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Abstract The question of whether a given group G which acts
faithfully on a compact Riemann surface X of genus g > 2 is the
full group of automorphisms of X (or some other such surface
of the same genus) is considered. Conditions are derived for
the extendability of the action of the group G in terms of a
concrete partial presentation for G associated with the relevant
branching data, using Singerman’s list of signatures of Fuchsian
groups which are not finitely maximal. By way of illustration,
the results are applied to the special case where G is a non-cyclic
abelian group.
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1 Introduction

An abstract finite group G is said to act on genus g > 2 if it is (isomorphic
to) a group of automorphisms of some compact Riemann surface of genus g.
We say that G acts as a full group on genus g if G is the full automorphism
group of some compact Riemann surface of genus g. An interesting problem
in Riemann surface theory is to investigate whether a group G acting on
genus ¢ also acts as a full group on genus g.
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In this paper we study this question of extendability in terms of the
branching data of the quotient surface under the action of G. The first
results in this subject were obtained by Greenberg in [6] who showed, among
other things, that every finite group acts as the full automorphism group
of some Riemann surface; see also [7]. The most fruitful way to approach
this problem is through uniformization of Riemann surfaces by means of
Fuchsian groups and the theory of Teichmiiller spaces.

A compact Riemann surface X of genus g > 2 can be represented as
the quotient U/A of the hyperbolic plane U under the action of a surface
Fuchsian group A. Here, by a Fuchsian group we mean a discrete cocompact
subgroup of PSL(2,R). A group G then acts as a group of automorphisms of
X if and only if G is isomorphic to the quotient I'/A for some Fuchsian group
I containing A as a normal subgroup of index |G|. In this case, G = Aut X
(the full automorphism group of X) if and only if T" is the normaliser in
Aut U = PSL(2,R) of the surface group A, and hence G fails to be the full
automorphism group of X if and only if I" is properly contained with finite
index in another Fuchsian group IV which also normalises A. Accordingly, the
above problem is closely related to the finite-index extendability of Fuchsian
groups.

The extendability of I' depends mainly on the geometry of a fundamental
region for I'. This implies that although I' may be contained in a Fuchsian
group I normalising A (in which case G # Aut X), the group I' may be
abstractly isomorphic to another Fuchsian group I';y which is not contained
with finite index in any other Fuchsian group (in which case G does act
as a full group on the appropriate genus g). Let R(I') be the set of all
monomorphisms p : I' — PSL(2, R) such that p(T") is also a Fuchsian group.
Note that every such p maps hyperbolic (respectively elliptic) to hyperbolic
(resp. elliptic) elements. Greenberg [6] showed that for some I' there exists
a Fuchsian group I" containing I" with finite index such that each p € R(T")
extends to some p' € R(T).

Singerman studied this question in detail in [10], giving a complete list
of such groups. The associated signatures appear in Table 1 below, the first
eight corresponding to normal extensions and the last eleven corresponding
to cases where T' is not normal in I. Singerman’s list plays a key role in
this paper. Indeed if I is a Fuchsian group whose signature does not appear
in the first column of Table 1, then I' is isomorphic to a finitely-mazimal
Fuchsian group, that is, a group which is not contained with finite index
in any other Fuchsian group. Accordingly, if the group G can be written as
I'/A where the signature of I’ does not appear in Singerman’s table then G



acts as a full group on the corresponding genus g.

Case | Signature o = o(I") o =o(IV) INERN
N1 | (2—) 0:2,2,2,2,2,2) | 2
N2 | (1;t,%) (0;2,2,2,2,1) 2
N3 | (1;¢) (0;2,2,2,2t) 2
N4 | (0;t,t,4,2), >3 (0:2,2,2,1) 4
N5 | (0st,t,u,u), t+u>5 (0:2,2,t,u) P
N6 | (0;t,t,8), ¢ >4 (0;3,3,1) 3
N7 | (0;t,t,8), t>4 (0;2,3,2) 6
N8 | (0st,t,u), >3, t+u>T|(0;2,t 2u) 2
T1 | (0;7,7,7) (0:2,3,7) 24
T2 | (0;2,7,7) (0;2,3,7) 9
T3 | (0;3,3,7) (0:2,3,7) 8
T4 | (0;4,8,8) (0:2,3,8) 12
T5 | (0:3,8,8) (0;2,3,8) 10
T6 | (0:9,9,9) (0;2,3,9) 12
T7 | (0;4,4,5) (0;2,4, 5) 6
T8 | (0;n,4n,4n), n > 2 (0;2,3,4n) 6
T9 | (0;n,2n,2n), n >3 (0;2,4,2n) 4
T10 | (0;3,n,3n), n >3 (0;2,3,3n) 4
T11 | (0;2,n,2n), n >4 (0;2,3,2n) 3

