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Abstract

A construction is given of a 4-valent %—arc—transitive graph with
vertex stabilizer isomorphic to the dihedral group Dg. The graph
has 10752 vertices and is the first known example of a 4-valent %—
arc-transitive graph with nonabelian vertex stabilizer.

1 Introduction

Throughout this paper graphs are assumed to be finite, simple and,
unless specified otherwise, connected and undirected (but with an implicit
orientation of the edges when appropriate). For the group-theoretic concepts
and notation not defined here we refer the reader to [3, 10].

Given a graph X we let V(X), E(X), A(X) and Aut X be the vertex set,
the edge set, the arc set and the automorphism group of X, respectively. A
graph X is said to be vertex-transitive, edge-transitive and arc-transitive if
its automorphism group Aut X acts transitively on V(X), E(X) and A(X)
respectively. We say that X is %—arc—tmnsz’tive provided it is vertex- and
edge- but not arc-transitive. More generally, by a %—arc—tmnsitive action
of a subgroup G < Aut X on X we mean a vertex- and edge- but not
arc-transitive action of G on X. In this case we say that the graph X is
(G, %)—arc—tmnsitive, and we say that the graph X is (G, %, H)-arc-transitive
when it needs to be stressed that the vertex stabilizers G, (for v € V(X))
are isomorphic to a particular subgroup H < G.
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For further references on %-arc-transitive graphs (which are also referred
to as %—transitive graphs) see the survey paper [6].

Clearly the smallest admissible valency of a %—arc—transitive graph is 4,
which is also the valency of the smallest %-arc-transitive graph, a graph on
27 vertices constructed by Holt [4]. Now in all of the known examples of 4-
valent %—arc—transitive graphs, vertex stabilizers are abelian groups, or more
precisely, elementary abelian 2-groups. On the other hand, %-arc-transitive
graphs with nonabelian vertex stabilizers are known to exist: for example
the graphs constructed by Bouwer [2] (in settling a question raised by Tutte
in [9] about the existence of a %—arc—transitive graph of valency 2k for every
k > 2) happen to have vertex stabilizers which induce the symmetric group
S, on the neighbourhood of the vertex. (This fact is not explicitly mentioned
by Bouwer but it may be easily deduced from his construction.)

The object of this paper is to construct a %—arc—transitive graph of va-
lency 4 with vertex stabilizer isomorphic to Dg.

How does one come about such a construction? The answer may be seen
from the following general comments which provide a connection between
graphs admitting %—arc—transitive group actions and transitive permutation
groups having non-self-paired suborbits.

Let G be a transitive permutation group acting on a set V and let v € V.
There is a 1-1 correspondence between the set of suborbits of G, that is, the
set of orbits of the stabilizer G, on V, and the set of orbitals of G, that
is, the set of orbits in the natural action of G on V x V, with the trivial
suborbit {v} corresponding to the diagonal {(v,v) : v € V'}. For a suborbit
W of G, let A = Ay be the corresponding orbital of G. Then the orbital
graph X(G,V;W) of (G,V) relative to W is the graph with vertex set V'
and arc set A.

The paired orbital of an orbital A is A* = {(v,w) : (w,v) € A}. The
orbital A is said to be self-paired if A® = A, and non-self-paired otherwise;
in the latter case A N A? = (. This notion of (non)-self-pairedness also
carries over to suborbits in a natural way, and it is important to note that
for a non-self-paired suborbit W of G, the orbital graph X(G,V;W) is
an oriented graph, whereas the underlying undirected graph X*(G,V; W)
admits a %-arc-transitive action of G.

In the specific instance (of the situation described above) where V =H
is the set of right cosets of a subgroup H of G and W is a non-self-paired
suborbit of length 2 in the action of G on H (by right multiplication), it



follows that X*(G,H,W) is a 4-valent (G, H, })-arc-transitive graph. In
view of these remarks, our construction of a 4-valent %—arc—transitive graph
with the desired properties will be based on a group G whose action on the
set of right cosets of a subgroup H < G isomorphic to Dg gives rise to a
non-self-paired suborbit of length 2. We shall prove the following result:

Theorem 1.1 There ezists a transitive permutation group G of degree 32
and order 86016, generated by two elements a and b of orders 8 and 24
respectively, such that if H = (p,q,r) where p = a~'b and ¢ = a"'pa and
r = a" 'qa, then:

(1) H = Dg,‘

(ii) {Ha, Hb} is a non-self-paired suborbit of the right action of G on the
set H of right cosets of H in G,

(iii) the underlying graph X* of the orbital graph X(G,H;{Ha, Hb}) is a
connected 4-valent (G, H, %)—arc—tmnsitive graph on 10752 vertices.

