let R, S, T ∈ PSL(2, K)

be the images of r, s, t under f ; in particular, RST = I where I is the 2×2 identity matrix.
We will refer to the orders (k, l, m) of R, S, T as the projective orders. Our aim is now to
specify which representatives R, S, T ∈ SL(2, K) of R, S, T we will be working with. This
will depend on the projective orders in the following way. Suppose, for example, that p
is odd and k is even. Since k was assumed to be the order of R ∈ PSL(2, K), it is plain
that the order of both R and −R in SL(2, K) must be 2k. On the other hand, if both p
and k are odd, then the orders of R and −R form the set {k, 2k}. Of course, the similar
holds for S and T . It follows that if p is odd and one of the entries k, l, m is even, then by
suitably combining signs we may choose the representatives R, S, T ∈ SL(2, K) in such a
way that the orders of R, S, and T are 2k, 2l, and 2m, respectively, and RST = I. If p and
all of k, l, m are odd, then we may choose the representatives R, S, T in such a way that
RST = I and their orders are either (k, l, m) or (2k, 2l, 2m); these two cases are mutually
exclusive. If p = 2 then SL(2, K) ∼= PSL(2, K) and R, S, T simply have orders k, l, m.

Triples of matrices (R, S, T ) in SL(2, K) with RST = I and with the orders specified
as above will be called representative triples, and the orders of R, S, T in SL(2, K) will be
called representative orders and denoted by (κ, λ, µ). Representative orders are therefore
related to projective orders as follows. We have (κ, λ, µ) = (2k, 2l, 2m) if p is odd and at

3



least one of k, l, m is even, (κ, λ, µ) = (k, l, m) or (2k, 2l, 2m) if p and all of k, l, m are odd,
and (κ, λ, µ) = (k, l, m) if p = 2. Note that if one of the orders, say k, is a multiple of p,
then it follows from Dickson’s classification that k = p. We can therefore confine ourselves
to triples (k, l, m) with gcd(j, p) = 1 or j = p whenever j ∈ {k, l, m}; such triples will be
called p-restricted. For the corresponding representative order, we have κ ∈ {p, 2p} if p is
odd, and κ = p if p = 2. In particular, if p divides all of k, l, m, then (k, l, m) = (p, p, p) for
all p, and (κ, λ, µ) = (p, p, p) or (2p, 2p, 2p) if p is odd, while (κ, λ, µ) = (p, p, p) if p = 2.

In general there can be many distinct conjugacy classes of representative triples (R, S, T )
having the same p-restricted projective orders (k, l, m) and the same representative orders
(κ, λ, µ). Later we will show that it is possible to determine the number of such conjugacy
classes by means of counting the corresponding trace triples (tr(R), tr(S), tr(T )). Earlier
in this section we saw that if p is odd and ν is the order of an element M ∈ SL(2, K) with
M 6= ±I, then one of the following three possibilities occurs:

1. ν ≥ 3 and (ν, p) = 1, which happens if and only if tr(M) = ων = ξν + ξ−1
ν , where ξν

is a ν th primitive root of unity;

2. ν = p, which happens if and only if tr(M) = 2;

3. ν = 2p, which happens if and only if tr(M) = −2.

To capture this in a single formula we extend the definition of ων also to ν = p and ν = 2p
by stipulating that ων = ξν + ξ−1

ν , where ξν is the (ν/p)th primitive root of unity e2πiν/p;
this gives ωp = 2 and ω2p = −2. If p = 2, then we just change 2 to 0 in part 2 of the above,
and omit part 3 (where ν = 2p). With this all applied to ν = κ, λ and µ, the trace triple
corresponding to the above representative triple (R, S, T ) is simply (ωκ, ωλ, ωµ).

In the remaining part of this section we prove the important fact that, up to a certain
small class of exceptions, any two representative triples having both the same projective
and representative orders and the same trace triple are conjugate in SL(2, K).

It will be of advantage to consider first the case where at least two of k, l, m are equal
to p. If p = 2, the projective group 〈R, S, T 〉 is dihedral and therefore out of the scope of
our interest. We will therefore assume without loss of generality that (k, l, m) = (p, p, m)
where p is an odd prime.

Proposition 1 Let p be an odd prime and let (k, l, m) be a p-restricted hyperbolic triple
such that k = l = p and m ≥ 2. Let (R, S, T ) be a representative triple corresponding to the
representative orders (κ, λ, µ) = (εp, εp, εm) for suitable ε ∈ {1, 2}. Assume that the group
〈R, S, T 〉 is not abelian. Then, (κ, λ, µ) 6= (p, p, p), and the triple (R, S, T ) is conjugate in
SL(2, K) to the triple (R1, S1, T1), where

R1 = ±
[

1 1
0 1

]

, S1 = ±
[

1 0
ωµ − 2 1

]

and T1 =

[

1 −1
2 − ωµ ωµ − 1

]

and the signs are taken simultaneously (with + for ε = 1, and − for ε = 2).
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Proof. We know that any element M ∈ SL(2, K) of order p (2p) is conjugate to the
matrix U (−U) given in (1). Without loss of generality we therefore may assume that

R = ±
[

1 1
0 1

]

and S = ±
[

a b
c 2 − a

]

where (a − 1)2 + bc = 0 (the determinant condition) and the positive (negative) signs are
taken simultaneously if κ = λ = p or 2p, respectively, giving the traces 2 and −2. From
RST = I we obtain tr(T ) = 2 + c. It can be checked that RS = SR if and only if
c = 0. Since the group 〈R, S, T 〉 = 〈R, S〉 is assumed to be non-abelian, we have c 6= 0.
Let M = (mij) ∈ SL(2, K) be the 2 × 2 matrix such that m11 = m22 = 1, m21 = 0 and
m12 = (1 − a)c−1. It can be checked that MRM−1 = R while also

MSM−1 = ±
[

1 0
c 1

]

and MTM−1 =

[

1 −1
−c 1 + c

]

.

Since conjugation preserves traces, tr(T ) = 2 + c 6= 2, and therefore (κ, λ, µ) 6= (p, p, p).
In our notation, we have tr(T ) = ωµ with ωµ = ξµ + ξ−1

µ , where ξµ is a primitive µ th root
of unity over Fp if (µ, p) = 1 and a primitive (µ/p) th root of unity if µ = 2p. This gives
c = ωµ − 2 and leads to the three matrices in our statement. 2

It remains for us to consider the case where at most one of the projective orders is p.
We may assume without loss of generality that both k and l are coprime to p, and k ≥ 3.