Table 1: Non-maximal Fuchsian signatures

The study of maximality of actions of groups on Riemann surfaces may
proceed in two directions:

One of them is the following: fix a family of Riemann surfaces and then
find all groups which act as a full group of automorphisms of some surface in
the given family. For example, the case of surfaces of low genus was carefully
studied by Wiman [14] in the late 1800’s. Wiman directly handled defining
equations of the surfaces, as used also in [5], [12] and [13]. Similarly the
described technique of Fuchsian groups was used in [4] to solve the problem
for the family of hyperelliptic Riemann surfaces.

The other direction is the opposite of the first: fix a class of finite groups
and then study the Riemann surfaces on which a group in the given class



acts as a full group of automorphisms. The class of cyclic groups is of
course the most extensively studied. In [8] Harvey determined the signatures
of those Fuchsian groups I' for which I'/A is cyclic, where A is a surface
group, and the extendability of such groups was considered in [3] and also
in [11]. Non-cyclic abelian groups were investigated in [9], where Maclachlan
found the minimum genus of surfaces admitting a group of this type as an
automorphism group.

In this paper we adopt a more intrinsic point of view for the problem of
extendability of groups, restricting neither to a particular class of groups nor
to a fixed family of surfaces. We find that in most cases the extendability
of the action of a group G depends on the existence of specific types of
group automorphisms of GG, each depending on a concrete partial group
presentation of G.

Following some further background material in Section 2, we analyse each
of the cases from Singerman’s list in Sections 3 (normal extensions) and 4
(non-normal extensions) in turn, and then derive extendability theorems in
Section 5. Finally we illustrate the results of our investigation by giving
some examples in Section 6 and dealing with the special case of non-cyclic
abelian groups in Section 7.

2 Preliminaries

The following definitions help us to state the results of the paper.

Definition 2.1 We say that the finite group G acts on genus g if G is
(isomorphic to) a group of automorphisms of some compact Riemann surface
X of genus g. Further, we say that G acts as a full group on genus g if G is
the full automorphism group of some compact Riemann surface of genus g.

Suppose G acts on genus g and let X be a compact Riemann sur-
face for which G C Aut X. Write G = I'/A where I" and A are Fuchsian
groups such that A has signature (¢g; —) and is normal in I". If T has sig-
nature (y;mi,...,m,) then we say that G acts on genus g with signature
(v;mq,...,m,), and further, if G = Aut X then we say that G acts as a full
group on genus g with signature (y;mq,...,m;). Of course G may act with
different signatures on the same genus g.

Note that in the case of signature (vy;mi,...,m;), the quotient surface
X/G has the structure of a hyperbolic 2-orbifold with r conic points of



orders m1, ..., m, and underlying topological space of genus y. The integers
involved must satisfy the Riemann-Hurwitz formula:

229 —1C (2-%-26(1-#)).

i=1 i

A Fuchsian group I" with signature (y; m1, ..., m,) has an abstract group
presentation in terms of 2y hyperbolic generators ai,b1,...,ay,by and r
elliptic generators z1,...,x, subject to the defining relations

" == =2y zpar, b [ay, b)) = 1

These are called canonical generators. The commutator notation is given
by [a,b] = aba b 1.

We let R(I') denote the set of monomorphisms p : I' — PSL(2,R) such
that p(I") is Fuchsian. Two elements p1, po € R(T") are said to be equivalent
if there exists an an angle-preserving homeomorphism h of the upper half
plane such that p;(¢) = hpe(£)h~" for each ¢ € T. The quotient space T'(T)
of equivalence classes of monomorphisms is called the Teichmiller space of
['; this is a cell of complex dimension dim(T") = 3y — 3 4 .