In fact G may be taken as the subgroup of S32 generated by
a=(1,2,3,4,5,6,7 8)(9, 10, 11, 12, 13, 14, 15, 16) (17, 18, 19, 20, 21,
22, 23, 24)(25, 26, 27, 28, 29, 30, 31, 32), and
b= (1, 2,11, 18, 21, 28, 27, 22, 5, 14, 15, 16, 9, 10, 3, 26, 29, 20, 19, 30, 13,
6, 7, 8)(4, 23, 32, 17, 12, 31, 24, 25);
in which case we have

= (3, 11)(4, 26)(5, 23)(6, 14)(12, 18)(13, 31)(17, 25) (19, 21)(20, 30)(22

)(24 32)(27, 29),

= (4, (5, 27)(6, 24
)(23 29)(28, 30), an
(
)

~—

(7, 15)(13, 19)(14, 32)(17, 25) (18, 26)(20, 22)(21

ol

12)
= (5, 13)(6, 28)(7, 17
)(24 30)(29, 31).

~—

(8, 16)(14, 20)(15, 25)(18, 26) (19, 27)(21, 23)(22

Following theory developed in [8], these permutations a and b were cho-
sen in such a way that the relations (a='b)? = (a72b%)? = a~3b%a3aba = 1
are satisfied, forcing (p,q,r) = Dg, and moreover, so that a and b gen-
erate cyclic groups of different orders and with trivial intersection of the
corresponding normalizers, so as to avoid additional automorphisms of X*



arising from group automorphisms. This was achieved with the help of the
LowIndexSubgroups process in the MAGMA system [1].

We remark that there is an alternative description, more geometric in
nature, for the graph given in Theorem 1.1. Let Y be the Cayley digraph
Cay(Gj;a,b) of the group G relative to the given generating set S = {a, b}.
This has vertex set G and arcs of the form (g, gs), for g € G,s € S. It may
be seen that the alternating cycles in Y — that is, cycles whose vertices are
alternately heads and tails (in Cay(G, {a,b})) of the incident edges — have
length 4 and decompose E(Y). Let Al(Y) denote the intersection graph of
these alternating cycles, together with the orientation inherited from that of
Cay(G, {a,b}) in the natural way. (See Section 2 for more precise definitions
of this and related concepts.) Then it is easily seen that this operation may
be repeated on both Al(Y) and Al?(Y) to produce the graph Al3(Y), which
turns out to be isomorphic to the graph X*(G,H,{Ha, Hb}) defined above:
the theory developed in [7] implies that Al*(Y) admits a }-arc-transitive
action of G with vertex stabilizers isomorphic to H, and adjacency in Al3(Y)
corresponds to the “action” of the elements a and b.

In Section 2 we provide further graph- and group-theoretic background
to our construction and some elementary observations about the orbital
graph X = X(G,H;{Ha, Hb}) and the Cayley graph Y = Cay(G;a,b). A
detailed analysis of the cycles of length 8 in the underlying graph of X is
carried out in Section 3, and the proof of Theorem 1.1 is given in Section 4.

The strategy behind the proof of Theorem 1.1 is briefly as follows. First
we show (in Section 3) that every 3-arc (directed 3-path) in X lies in a
unique directed 8-cycle, and that every cycle of length 8 in X* underlies
one of these. Then we show (in Section 4) that every automorphism of X*
which fixes the vertices of a 3-arc in X fixes every vertex of X*, and use
the fact that the group G acts regularly on the set of these 3-arcs to deduce
that G = Aut X* (and hence that X* is 1-arc-transitive).