Proposition 2 Let p be a prime and let (k, l, m) be a p-restricted hyperbolic triple such that
k ≥ 3 and k, l 6= p. Let (R, S, T ) be a representative triple associated with the projective
orders (k, l, m) and representative orders (κ, λ, µ). Let (ωκ, ωλ, ωµ) be the corresponding
trace triple, let ξκ be a κ th primitive root of unity such that ωκ = ξκ + ξ−1

κ , and let
D = ω2

κ + ω2
λ + ω2

µ −ωκωλωµ − 4. Assume that 〈R, S, T 〉 is not isomorphic to a subgroup of
the upper triangular subgroup of SL(2, K). Then D 6= 0 and the triple (R, S, T ) is conjugate
in SL(2, K) to the following triple (R2, S2, T2), with η = (ξκ − ξ−1

κ )−1:

R2 =

[

ξκ 0
0 ξ−1

κ

]

, S2 = η

[

ωµ − ωλξ
−1
κ −D

1 ωλξκ − ωµ

]

, T2 = η

[

ωλ − ωµξ
−1
κ ξκD

−ξ−1
κ ωµξκ − ωλ

]

.

Remark. Later we show that whenever D 6= 0, the matrices given in the proposition
above indeed generate a group isomorphic to PSL(2, F ) or PGL(2, F ) for some finite field
F of characteristic p.

Proof. Since any element M ∈ SL(2, K) of order κ coprime to p is conjugate to the
matrix V (ξκ) in (2) for a suitable primitive κ th root of unity ξκ, we may assume that

R =

[

ξκ 0
0 ξ−1

κ

]

, S =

[

a b
c d

]

, and T =

[

dξ−1
κ −bξκ

−cξ−1
κ aξκ

]

,
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where ad− bc = 1, tr(S) = a + d = ωλ, and tr(T ) = aξκ + dξ−1
κ = ωµ; the reader should be

aware of the subtleties in the definition of ωµ in the case where µ ∈ {p, 2p}. Since k ≥ 3
and gcd(k, p) = 1, we have ξκ − ξ−1

κ 6= 0. The two equations coming from the traces have
the unique solution a = η(ωµ − ωλξ

−1
κ ) and d = η(ωλξκ − ωµ), where η = (ξκ − ξ−1

κ )−1.
A computation shows that the determinant condition turns into bc = −η2D, which is the
only condition on b and c we have. If D = 0, then 〈R, S〉 = 〈R, S, T 〉 is clearly isomorphic
to a subgroup of the upper triangular subgroup of SL(2, K), contrary to our assumptions.
Hence we have D 6= 0. It can be checked that if M = diag(u, u−1) where 0 6= u ∈ K, then

MRM−1 = R and MSM−1 =

[

a u2b
u−2c d

]

.

We may choose u ∈ K such that u2b = −ηD and u−2c = η. Equivalently, up to conjugation,
we may assume that b = −ηD and c = η. This gives the matrices in the statement of the
Proposition. 2

Summing up the two results yields the announced one-to-one correspondence between
conjugacy classes of representative triples and their trace triples. The formulation is uni-
versal and depends only on the values of D = D(ωκ, ωλ, ωµ). Note that if k = l = p, then
ωκ = ωλ and they both are equal to the sum of the κ/p th root of unity and its reciprocal,
which is 2 or −2, and the expression for D then simplifies to D = (ωµ − 2)2.

Proposition 3 Let p be a prime and let (k, l, m) be a p-restricted, hyperbolic triple. As-
sume that D = D(ωκ, ωλ, ωµ) 6= 0 for any triple (κ, λ, µ) of representative orders and any
trace triple (ωκ, ωλ, ωµ). Then the conjugacy classes of representative triples (R, S, T ) as-
sociated with the projective orders (k, l, m) and the representative orders (κ, λ, µ) are in a
bijective correspondence with the trace triples (ωκ, ωλ, ωµ).

Proof. What remains to be proved is that given a trace ω, the pair {ξ, ξ−1} of primitive
roots such that ω = ξ + ξ−1 is uniquely determined. This follows from the observation that
ξ and ξ−1 are roots of the polynomial x2 − ωx + 1. 2

We now derive a necessary and sufficient condition for D = D(ωκ, ωλ, ωµ) to be zero.
Recall that if ν is any of κ, λ, µ, then ων = ξν + ξ−1

ν where ξν 6= 0 is the corresponding ν th
root of unity. Substituting this into the expression for D, multiplying by ξ2

κ and simplifying
we obtain the factorisation ξ2

κD = (ξκ − ξλξµ)(ξκ − ξ−1
λ ξ−1

µ )(ξκ − ξ−1
λ ξµ)(ξκ − ξλξ

−1
µ ). Since

ξκ 6= 0, this shows that D = 0 if and only if ξκξ
ε
λξ

δ
µ = 1 for some ε, δ ∈ {±1}. Raising

the last equation to the power of [λ, µ] gives ξ
[λ,µ]
κ = 1, which shows that κ divides [λ, µ].

Moreover, also λ divides [κ, µ], and µ divides [κ, λ], by the symmetry of the function D.
It is easy to see that these three conditions are satisfied simultaneously if and only if, for
each prime p′, the largest power of p′ dividing one of κ, λ, µ divides at least two of them.
We summarize this in the following lemma.

6



Lemma 1 In the above notation, D = 0 if and only if ξκξ
ε
λξ

δ
µ = 1 for some ε, δ ∈ {±1}.

In particular, if there exists a prime p′ such that the largest power of p′ dividing one of
k, l, m divides none of the remaining entries, then D 6= 0 for any choice of representative
triples (κ, λ, µ) and primitive roots (ξκ, ξλ, ξµ).

Finally, we note that for any triple (k, l, m) of projective orders, the number of all
triples of primitive roots (ξκ, ξλ, ξµ) associated with the representative orders (κ, λ, µ) and
such that D = D(ωκ, ωλ, ωµ) 6= 0 has been determined in [1].

3 Adjoining an involution that inverts two generators

Let (k, l, m) be a hyperbolic triple and let H be a group with presentation H = 〈 x, y, z | x2 =
y2 = z2 = (yz)k = (zx)l = (xy)m . . . = 1 〉. Keeping the same terminology and notation as
introduced before, let H be a subgroup of PSL(2, K) where K is an algebraically closed
field of characteristic p. Taking r = yz, s = zx, and t = xy, we see that H contains a
subgroup G with presentation G = 〈 r, s, t | rk = sl = tm = rst = . . . = 1 〉 of index at most
2 in H . We can therefore use results of the previous section and study the ways G can be
extended by adjoining an involution z such that both rz and zs are involutions.