Fuchsian groups with signature (0;mq,mo, m3) are known as triangle
groups. The Teichmiiller dimension of such groups is 3y—3+r = 0—3+3 = 0,
and from this fact it follows that all embeddings of an abstract triangle group
into PSL(2,R) are mutually conjugate (see [1, Section 10.6]).

An epimorphism 6 : I' — G from T onto a finite group G is said to be
smooth if its kernel is a surface Fuchsian group, that is, if ker 8 contains no
element of finite order. Observe that in this case the images of the canonical
generators of I' satisfy the same defining relations as above (among others
which make G finite). A presentation of G induced in this way by canonical
generators of I will be called a (partial) monodromy presentation.

3 Normal extensions

As noted in the introduction, if the group G can be written as I'/A where the
signature of I does not appear in Singerman’s table (Table 1), then G acts
as a full group on the corresponding genus g. Hence we focus our attention
on Fuchsian groups I" whose signature o(I") appears in Singerman’s table.

In this section we deal with the cases in which I' admits a normal exten-
sion to some I'V. We describe in detail the case of the first row of Table 1,



and the others more briefly. In each case we will consider the presentation
for T with signature (y; m1,...,m,) as given in the introduction, namely in
terms of 2 hyperbolic generators a1, b1, ...,ay,b, and r elliptic generators
z1,...,Z, satisfying the appropriate relations. Similarly for I, which we ob-
serve always has signature of the form (0; n,...,n,), we use a presentation
in terms of s elliptic generators yi,...,ys (but no hyperbolic generators)

ny _

subject to the defining relations y;! =.-- =yl =y;---ys = 1.

Case N1: o(T') =(2; —); o) =(0; 2,2,2,2,2,2); index |IV:T| =2
In this case the group I' has presentation (a1, b1, as,bs | [a1,b1][az,b2] = 1),
while T' has presentation (y1,v2,¥s, Y4, Y5, | ¥ = Y5 = y3 = y3 = y2 =
Y2 = y1y2y3yaysys = 1). Also as observed in [3], an embedding of T as a
subgroup of index 2 in I is given by a1 — y192, b1 — yY3y2, a2 — yay5 and
by = Yeys, since [y1ys,yay2] = y1yaysya(y1ye)~ (ysy2) ™" = (v1v2y3)® =
(yoysya)? = [yays, yeys] '

Letting a, b, ¢ and d be the images of the canonical generators a1, b, ao
and by under the smooth epimorphism 6 : I' — G, we see G has the partial
monodromy presentation G = (a,b,¢c,d | [a,b][c,d] =--- =1).

Now suppose the epimorphism 6 can be extended to another smooth
epimorphism 6" from I onto some group G’ containing G as a (normal)
subgroup of index 2. Notice that under these conditions, ker 8’ = ker = A
and so G' is a group of automorphisms of X larger than G.

Let a be the image of y; under €. Then from the embedding of " in IV it
is easy to see that the images under @' of the generators of I'' are as follows:

0'(y1) = e, 0'(y2) = oa, 0 (y3) = a tab !,
0'(ys) = bad, 0'(ys) =d 'ab"'c, 0(ys) = c ‘b

Since 0’ preserves finite orders, each of these elements of G’ is an involution
(in G"\ G), and of course their product 6'(y1)€ (y2)0'(y3)0' (y4)€' (y5)0'(ys)
is the identity. Further, conjugation by the element @ € G'\ G has the
following effect on the generators of G:

a: arral, c (b7 ted)e (b7 ed) ™,
b—ab tat, de (b le)d (b te) L.

It follows that if such an extension exists from I' to I (normalising A), then
G admits a group automorphism « whose effect on the generators a, b, ¢
and d is given by the above equations.