An alternative but similar proof may be obtained by showing G = AutY
and then using the isomorphism X*(G, H; {Ha, Hb}) = AI3(Y') and analysis
of cycles in Y to show every automorphism of AI3(Y) must preserve the
orientation of edges, and so on, however we do not provide the details here.



2 Further background and observations

Let G = (a,b) and H = (p, q,r) be as defined in the introductory section.
The first observation we make is that p,q and r are involutions with the
property that (pr)? = ¢, and hence the subgroup H is dihedral of order 8.

Next, the group G itself has order 86016. This is not quite so easy to see,
but can be verified with the help of MAGMA [1], which we used in finding
and analysing the group G and the orbital graph X.

The group G is transitive but imprimitive of degree 32, with two blocks
of imprimitivity consisting of all odd and all even integers in {1,2,...,32}
respectively. These two blocks are interchanged by each of the generators a
and b and preserved by each of p,q and r; indeed the set-wise stabilizer of
each block is the subgroup K generated by a?,b? and p = a 'b.

The latter subgroup K acts transitively but imprimitively on each of
the two blocks of size 16, with 8 blocks of size 2, and in each case with
kernel of order 2. (In fact the blocks are {1,9}, {3,11}, {5,13}, {7,15},
{17,25}, {19,27}, {21,29}, {23,31}, and {2,10}, {4,12}, {6,14}, {8,16},
{18,26}, {20,28}, {22,30}, {24,32}, and the kernels are generated by the
involutions (ab)” and (ab?)” respectively.) Moreover, in each case the action
of the subgroup K on the 8 blocks of size 2 is equivalent to the action of the
affine general linear group AGL(3,2) on a 3-dimensional vector space over
GF(2), of order 1344, and with kernel of order 16.

For example, in the case of the block containing odd integers the 8
blocks of size 2 can be labelled Bi,...,Bg in a natural way such that
a?,b? and p permute them respectively as (B1, Bo, B, B4)(Bs, Bg, B7, Bg),
(Bl, BQ, B7, BG, Bg, B4)(B5, Bg) and (B3, Bg)(B(;, B7), and the kernel of this
blocks action is generated by b'2, (ba?b)?, (a3b%a)? and (ba’b®)?.

Thus K has order |K| = |AGL(3,2)| x 16 x 2 = 1344 x 32 = 43013,

and G has order 86016. In particular, since the subgroup H has order 8 it
follows that the orbital graph X = X(G,H;{Ha, Hb}) has 10752 vertices.

Next, the vertices of the orbital graph X = X(G,H;{Ha, Hb}) are the
right cosets Hg (for ¢ € G), and an arc joins coset Hz to coset Hy if and
only if zy—1 € HaH (or equivalently, yz~! € Ha 'H). Note that the
double coset HaH is the union of the two right cosets Ha and Hb, since
b= ap ¢ Ha while ag = pa € Ha and ar = ga € Ha. Similarly Ha 'H
is the union of cosets Ha~! and Ha 'r. It follows that every vertex Hg of



X is joined by an arc to each of the vertices Hag and Hapg, and similarly,
each of the vertices Ha='g and Ha~!rg is joined by an arc to Hg in X.
Thus X is regular of valency 4. Also since every element of G is expressible
as a word in the set {a,ap,a™',a"'r}, the graph X is connected.

The group G acts vertex-transitively on X by right multiplication of
cosets (with an element g € G taking Hz to Hzg), and in this action the
stabilizer of the vertex H is the subgroup H itself. In particular, this vertex-
stabilizer is dihedral of order 8 and has two orbits of length 2 on the vertices
adjacent to H: the out-neighbourhood { Ha, Hap} and the in-neighbourhood
{Ha',Ha 'r}. Hence the underlying graph X* of X admits a i-arc-
transitive action of G.

Further, we have the following:

Proposition 2.1 The group G acts transitively, indeed reqularly, on 3-arcs
(directed paths of length 3) in the orbital graph X = X (G, H;{Ha, Hb}).