We first show that if such a z exists, then it is unique. Indeed, let z and z′ be two
involutions such that the elements u = rz, v = zs, u′ = rz′ and v′ = z′s are all involutions.
Then, z′z = u′u = v′v; denote this common element by w. A simple calculation shows that
rw = u′z′ · z′z = u′z = u′u · uz = wr, and, similarly, sw = ws. It follows that w centralises
G. But G has trivial centre (since G is isomorphic to PSL(2, K) or PGL(2, K)), and thus
w = 1, and z′ = z. Hence the extension of G by z is unique, if it exists.

Existence of such an extension has been known as folklore; however, we need to derive
an explicit form for z suitable for later consideration. Assume that the group G has been
mapped onto a subgroup of PSL(2, F ) where F = Fp(ωκ, ωλ, ωµ) < K as before, via the
generating triples R, S, T ∈ SL(2, F ) listed in Propositions 1 and 2. In SL(2, K), we are
therefore looking for an element Z ∈ SL(2, K) such that each of Z, Y = RZ, and X = ZS
has order 4 if p is odd, or order 2 if p = 2. We begin with the situation where two of the
projective orders are equal to p, in which case p must be odd.

Proposition 4 Let p be an odd prime and let (k, l, m) be a p-restricted hyperbolic triple
such that k = l = p and m ≥ 2. Let (R, S, T ) be a representative triple corresponding
to the representative orders (κ, λ, µ) = (εp, εp, εm) for a suitable ε ∈ {1, 2}. Assume
that the group 〈R, S, T 〉 is not abelian. Then (κ, λ, µ) 6= (p, p, p), and there exists some
Z ∈ SL(2, K) such that each of Z, Y = RZ and X = ZS has order 4. Moreover, the triple
(X, Y, Z) is conjugate in SL(2, K) to the triple (X1, Y1, Z1), where

X1 = ±α

[

1 0
2 − ωµ −1

]

, Y1 = ±α

[

1 −1
0 −1

]

and Z1 = α

[

1 0
0 −1

]

,

with α2 = −1 and the signs taken simultaneously ( + for ε = 1, and − for ε = 2).
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Proof. If p is odd, then an element Z ∈ SL(2, K) has order 4 if and only if its trace is
equal to zero, that is,

Z =

[

A B
C −A

]

where A2 + BC = −1; this is the determinant 1 condition. Let R1 and S1 be the matrices
from Proposition 1. Then,

Y = R1Z = ±
[

A + C B − A
C −A

]

,

which shows that Y has order 4 if and only if C = 0. Using this in evaluating X = ZS1

we obtain

X = ZS1 = ±
[

A + B(ωµ − 2) B
A(2 − ωµ) −A

]

,

and therefore X has order 4 if and only if B(ωµ − 2) = 0. In the proof of Proposition 1 we
saw that ωµ 6= 2, and so X has order 4 if and only if B = 0. Therefore Z = diag(A,−A)
where A2 = −1. Letting Z1 = Z, Y1 = Y , X1 = X and α = A gives our statement. 2

We now clarify the situation for the remaining hyperbolic triples.

Proposition 5 Let p be a prime and let (k, l, m) be a p-restricted hyperbolic triple such that
k ≥ 3 and both k and l are coprime to p. Let (R, S, T ) be a representative triple associated
with the projective orders (k, l, m) and representative orders (κ, λ, µ). Let (ωκ, ωλ, ωµ) be
the corresponding trace triple, let ξκ be a κ th primitive root of unity such that ωκ = ξκ+ξ−1

κ ,
and let D = ω2

κ + ω2
λ + ω2

µ − ωκωλωµ − 4 6= 0. Then there exists a Z ∈ SL(2, K) such that
each of Z, Y = RZ and X = ZS has order 4. Moreover, the triple (X, Y, Z) is conjugate
in SL(2, K) to the triple (X2, Y2, Z2) where

X2 = ηβ

[

D D(ωλξκ − ωµ)
ωµ − ωλξ

−1
κ −D

]

, Y2 = β

[

0 ξκD
ξ−1
κ 0

]

, Z2 = β

[

0 D
1 0

]

,

with β = −1/
√
−D and η = (ξκ − ξ−1

κ )−1.

Proof. First, let p be odd. Take the same general Z ∈ SL(2, K) of order 4 as at the
beginning of the previous proof. Let R2 and S2 be the matrices from Proposition 2. Then

Y = R2Z =

[

ξκA ξκB
ξ−1
κ C −ξ−1

κ A

]

,

which implies that Y has order 4 if and only if A = 0. We use this in determining X = ZS1

and obtain

X = ZS1 = η

[

B B(ωλξκ − ωµ)
B−1(ωλξ

−1
κ − ωµ) B−1D

]

;
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note that η 6= 0. It follows that X has order 4 if and only if B2 = −D. Letting Z1 = Z,
Y1 = Y , X1 = X and β = −B−1, we obtain the matrices as in the statement of our
Proposition.

If p = 2, then Z ∈ SL(2, K) = PSL(2, K) has order 2 if and only if it has the same
form as used in the previous proof, and hence the above conclusion for X1, Y1 and Z1 is
valid also in this case. 2

We note that, in the notation of the previous two Propositions, conjugation by Zi inverts
Ri and Si, and similarly, conjugation by Yi and Xi invert Ri, Ti and Si, Ti, respectively, for
i = 1, 2.

4 Groups generated by representative triples

In order to determine exactly the projective group 〈R, S, T 〉 arising from a representative
triple (R, S, T ) of elements of SL(2, K), we first determine the smallest field F < K with
the property that 〈R, S, T 〉 is isomorphic to a subgroup of SL(2, F ). Let K have prime
characteristic p. If F is any field of characteristic p, we denote by Fp

∼= GF (p) the prime
field of F . For any collection α, β, . . . of elements of K let Fp(α, β, . . .) denote the smallest
subfield of K containing all of α, β, . . . .

Proposition 6 Let p be a prime and let (k, l, m) be a p-restricted hyperbolic triple. Let
(R, S, T ) be a representative triple corresponding to projective orders (k, l, m) and represen-
tative orders (κ, λ, µ). Let ωκ, ωλ and ωµ be such that D 6= 0. Let F0 be the smallest field
of characteristic p such that the group 〈R, S, T 〉 is isomorphic to a subgroup of SL(2, F ).
Then F0 = Fp(ωκ, ωλ, ωµ).

Proof. Let F = Fp(ωκ, ωλ, ωµ). Observe that the traces ωκ, ωλ, and ωµ of R, S and
T must be contained in the minimal field F0 of characteristic p such that 〈R, S, T 〉 is
isomorphic to a subgroup of SL(2, F0). This shows that F0 ≥ F . We need to establish the
reverse inclusion.