Conversely, if G is a finite group acting on genus g with signature (2; —)
such that G admits the above automorphism «, then G does not act as
a full group on genus g. In fact, we claim that the semidirect product
G' = G x4 Cy (where the Cs is generated by the automorphism « acting on
G as above) is a larger automorphism group of the same surface on which
G acts. As G = T'/A acts with signature o(I') = (2, —), there exists a
Fuchsian group IV with signature o(TV) = (0;2,2,2,2,2,2) containing " as a
normal subgroup of index 2. Since each monomorphism p : I' — PSL(2, R)
extends to some monomorphism p’ : IV — PSL(2, R), it follows that there
exists a Fuchsian group isomorphic to I'' in which I' is embedded, as in the
beginning of this case. Now for such a group, which we still denote by I",
the smooth epimorphism 0 : I' — G extends to a smooth epimorphism ' :
I — G’ given by 6'(y1) = a, 0'(y2) = aa, 0'(y3) = a tab™!, 0'(ys) = bad,
0'(ys) = d'ab~lc and 6'(ys) = c 'ba, with kernel ker§ = kerf = A.
Thus G’ = T/A is a group of automorphisms of X = U/A larger than G,
and so G is not the full automorphism group of X.

Case N2: o(T) = (1; t,t); o(I") =(0;2,2,2,2,¢); |IV:T| =2

This case is similar to the case N1 above. An embedding of T" in IV may be
given by a1 — y3ys, b = ysy2y3, T1 — Y5 and z3 — yoysy2 (noting that
Y5 (y2ysya) [Ysya, Ysyays] = Ysyays(Y2ysy4ys)y2ysyayays - = ysya(yYsy1y2y3ya)
y2y5_1 = y5y2y2y5_1 =1). If welet a, b, z and w be the images of a1, b1, 71
and z2 under the epimorphism 8 : I' — G, then G has partial monodromy

presentation G = (a,b,z,w | ' = w' = zwla,b] =--- = 1). As the relation
zwla,b] = 1 makes the generator w redundant, this presentation can be
simplified to G = (a,b,z | 2t = ([a,b]z)t =--- =1).

Next if 6 can be extended to a smooth epimorphism &' : TV — G’ where
G' is a group containing G as a (normal) subgroup of index 2, then letting
a be the image of 4 under 6, we find

0'(y1) =z tab "z, O'(y2) = 27 baa ™1,
' (y3) = aa, 0'(ys) = a, 0'(ys) = =,

all but the fifth of which lie in G’ \ G. Further, conjugation by « is an
automorphism of G of order 1 or 2 which acts as follows:

a: a—al, bbbl zw (ab) lz 1(ba).

As in the preceding case, the converse also holds: if G admits such a
group automorphism then # can be extended to 6’ : IV — G x, Co with
ker = ker @' = A, and so G is not the full automorphism group of X.



Case N3: o([) = (1; t); o(I") =(0;2,2,2,2¢); |I":T| =2
In this case the defining relations for T' are 2} = z1[a;,b1] = 1, or simply
[a1,b1]" = 1 (noting that the generator x; is redundant), while those for T’
are y% = y% = yg = yzt = y192y3ys = 1, and an embedding of I in IV is
given by a1 — y1y2 and by = y3yo (and z1 — y3).

Let a,b and z denote the images of a1,b; and z1 under the epimorphism
0 :T — G. If 6 can be extended to a smooth epimorphism ¢ : IV — G’
where |G’ : G| = 2, then letting @ = §'(y2) we have

0'(y1) = ac, 0'(y2) =, 0'(ys) =ab', 0'(ys) =baa™",
and conjugation by « gives the following automorphism of G:

a: arral, b=bt (and z > (ba)"lz(ba)).

Conversely, the existence of such an involutory automorphism prevents
G from being the full automorphism group of X.

Case N4: o(T) = (0; t,t,t,t), t > 3; o) = (0; 2,2,2,t); [T':T|=4
Here an embedding of T in T is given by z1 v 9oysy2, To = Y3yaYalyays,
3 > (ysyayy Y2)ya(y2yayays) and x4 — ya.

Let a, b, c and d denote the images of 1, z2, 3 and x4 under the smooth
epimorphism 8 : I' — G. If € can be extended to a smooth epimorphism
0" : T — G’ where |G’ : G| = 4, then letting a = 6'(y3) and 8 = 6'(y2) we
have

0'(y1) =d 'aB, 0'(y2) =8, 0'(ys) =, 0'(y)=2d.