PROOF. The stabilizer in G of the arc (H, Ha) is the subgroup of order
4 generated by ¢ and r, and the stabilizer in G of the 2-arc (H, Ha, Ha?)
is the cyclic subgroup of order 2 generated by r. As the latter element
interchanges the two out-neighbours of the vertex Ha? (namely Ha® and
Hapa?), it follows that the action of G is regular on 3-arcs in X. [ |

Also since the element a has order 8, and a* ¢ H for 1 < k < 4, there is
an obvious (directed) 8-cycle in the graph X, namely

(H,Ha,Ha?, Ha?®, Ha*, Ha®, Ha®, Ha").

In the next section we will show that every cycle of length 8 in the undirected
graph X* lies in the same orbit under the action of G as the undirected form
of this one — or in other words, that all 8-cycles in X are directed ones.

In fact 8 is the girth (the length of the shortest cycles) of X*. Moreover,
as each vertex Hz is adjacent only to Haz, Hatz, Ha™ 'z and Ha 'vz, any
alternating cycle in X has to correspond to a word of the form (ata 'v)*
for some k, lying in H; and as the element ata™'v has order 6 and its cube
does not lie in H, the smallest such k£ is 6, and hence all the alternating
cycles in X have length 12, corresponding to the relator (ata='v)%. Thus X
has radius 6 as defined in [5]. Also X™* has diameter 13. These observations
may easily be verified using vertex-transitivity and with help of MAGMA [1].



Before proceeding, we explain the background to the connection between
the underlying graph X* of the orbital graph X = X (G, #,{Ha, Hb}) and
the Cayley graph Y = Cay(G; a,b), by describing two operators on balanced
oriented 4-valent graphs.

For a balanced oriented graph T of valency 4, let the partial line graph
U = PI(T) of T be the balanced oriented 4-valent graph with vertex set
A = A(T) such that there is an arc in U from z € A to y € A if and only if
zy is a directed 2-path (a 2-arc) in 7. Note that the arc set of U decomposes
into alternating 4-cycles, no two of which intersect in more than one vertex.

To define the the inverse operator Al, let the vertex set of Al(U) be the
set of alternating cycles (of length 4) in U, with two such cycles adjacent in
Al(U) if and only if they have a common vertex in U. The orientation of
the edges of Al(U) is inherited from that of the edges of U in a natural way.
Letting C), and C,, be the two alternating 4-cycles in U corresponding to
two adjacent vertices v and w in Al(U), we orient the edge [v,w] in Al(U)
from v to w if and only if the two arcs in U with the tail in v € C, NC,, have
their heads in C,,. Observe that Al(PI(T) = T for every balanced oriented
graph T of valency 4. Moreover, PI(Al(U)) = U provided the graph U has
the properties assumed above.

These two operators may also be applied to (undirected) graphs when-
ever an accompanying oriented graph is (perhaps implicitly) associated with
the undirected graph in question. A typical situation is presented by a 4-
valent graph admitting a %—arc—transitive group action and its two accom-
panying balanced oriented graphs, or by a Cayley graph arising from a set
of non-involutory generators, for each of which one of the two possible ori-
entations is prescribed. Again, the operators Al and Pl are mutual inverses
in this case too. In particular, with X* and Y defined as above, the graph
X* is isomorphic to Al*(Y), and conversely PI3(X*) is isomorphic to Y.

3 Analysis of cycles

To begin this section we prove the following:

Proposition 3.1 Ewvery 3-arc in the orbital graph X = X(G,H;{Ha, Hb})
lies in a unique directed 8-cycle in X.

Proor. By Proposition 2.1, the group G has a single orbit on 3-



arcs in X, hence all we need do is prove that a particular 3-arc, say T =
(H,Ha,Ha?, Ha?), can be extended in just one way to a directed 8-cycle
in X. Now by definition of adjacency in X, any vertex at the end of a
directed 8-path emanating from the vertex H has to be of the form Hw
for some element w € G expressible as a word of length 8 in {a,b} with
positive exponents, and if this 8-path extends the given 3-arc 7' then the
word has to end in a3. Further, for this to be a directed 8-cycle extend-
ing T we require Hw = H and therefore w € H; in other words we re-
quire a word of length 8 in {a,b} with positive exponents and ending in
a® to give an element of H. Since b = ap this word must be of the form
ap*rap*2apksapFtap®sa® where k; € {0,1} for 1 <4 < 5. There are 32 such
words, and an easy (but tedious calculation) reveals that the only one which
produces an element of H is the word a® (and this is the identity element).
Hence the given 3-arc has a unique extension to a directed 8-cycle, namely
(H,Ha,Ha?,Ha3, Ha*, Ha®, Ha®, Ha"). [ |