By Proposition 1 we have F0 = F if at least two of the entries k, l, m are equal to
p. Consider therefore the situation where k ≥ 3, and k and l are coprime to p, and
either m = p or gcd(m, p) = 1. Proposition 2 now shows that the group 〈R, S, T 〉 is
isomorphic to a subgroup of SL(2, F ∗) where F ∗ = Fp(ξκ, ωλ, ωµ). Since ξκ and ξ−1

κ are
roots of the polynomial x2 − ωκx + 1, the degree of F ∗ over F is at most 2. Assume
that ξκ /∈ F (for otherwise there is nothing to prove). Let ρ∗ be the unique non-trivial
(involutory) automorphism of F ∗ that fixes F pointwise; it follows that ρ∗(ξκ) = ξ−1

κ .
A direct calculation using the matrices R = R2 and S = S2 from Proposition 2 shows
that ρ∗(R) = R−1 and ρ∗(S) = S−1. The same effect on R and S, however, arises when
conjugating by the matrix Z = Z2 from Proposition 5; that is, Z−1RZ = R−1 and Z−1SZ =
S−1. It follows that ρ∗ and conjugation A 7→ Z−1AZ induce the same automorphisms of
the group 〈R, S〉 = 〈R, S, T 〉.

9



Consider now the subgroup H∗ of all the elements A ∈ SL(2, F ∗) such that ρ∗(A) =
A. It is well known that H∗ ≃ SL(2, F ). Let H∗

Z be the subgroup of all the matrices
B ∈ SL(2, F ∗) such that ρ∗(B) = Z−1BZ. From what we saw above we may deduce
that 〈R, S, T 〉 is a subgroup of H∗

Z . Our strategy now will be to prove that H∗ ∼= H∗

Z .
Having established this, it is sufficient to observe that SL(2, F ) ≤ 〈R, S, T 〉 ≤ H∗

Z
∼= H∗ ∼=

SL(2, F ), which implies that F0 = F .

We prove that H∗ ∼= H∗

Z by exhibiting a matrix V ∈ GL(2, F̂ ), where either F̂ = F ∗ or
[F̂ : F ∗] = 2, such that V Z = ρ∗(V ). Then it is easy to see that V −1H∗V = H∗

Z . Let β be
the element we have from Proposition 5. If β /∈ F , then β ∈ F ∗ and ρ∗(β) = −β. In this
case we may set

V =

[

1 β−1

β −1

]

and check that V Z =

[

1 −β−1

−β −1

]

= ρ∗(V ) .

On the other hand, if β ∈ F , that is, if ρ∗(β) = β, then we need to to go beyond F ∗. Let
F̂ be an extension of F ∗ of degree 2, let θ be a primitive element of F̂ , and let a = θ(q2−1)/2

where q = |F |. Then the automorphism ρ̂ of F̂ given by x 7→ xq has the property that
ρ̂↾F ∗ = ρ∗ and ρ̂2(a) = −a. Now for the matrix V we may take

V =

[

a β−1ρ̂(a)
βρ̂(a) −a

]

.

We leave the remaining details of the calculation to the reader. 2

We will now show that the degree of Fp(ωκ, ωλ, ωµ) depends only on p, κ, λ and µ, and
is independent on particular choices of primitive roots of unity. As we know, representative
orders κ, λ and µ have the property that if an entry is a multiple of p, then it is equal to
p or 2p (with the second possibility out of consideration when p = 2).

Lemma 2 Let i be a positive integer coprime to p, let ξ be a primitive i th root of unity,
and let ω = ξ + ξ−1. Then the degree of Fp(ω) over Fp is the smallest positive integer j
such that i divides pj − 1 or pj + 1.

Proof. Let δ = [Fp(ω):Fp], and note that the degree d = [Fp(ξ):Fp] is the smallest
positive integer j for which i divides pj − 1. Observe that ξ is a root of the quadratic
polynomial x2 − ωx + 1 over Fp(ω), and so the degree [Fp(ξ) : Fp(ω)] is either 1 or 2. If
d is odd, then [Fp(ξ) : Fp(ω)] = 1, which implies that δ = d. Let now d be even. Then
[Fp(ξ):Fp(ω)] = 2 if and only if the unique non-trivial Galois automorphism of Fp(ξ) over
Fp(ω) of order 2 fixes the element ω. We know that this Galois automorphism is given
by z 7→ zq where q = pd/2. It is readily verified that (ξ + ξ−1)q = ξ + ξ−1 if and only if
(ξq+1 − 1)(ξq−1 − 1) = 0, which is equivalent to the condition that i divides q + 1 or q − 1.
In both cases, δ is the smallest j such that i divides pj + 1 or pj − 1. 2
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For a p-restricted hyperbolic triple (k, l, m), let e(k, l, m) be the smallest positive integer
e such that each n ∈ {k, l, m} \ {p} divides pe+1

2ǫ or pe−1
2ǫ , where ǫ is 0 or 1 depending on

whether p is even or odd, respectively.

Proposition 7 In the above notation, the degree of Fp(ωκ, ωλ, ωµ) over Fp is equal to
e(k, l, m). In particular, Fp(ωκ, ωλ, ωµ) depends only on the projective orders (k, l, m) and
not on the choice of representative orders (κ, λ, µ).

Proof. Since ων is ±2 ∈ Fp if p divides ν, by Lemma 2 it suffices to show that the
statement of the proposition is equivalent to the claim that the degree of Fp(ωκ, ωλ, ωµ)
over Fp is the smallest e such that each ν ∈ {κ, λ, µ}\{p, 2p} divides either pe−1 or pe +1.

This is clearly true whenever p = 2, or p is odd and one of κ, λ, µ is divisible by 4, since
in these two cases (κ, λ, µ) = (2k, 2l, 2m) or (k, l, m), respectively.

We may thus assume that p is odd and none of κ, λ, µ is divisible by 4. Then k, l, m
are all odd, and (κ, λ, µ) = (2k, 2l, 2m) or (k, l, m). For an odd integer n, however, the
conditions that 2n divides pe ± 1 and n divides pe ± 1 are equivalent, and the statement of
the proposition is again equivalent to the above claim. 2

For brevity, in the remaining part of this section we set F = Fp(ωκ, ωλ, ωµ). From
the analysis done up to this point we conclude that, under the assumptions of either
Proposition 1 or Proposition 2, the subgroup 〈R, S, T 〉 of PSL(2, K) is actually a subgroup
of PSL(2, F ), not contained in any PSL(2, F ′) where F ′ is a proper subfield of F . We then
have only two possibilities: either 〈R, S, T 〉 ∼= PSL(2, F ), or, if p is odd and [F : Fp] is
even, we may have 〈R, S, T 〉 ∼= PGL(2, F ′) where F ′ is the unique subfield of F such that
[F : F ′] = 2. In what follows we will identify the conditions under which the second case
occurs. We will assume henceforth that p is an odd prime.