The calculation referred to in the above proof can be carried out with
the help of MAGMA [1]. Also some of the cases are equivalent to others
(for example a?pa® is equivalent to a3pa®), and so the number of cases to
check can be reduced, but we omit the details. Similar arguments apply
to other 8-cycles in the underlying graph X* of X, and in order to obtain
Proposition 3.2 below (which is crucial to the proof of our main theorem),
it is helpful to take the following approach.

Let W be a simple walk of length s in X, not necessarily directed. To
each internal vertex v of W, assign one of the symbols AT, A~ or D de-
pending on whether v is respectively the tail of both, the head of both, or
the tail of one and the head of the other of the two arcs incident with v in
W. The resulting sequence of elements of the set {AT, A=, D}, of length s
if W is a closed walk and length s — 1 otherwise, may be called the code
of W. For example, the walk (H, Ha, Ha?, Ha 'ra?) has code DA, while
the directed 8-cycle (H, Ha,...,Ha") has code D®. Note that if each oc-
currence of the symbol D is deleted from the code, a sequence is obtained
in which the symbols A and A~ alternate. (Also the walk is directed if
its code contains only D’s, or alternating if its code contains no symbol D
at all.) Two codes of the same length will be said to be equivalent if they
are associated with walks Wy and W5 such that W5 is obtainable from Wy
by a one-step cyclic shift of its vertices (in the case of closed walks) or by
reversal (in either case).



Now up to equivalence in any directed graph there are 22 possibilities for
the code of a simple closed walk of length 8, and these are listed in Table 1.

Type Code Representative word Number
1 D8 ap®lap®2ap®3ap®4ap®sa’ 32
2 Déa—at apkl a.ka apk3 a.pa_l'ra3 8
3 D5A~ DAY ap¥lap®2apa=1rk34 1103 8
4 D*A—D2at ap®lapa=1rk24=1pk34 1543 8
5 D3A—Dp3at apa” trk1gTlpk2—1k3 1,8 8
6 D*A—ATA— AT apklapa_lrapa_lras 2
7 D3A-ATA~DAT apa~ 'r*1a " Trapa~ trad 2
8 D3A-ATDA— AT apa” trap®lapa”Trad 2
9 D3A~DATA™ AT a.pa_lrapa_lrkla_lras 2
10 D2A-ATA~D2AT apa” trk1gm k20 T g pa " 1ra? 4
11 D2A—ATD2A— AT apa”lrap*lap*2apa—1ra? 4
12 D2A—D2AtA— AT apa_lrapa_l'rkla_lrk2a_1ra2 4
13 D2A-ATDA™ DAY apa~ k1" 1pap*2apa~1ra2 4
14 D2A-DAtA—DAT apa_lrkla_lrapa_lrlwa_lra2 4
15 D2A-DATDA— AT a.pa._lra,pkla,pa,_l'r’“Qa._lra.2 4
16 DA-DAYDA-DAT apa” 'r*1a " Yrap*2apa= 7*30 " 1 ra 8
17 D2A—AtTA—AtA— AT apa_lrapa_lrapa_lra2 1
18 DA-AtA—ATA—-DAT apa_l'rkla_l'rapa_lrapa_lra 2
19 DA~ ATA—AtDA— AT apa_lrapklapa_lrapa_lra 2
20 DA-AtA—DAtA— AT apa_l'rapa_l'rkla_lrapa_l'ra 2
21 DA—DAtA-AtA— AT apa_lrapa_lrapa_lrkla_lra 2
22 A~ATA—AtA—AtA— AT a_lrapa_lrapa_lrapa_lra 1

TABLE 1: Codes and words representing potential 8-cycles in X*

In addition, this table includes for each such code a representative ele-

ment of the group G (expressed as a product of the elements a,ap,a”

1

and



a~'r) which must lie in H if the orbital graph X contains a simple closed
walk of the corresponding type. These representative words can be found
using the same sort of argument as in the proof of Proposition 3.1.