Assume that the order of |F | is q2 where q is a power of p. Let F ′ be the subfield of F
such that [F : F ′] = 2, that is, |F ′| = q, and let ρ : x 7→ xq be the unique non-trivial Galois
automorphism of F that fixes F ′ pointwise. Clearly, ρ extends to elements of SL(2, F ) and
PSL(2, F ) in the obvious way, and we will use the same symbol ρ for these extensions.
Soon we will need the following observation regarding changing signs by ρ.

For convenience, we will write c |2 (2d) if c divides 2d but not d. Then, referring to the
above notation, we have:

Lemma 3 Let ω = ξ+ξ−1 where ξ is an i th primitive root of unity in some field containing
F . Then, ρ(ω) = −ω if and only if ρ(ξ) = −ξ or ρ(ξ) = −ξ−1, which is equivalent to
i |2 (2q − 2) or i |2 (2q + 2), respectively. In particular, if ρ(ξ) = −ξ for some i th primitive
root of unity, then this holds for all the i th primitive roots of unity; the same applies to
the relation ρ(ξ) = −ξ−1.

Proof. Since ρ(x) = xq, we have ρ(ω) = −ω if and only if ξq +ξ−q = −ξ−ξ−1, which is
equivalent to (ξq−1 +1)(ξq+1 +1) = 0, and this is easily seen to be the same as stating that
ρ(ξ) = −ξ or ρ(ξ) = −ξ−1. The factorisation together with the fact that the order of ξ is
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i shows that the above occurs if and only if i |2 (2q − 2) or i |2 (2q + 2), respectively. The
last statement in the Lemma follows from the fact that the conditions on i are arithmetic
and do not refer to a particular i th primitive root. 2

We return to our discussion about a possible isomorphism of 〈R, S, T 〉 with the group
PGL(2, F ′). There is a “canonical” copy H of PGL(2, F ′) in PSL(2, F ) given by H =
{A ∈ PSL(2, F ) : ρ(A) = A}. Let HZ = {A ∈ PSL(2, F ) : ρ(A) = ZAZ}. The fact
that H ∼= HZ can be derived in exactly the same way as shown at the end of the proof
of Proposition 6. With the help of this we prove the following convenient criterion for
deciding if 〈R, S, T 〉 is isomorphic to PGL(2, F ′).

Proposition 8 In the notation of the preceding paragraph, we have 〈R, S, T 〉 ∼= PGL(2, F ′)
if and only if the set {R, S, T} has a 2-element subset A such that ρ(tr(A)) = −tr(A) for
A ∈ A and ρ(tr(A)) = tr(A) for A ∈ {R, S, T} \ A.

Remark. Note that if an element A ∈ {R, S, T} is an involution, then the correspond-
ing trace is 0, and thus both preserved and negated by ρ. Hence if one of the projective
orders is 2, then we may have more than one choice for the set A.

Proof. Let (R, S, T ) be a representative triple and let 〈R, S, T 〉 ∼= PGL(2, F ′). We
know that the group 〈R, S, T 〉 is conjugate in PGL(2, F ) to H . Let (R′, S ′, T ′) be a

representative triple such that R
′

, S
′

, T
′

are images of R, S, T under such a conjugation.
Then by the definition of H we have ρ(R′) ∈ {R′,−R′}, and for traces we then obtain
ρ(tr(R)) = ρ(tr(R′)) = ±tr(R′) = ±tr(R); the same holds when R is replaced with S and
T . Since R′S ′T ′ = I and ρ maps each of R′, S ′, T ′ either to itself or to its negative, it
follows that ρ either preserves the traces of all of R′, S ′, T ′, or it changes the trace signs on
two of them while preserving the third; by the above equalities, the same applies to R, S, T .
But ρ cannot preserve all three traces, since then we would have F ′ = F , a contradiction.

For the sufficiency, let R, S, T and F, F ′ be as before; in particular, the group 〈R, S, T 〉
properly contains PSL(2, F ′). Also, we may assume that R, S and T have the form as in
Propositions 1 and 2. Suppose now that ρ changes the sign of the traces of two of R, S, T
and preserves the sign of the third, as specified by the subset A. This immediately rules
out the case of (R, S, T ) described in Proposition 1, since there the (non-zero) traces of
R and S belong to F ′, the field pointwise fixed by ρ, and hence at most one of k, l, m
can be equal to p. If k, l, m 6= p, then without loss of generality we may assume that
A = {R, S}. If precisely one of k, l, m is equal to p, then (as argued before Proposition 2)
we may assume that m = p. But then, since p is odd, we have 0 6= ωµ ∈ F ′, and therefore
ρ has to change the sign of the traces of R and S. We conclude that in all cases, we may
assume that A = {R, S}.

Accordingly, suppose ρ(ωκ) = −ωκ and ρ(ωλ) = −ωλ while ρ(ωµ) = ωµ. From Lemma 3
we know that ρ(ξκ) ∈ {−ξκ,−ξ−1

κ }. By inspection of the matrices R and S in the statement
of Proposition 2 one may check that if ρ(ξκ) = −ξκ, then ρ(R) = −R and ρ(S) = −S, and
if ρ(ξκ) = −ξ−1

κ , then ρ(R) = −R−1 and ρ(S) = −S−1. Recall now the canonical copy H
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of PGL(2, F ′) in PSL(2, F ) and its isomorphic copy HZ . If ρ changes signs of R and S,
then R, S ∈ H . In the second case, where ρ inverts R and S and changes signs, we have
R, S ∈ HZ since conjugation by Z inverts both R and S. Since R and S generate 〈R, S, T 〉,
we conclude that 〈R, S, T 〉 ∼= PGL(2, F ′). 2

We are now in position to show that deciding whether 〈R, S, T 〉 ∼= PGL(2, F ′) can be
reduced to checking certain divisibility conditions. For brevity, we will write a |2 (2b± 2) if
either a |2 (2b + 2) or a |2 (2b − 2); and we will let c | (d ± 1) have the analogous meaning.

In Proposition 7 we saw that e(k, l, m) is the degree of the field Fp(ωκ, ωλ, ωµ) over Fp,
and equals the smallest positive integer e such that each κ, λ, µ coprime to p divides pe±1.

Proposition 9 Let p be an odd prime, let (k, l, m) be a p-restricted hyperbolic triple, and
let (R, S, T ) be a representative triple associated with the projective orders (k, l, m) and
representative orders (κ, λ, µ). Let (ωκ, ωλ, ωµ) be the corresponding trace triple, and let
D = ω2

κ + ω2
λ + ω2

µ − ωκωλωµ − 4. Then 〈R, S, T 〉 ∼= PGL(2, pf) for some f ≥ 1 if and only
if D 6= 0 and the condition (C) below is fulfilled:

(C) either the condition n |2 (pf ±1) holds for exactly two of the three orders k, l, m, while

the third order is p or divides pf±1
2

; or otherwise 2 ∈ {k, l, m} and the condition
n |2 (pf ± 1) holds for all n ∈ {k, l, m}.

Remark. Note that the condition (C) above implies that at least two of k, l, m are
even, and that e(k, l, m) = 2f .

Proof. Suppose that 〈R, S, T 〉 ∼= PGL(2, F ′) for some field of order pf . Note first that
by Proposition 2, D 6= 0. Let K be the algebraic closure of F ′, and let F be the smallest
subfield of K such that 〈R, S, T 〉 ≤ PSL(2, F ). By Propositions 6 and 7, the order of F is
pe(k,l,m). Since [F : F ′] = 2, we have e(k, l, m) = 2f .

By Proposition 8, the Galois automorphism ρ ∈ Gal(F : F ′) negates two of the traces
{tr(R), tr(S), tr(T )} and preserves the third. Note that the trace of any element of order
p is ±2 and is thus preserved by ρ, and that the trace of an element of order 2 is 0 and
is thus both preserved and negated by ρ. In particular, at most one of the orders k, l, m
can be equal to p. If we now apply Lemma 3, we see that the condition ν |2 (2pf ± 2) must
hold for at least two of the entries κ, λ, µ. Note that any integer ν satisfying ν |2 (2pf ± 2)
is divisible by 4, showing that (κ, λ, µ) = (2k, 2l, 2m) and that at least two of the entries
k, l, m are even. Hence the condition n |2 (pf ±1) holds for at least two of the entries k, l, m.

Moreover, if the third entry is not p, then by Lemma 2, we see that it must divide pf
±1
2

.
Note also that if n |2 (pf ± 1) holds for all three of k, l, m, then ρ negates the traces of all
three elements R, T, S, implying that one of k, l, m is 2. This proves (C).

Conversely, assume that all the conditions on D, k, l, m, e (where e = e(k, l, m)) listed
in the statement of our Proposition are fulfilled. Then the generating triple (R, S, T ) is
conjugate to the triple (R2, S2, T2) as in Proposition 2. If the condition n |2 (pf ± 1) holds

for exactly two of the three orders k, l, m and the third order is p or divides pf±1
2

, then by
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Lemma 3, ρ negates the traces of two of R, S, T and fixes the third. The same holds if one
of k, l, m is 2 and the other two satisfy the condition n |2 (pf ±1). Proposition 8 now shows
that the group 〈R, S, T 〉 ∼= 〈R2, S2, T 2〉 is isomorphic to PGL(2, F ′) where [F : F ′] = 2. 2

5 Enumeration

In this section we re-establish the enumeration result of Sah [10] for regular hypermaps
over projective linear groups. Let p be a prime and let (k, l, m) be a p-restricted hyperbolic
triple. We know that if exactly one, or exactly two of k, l, m are equal to p, then we
may assume that m = p or m = l = p, respectively. We need to recall briefly some
of the facts we proved in Section 2. Let (k, l, m)∗ be the set of all representative orders
(κ, λ, µ) associated with (k, l, m), so that (k, l, m)∗ is either {(k, l, m)}, or {(2k, 2l, 2m)}, or
{(k, l, m), (2k, 2l, 2m)}, depending on whether p = 2, or p ≥ 3 and at least one of k, l, m is
even, or all of p, k, l, m are odd, respectively. We will say that the triple (k, l, m) is proper
if D = D(ωκ, ωλ, ωµ) 6= 0 for any (κ, λ, µ) ∈ (k, l, m)∗ and for any choice of ωκ, ωλ, and
ωµ. Finally, for a hyperbolic, p-restricted, proper triple (k, l, m), let T (k, l, m) be the set
of all possible trace triples (ωκ, ωλ, ωµ) where (κ, λ, µ) ∈ (κ, λ, µ)∗. Proposition 3 can now
be re-stated in a form that refers just to the projective orders as follows.

Proposition 10 Let p be a prime and let (k, l, m) be a hyperbolic, p-restricted, proper
triple. Then there is a bijection between the set T (k, l, m) and the set of conjugacy classes
of representative triples (R, S, T ) associated with the projective orders (k, l, m).

New representative triples (R, S, T ) with RST = I in SL(2, K) associated with the
same projective orders (k, l, m) can sometimes be obtained from old ones simply by chang-
ing signs. To see this, suppose, for instance, that both k and l are even. Then, the orders
of both R and −R and of both S and −S are 2k and 2l, respectively, and both (R, S, T )
and (−R,−S, T ) are representative triples. It is clear that the converse holds as well,
that is, if both (R, S, T ) and (−R,−S, T ) are representative triples, then both k and l
are even. Thus, if all k, l, m are even, we may define an equivalence relation on the set of
representative triples with equivalence classes of size 4 formed by the four triples (R, S, T ),
(−R,−S, T ), (−R, S,−T ), and (R,−S,−T ). If exactly two of the k, l, m are even, then
the representative triples come in pairs as we saw above and we again regard the pairs
as equivalence classes. Another way to say this is that when all of k, l, m are even, the
quadruples are just orbits of a free action of Z2 ×Z2 on the set of representative triples; if
exactly one of k, l, m is odd then we have a free action of Z2 representing the sign change.
We will refer to this action of Z2 × Z2 or of Z2 as the sign change action.

Obviously, the sign change actions carries over from the set of representative triples
(R, S, T ) associated with the projective orders (k, l, m) to the set of the corresponding trace
triples T (k, l, m) in a natural way; we will use the symbol ∼S to denote the corresponding
equivalence relation on T (k, l, m). Another natural equivalence relation to be considered
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on T (k, l, m) is the relation ∼G induced by the Galois action arising from application of
the Galois automorphisms of the fields F = Fp(ωκ, ωλ, ωµ) over Fp for (κ, λ, µ) ∈ (k, l, m)∗.
Indeed, the computations made in the previous section show that the classes of ∼G are in
a one-to-one correspondence with orbits of the Galois action extended to the conjugacy
classes of generating triples (R, S, T ). Let ∼ denote the join of ∼S and ∼G on T (k, l, m).
Since the automorphism group of both PSL(2, q) and PGL(2, q) is isomorphic to a semi-
direct product of PGL(2, q) by the Galois group of F over its prime field, we have:

Proposition 11 The number of non-isomorphic regular hypermaps of a proper, hyperbolic,
p-restricted type (k, l, m) with automorphism group isomorphic to a subgroup of PSL(2, F )
is equal to the number of equivalence classes of the relation ∼ on T (k, l, m). 2

For any j such that j = p, or j = 2p, or otherwise gcd(j, p) = 1, define a modification
ϕp of the Euler totient function ϕ by letting ϕp(j) = 1 in the first two cases and ϕp(j) =
ϕ(j) otherwise. The number of distinct elements ωj is then equal to ϕp(j) or ϕp(ν)/2
according to whether j is a multiple of p or not. Let u be the number of entries k, l, m
coprime to p. If at least one of k, l, m is even, then it is easy to see that |T (k, l, m)| =
ϕp(2k)ϕp(2l)ϕp(2m)/2u. In the case where all of k, l, m are odd, we have |T (k, l, m)| =
ϕp(k)ϕp(l)ϕp(m)/2u + ϕp(2k)ϕp(2l)ϕp(2m)/2u = 2ϕp(2k)ϕp(2l)ϕp(2m)/2u.