For example, in the case of the code D*A~D?A™, which is equivalent
to code D2A~ D? AT D?, by transitivity of G on 3-arcs we can assume there
is a closed walk containing the 3-arc (H, Ha, Ha?, Ha?), followed by the
reverse of the arc (Ha'ra3, Ha3), followed by the reverse of an arc of the
form (Ha"'rka='ra3, Ha='ra®) where k € {0,1}, and so on, leading to
the conclusion that the subgroup H must contain an element of the form
w = apFrapatrk2a1r*3a " ra3 with k; € {0,1} for 1 < i < 3. Accordingly
for this type there are 22 = 8 possibilities to check for the word w. This
number is given along with the analogous information for the other 21 types
in the fourth column of Table 1. Note that in some cases (for example where
the code does not contain a D? subsequence) the number may be greater
than necessary; it is often possible to reduce the number of possibilities using
3-arc transitivity plus a little further local analysis.

Using the information summarised in Table 1 we can now prove the
following:

Proposition 3.2 FEvery 8-cycle in the underlying graph X* of the orbital
graph X = X(G,H;{Ha, Hb}) underlies a directed 8-cycle in X.

PROOF. Suppose C' is any cycle of length 8 in X*, and let W be the
simple closed walk in X which C underlies. Then the code of W is equivalent
to one of the 22 codes listed in Table 1, and it follows that for suitable choice
of the exponents k;, the corresponding element given in the third column
of Table 1 lies in the subgroup H. Calculation of all such words, however,
reveals that the only one which produces an element of H is the word a®
(corresponding to the code D?), and hence C must be a directed cycle. W

4 Proof of Main Theorem

Parts (i) and (ii) and much of part (iii) of Theorem 1.1 were verified
in Section 2, and we are now in a strong position to complete the proof.
As the action of the group G on the underlying graph X* of the orbital
graph X = X(G,#,{Ha, Hb}) has been shown to be %-arc-transitive, it is

10



sufficient to prove that G is the full automorphism group of X*. So let us
assume the contrary, namely that G # Aut X*.

By Proposition 3.1, every 3-arc T' of X lies in a unique directed 8-cycle,
and by Proposition 3.2, the (undirected) 8-cycle C underlying this is the
only 8-cycle in X* containing the underlying 3-path of T. Moreover, by
Proposition 3.2 it also follows that only the 3-paths underlying 3-arcs in X
can be extended to 8-cycles in X*. In particular, this implies that Aut X*
preserves the set of 3-paths underlying 3-arcs in X.

Next by Proposition 2.1, the group G acts regularly on 3-arcs of X, and
so the stabilizer in Aut X* of any 3-path underlying a 3-arc of X must be
non-trivial. Hence there exists a non-identity automorphism 6 of X* which
fixes a 3-arc of X, say T'. Further, if C is the (undirected) 8-cycle underlying
the unique directed 8-cycle in X which extends T, then 8 also fixes C.

Let vg, v1, ... v7 be the vertices of C, taken in order so that (v;—1,v;) is an
arc of X for each ¢ (modulo 7), and also u; is the other in-neighbour of v; in
X, and w; is the other out-neighbour of v; in X, for 0 < ¢ < 7. Consider the
effect of 8 on the vertices of each of the 3-arcs of the form (v;_o, v;_1, v;, w;).
As each v; is fixed by 0, the vertex w; is either also fixed, or taken to the
only other possible neighbour of v;, namely u;. But (v;—2,v;—1, v;, u;) is not
a 3-arc in X, and so the latter case is impossible, and hence § must fix each
w;. A similar argument shows also that 6 fixes the vertices of each 3-arc of
the form (u;,v;, vit1, vit2).

Thus 0 fixes every vertex at distance 1 in X* from a vertex of C, and
moreover, every such vertex lies on a 3-arc of X which is fixed by . By
induction (and connectedness), it follows that 6 fixes every vertex of X*,
contradiction. Hence proof.
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