Observe that the equivalence classes of the sign change equivalence ∼S have size 1, 2,
and 4, depending on whether u = 1, 2, or 3. The number of equivalence classes of ∼S

on T (k, l, m) is therefore equal to ϕp(2k)ϕp(2l)ϕp(2m)/2u+v−1. As regards the equivalence
∼G on T (k, l, m) induced by the Galois action, the number of the corresponding classes
is equal to |T (k, l, m)|/e where e = e(k, l, m) is the degree of the field Fp(ωκ, ωλ, ωµ) over
Fp. It remains for us to determine when two trace triples are equivalent under both ∼S

and ∼G. By the analysis in the previous section, this can happen if and only if both
the sign change action as well as the Galois action changes signs on precisely two of the
entries in a trace triple. But by Lemma 8 and in the associated notation, this occurs
if and only if 〈R, S, T 〉 ≃ PGL(2, F ′). Thus, the number of equivalence classes of ∼
on T (k, l, m) is equal to ϕp(2k)ϕp(2l)ϕp(2m)/(2u+v−1e) if 〈R, S, T 〉 ≃ PSL(2, F ), and to
2ϕp(2k)ϕp(2l)ϕp(2m)/(2u+v−1e) in the case where 〈R, S, T 〉 ≃ PGL(2, F ′). Combining this
with Proposition 9 yields the enumeration result of Sah [10].

Theorem 1 Let p be a prime and let (k, l, m) be a p-restricted, hyperbolic, proper triple.
Let e = e(k, l, m), and let u and v be the number of entries coprime to p and the number
of even entries among k, l, m, respectively.

(1) If p is odd and condition (C) of Proposition 9 is fulfilled, then all the correspond-
ing groups 〈R, S, T 〉 are isomorphic to PGL(2, F ′) where F ′ is the index 2 subfield of
Fp(ωκ, ωλ, ωµ) ≃ Fp(p

e), and the number of all the corresponding pairwise non-isomorphic
hypermaps of type (k, l, m) is equal to

2ϕp(2k)ϕp(2l)ϕp(2m)/(2u+v−1e).
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(2) In all other cases we have 〈R, S, T 〉 ≃ PSL(2, F ) where F = Fp(ωκ, ωλ, ωµ) ≃ Fp(p
e),

and then the number of all such non-isomorphic hypermaps of type (k, l, m) is equal to

ϕp(2k)ϕp(2l)ϕp(2m)/(2u+v−1e).

6 Non-orientable and reflexible regular hypermaps

We now discuss applications of the preceding results to regular hypermaps on non-orientable
surfaces and regular reflexible hypermaps on orientable surfaces. Keeping to the notation
introduced in the previous sections, this amounts to comparing the group 〈R, S, T 〉 with
the group 〈X, Y , Z〉 where Z is given by Proposition 4 or 5. The existence of Z in all cases
shows that such hypermaps are all reflexible. Also, from the outline in the Introduction
it is clear that a hypermap with rotational symmetry group 〈R, S, T 〉 has a non-orientable
realisation if and only if 〈R, S, T 〉 = 〈X, Y , Z〉. We now identify exactly when this happens.

Proposition 12 Let p be a prime and let (k, l, m) be a p-restricted hyperbolic triple. Sup-
pose that ωκ, ωλ and ωµ are such that D 6= 0. Let F and F ′ be as in Theorem 1. Then
all of the corresponding regular hypermaps of type (k, l, m) with rotation group 〈R, S, T 〉
isomorphic to PSL(2, F ) or PGL(2, F ′) are reflexible. Moreover,

(1) if 〈R, S, T 〉 ∼= PGL(2, F ′), then the hypermaps all admit a realisation on a non-
orientable surface;
(2) if 〈R, S, T 〉 ∼= PSL(2, F ) and if two of k, l, m are equal to p, then the corresponding
hypermaps admit a realisation on a non-orientable surface if and only if |F | ≡ 1 (mod 4);

(3) if 〈R, S, T 〉 ∼= PSL(2, F ) and if at most one of k, l, m is equal to p, then the hypermaps
admit a realisation on a non-orientable surface if and only if −D is a square in F .

Proof. Let us begin with the case where the rotational symmetry group 〈R, S, T 〉 of
a hypermap of type (k, l, m) is isomorphic to PGL(2, F ′) where [F : F ′] = 2 and F =
Fp(ωκ, ωλ, ωµ) for some prime p 6= 2. Generators R, S, T as elements of SL(2, F ) are now
given by Proposition 2, and the inverting involution Z = Z2 is as in Proposition 5. Then,
〈X, Y , Z〉 = 〈R, S, T , Z〉 is a proper subgroup of PSL(2, F ) of order at least |PGL(2, F ′)|.
By Dickson’s classification of subgroups of PSL(2, F ) we must have 〈R, S, T 〉 = 〈X, Y , Z〉.
We conclude that in this case 〈R, S, T 〉 is the automorphism group of a non-orientable
regular hypermap of type (k, l, m). Note that the same can be obtained by the following
more intrinsic argument. By the proof of Proposition 8 we know that we may assume
that the elements R and S given by Proposition 2 lie either in the canonical copy H ≃
PGL(2, F ′) contained in PSL(2, F ) or in its isomorphic copy HZ . For the non-trivial Galois
automorphism ρ of the extension F over F ′ applied to the explicit form of the matrix Z2

we have ρ(D) = D, and ρ(β) = β or ρ(β) = −β according to whether −D is a square in
F ′ or not. At any rate, we have ρ(Z) = Z and hence Z lies in both H, HZ ≃ PGL(2, F ′),
that is, 〈R, S, T 〉 = 〈X, Y , Z〉.

Suppose now that the group 〈R, S, T 〉 is isomorphic to PSL(2, F ). If k = m = p, then
p is odd and F = Fp(ωµ). Proposition 4 implies that for Z = Z1 we have Z ∈ PSL(2, F )
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if and only if −1 is a square in F , which occurs if and only if |F | ≡ 1 (mod 4). If k, m 6= p,
then F = Fp(ωκ, ωλ, ωµ) and the inverting involution is Z = Z2, given by Proposition 5.
An inspection of the form of Z and of the groups H∗ and H∗

Z (for odd p) that appear in
the second part of the proof of Proposition 6 shows that Z ∈ PSL(2, F ) if and only if −D
is a square in F . 2

A regular hypermap of type (k, l, m) is said to be a regular map if one of the parameters
k, l, m is equal to 2. For specific applications we will be particularly interested in regu-
lar maps with the groups 〈X, Y , Z〉 isomorphic to general projective linear 2-dimensional
groups. Proposition 12 lists necessary and sufficient conditions for a regular hypermap
(and hence also for a regular map) to have such a group. In the case of maps, however,
we will need for our applications a much more detailed knowledge about the membership
of the involutory generators X, Y , Z in the unique subgroup of index 2 in 〈X, Y , Z〉. The
result we need for regular maps can actually be formulated for hypermaps, which we will
do (with pointing out the situation for maps in appropriate places).

We begin with the easy case where the group 〈X, Y , Z〉 ∼= PGL(2, F ) contains 〈R, S, T 〉
as a proper subgroup of index 2 (isomorphic to the unique copy K of PSL(2, F ) in
PGL(2, F )), we obviously have Z /∈ K, and since R, S ∈ K, we must also have X, Y /∈ K.

It remains for us to consider the case where the group satisfies 〈R, S, T 〉 ∼= 〈X, Y , Z〉 ∼=
PGL(2, F ′); recall that the group 〈X, Y , Z〉 and the corresponding rotation group 〈R, S, T 〉
are related by R = Y Z, S = ZX, and T = XY . We know that now p is odd, and among
the orders k, l, m of R, S, T we cannot have both k and l equal to p. Hence we may assume
that either k, l, m 6= p, with m = 2 in the category of maps, or else k, l 6= p and m = p,
with l = 2 in the case of maps. Our goal is to clarify which of X, Y , Z are contained in
the unique subgroup of PGL(2, F ′) isomorphic to PSL(2, F ′). To this end it is sufficient to
assume that we are in the situation described in Proposition 8, where R, S, T are as listed
in Proposition 2 and X, Y, Z are as given by Proposition 5.

Proposition 13 Let 〈X, Y , Z〉 = 〈R, S, T 〉 ∼= PGL(2, F ′) and let K be the (unique) sub-
group of 〈X, Y , Z〉 isomorphic to PSL(2, F ′). Let sq(F ′) be the set of non-zero squares of
F ′. Also let A be a 2-element subset of {R, S, T} such that ρ(tr(A)) = −tr(A) for A ∈ A
and ρ(tr(A)) = tr(A) for A ∈ {R, S, T} \ A.

For k, l, m 6= p we have:

(1) if A = {R, S}, then Z ∈ K and X, Y /∈ K if −D ∈ sq(F ′), while Z /∈ K and X, Y ∈ K
if −D /∈ sq(F ′);

(2) if A = {S, T}, then X ∈ K and Y, Z /∈ K if −D ∈ sq(F ′), while X /∈ K and Y, Z ∈ K
if −D /∈ sq(F ′);

(3) if A = {T, R}, then Y ∈ K and Z, X /∈ K if −D ∈ sq(F ′), while Y /∈ K and Z, X ∈ K
if −D /∈ sq(F ′).

In all these cases, if m = 2, then the elements X and Y commute.

On the other hand, if k, l 6= p and m = p, then A = {R, S}, and
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(4) Z ∈ K and X, Y /∈ K if −D ∈ sq(F ′), while Z /∈ K and X, Y ∈ K if −D /∈ sq(F ′).

Moreover, if l = 2, then X and Z commute.

Proof. Suppose first that A = {R, S} that is, ρ(tr(R)) = −tr(R) and ρ(tr(S)) =
−tr(S). By the arguments developed in the proofs of Propositions 6, 8 and 12 we conclude
that Z ∈ K if and only if −D ∈ sq(F ′); by the same token we have R, S /∈ K. It follows
that X, Y /∈ K if and only if Z ∈ K. Bearing in mind the conditions for k, l, m, this proves
(1) and (4). Now, let k, l 6= p and m = 2; then, k, l ≥ 3. If A = {S, T}, then we set
R′ = S, S ′ = T , T ′ = R, X ′ = Y , Y ′ = Z, and Z ′ = X. Since the order of R′ is ≥ 3, we
may apply the above to the dashed symbols and conclude a dashed version of (1), which
gives (2). Finally, if A = {S, T}, we set R′ = R−1, S ′ = T−1, T ′ = S−1, X ′ = X, Y ′ = Z
and Z ′ = Y . Again, we may apply (1) to the dashed symbols, which translates to (3). The
claims about commuting elements are obvious. 2

7 Remarks

The explicit form of generating matrices given in Propositions 1, 2, 4 and 5 make it possible
to perform computations with the associated groups using software packages such as gap

or Magma. Also, our approach clarifies a large number of details not covered in [10] and
furnishes a different proof of identification of the minimal field (Proposition 6).

It is not clear whether an enumeration result as the one in Theorem 1 could be proved
for regular hypermaps on non-orientable surfaces. While the regular hypermaps with ro-
tational symmetry group isomorphic to PGL(2, F ′) automatically admit a non-orientable
realisation and are enumerated by part (1) of Theorem 1, the hypermaps with rotation
group isomorphic to PSL(2, F ) seem to present difficulties. By part (3) of Proposition 12,
such a hypermap of type (k, l, m) for a particular choice of ωκ, ωλ, ωµ with D 6= 0 admits a
non-orientable realisation if and only if −D is a square in F . The problem here is that for
a fixed type (k, l, m), different choices of values of ωκ, ωλ, ωµ can give all kinds of different
values of D: squares, non-squares, and even zero. To see this, let F = GF (17) and let
(k, l, m) = (4, 8, 8), so that (κ, λ, µ) = (8, 16, 16). It can be checked that 2 is a primitive
8th root of unity in F while 3 and 5 are primitive 16th roots of unity in F . In all our
examples we set ωκ = 2 + 2−1 = 2 − 8 = −6. If ωλ = ωµ = 3 + 3−1 = 3 + 6 = −8, then we
obtain D = 0. Choosing ωλ = ωµ = 5 + 5−1 = 5 + 7 = −5 gives −D = 6, a non-square in
F . Finally, letting ωλ = −8 and ωµ = −5 leads to −D = −4, which is a square in F .
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