Note that o and § are elements of order 2 in G’ \ G, with commutator
[, B] = 0'([ys, y2]) = 0'(ysy2yay1) = 0'(ysy2vayaysys) = O(zoz4) = bd € G.
Further, conjugation by each of o and S give the following two automor-
phisms of G of order 1 or 2:

a: a—b b—a, c—a'da, d~bcb!,
B: a—d, b—dled, c—aba"l, d~a.

Conversely, if G admits such automorphisms then G is not the full auto-
morphism group of X, for in this case the action of G extends to one of its
index 4 extension G’ = (G x4 C2) x5 C2, generated by G and elements « and
B of order 2 which act on G as above and satisfy Saf = abd = d~'b"la.
In fact as we will see in case N5 below (taking ¢ = u), the existence of an



automorphism as induced by a on its own is sufficient to prevent G from
being the full automorphism group of X.
Case N5: o(T') = (0; t,t,u,u), t+u>5; o(I') = (0; 2,2,t,u); |IV:T| =2

This case is similar to case N4, but with an embedding of " in IV given

by T1 = yoysy2, To = Y3, Tz > Y3 Yoyayoys and T4 > ya, and the
requirements on the extension ¢’ : I' — G’ (with |G’ : G| = 2) being

Ol(yl) = d_lb_laa 91(?/2) = Q, 91(3/3) = ba 9I(y4) = da

for some involution a € G' \ G. Conjugation by « gives the following auto-
morphism of G (which is exactly the same automorphism « as in the case
N4 when t = u):

a: a—b b—a c—a'da, d+>bchl.

Conversely, if G admits such an automorphism then G # Aut X.

Case N6: o(T') = (0; t,t,t), t>4; o) =(0; 3,3,t); |IV:T|=3

Here an embedding of " in IV is given by z1 — yoysys Lozg Yoy Yyayo
and z3 — y3. Let a,b and ¢ denote the images of x1,z2 and z3 under the
epimorphism 6§ : I' — G. If # can be extended to a smooth epimorphism
0" : ! — G' where |G’ : G| = 3, then letting o = 0'(y2) we see

0'(y1) = (ac) ™", O'(y2) =, O'(y3) =¢,
and conjugation by « gives the following automorphism of G:

a: a—b b—c, crra.

Conversely, if G admits such an automorphism (of order dividing 3) then
G is not the full automorphism group of X.

Case N7: o(T') = (05 ¢,t,t), t>4; o(I') = (0; 2,3,2t); |I':T| =6

An embedding of T' in TV is given by z1 — ygygygl, Ty > y{lygyg and
T3 > y3. Let a,band c be the images of 1, 2 and x3 under the epimorphism
0 : T — G. If  can be extended to a smooth epimorphism ¢ : IV — G’
where |G’ : G| = 6, then taking o = 6'(y2) and 8 = 6'(y1) we have

0(y1) =8, 0y)=0qa, 6(s)=(Ba)’



Note that a and g are elements of G’ \ G of orders 3 and 2 respectively, and
(Ba)? = 0'((y192)?) = 0'(y32) = ¢! € G, so that faf = c'a~!. Further,
conjugation by each of a and 3 give the following two automorphisms of G:

a: a—b b, cH a.
B: a—c, brclbe, cra.

Conversely, if G admits such automorphisms then G is not the full au-
tomorphism group of X, for in this case the action of G extends to one of
its index 6 extension G’ = (G x4 C3) xg Cy generated by G and elements o
and f3 of orders 3 and 2 which act on G as above and satisfy a8 = ¢ la L.
Of course (as in case N6 above) the existence of the automorphism « on its
own is sufficient to prevent G from being the full automorphism group of X.
Similarly the existence of the automorphism £ on its own prevents G from
being the full group, as we will see in case N8 below (with ¢t = u).

Case N8: o(T') = (0; t,t,u), t>3, t+u>7; o) = (0; 2,t, 2u);
T":T|=2
This case is similar to case N6, but with an embedding of T in I” given

by z1 — y5 Yyoys, T2 — yo and z3 — y3, and the requirements on the
extension #' : " — G’ (with |G’ : G| = 2) being

gl(yl) = aQ, 0’(?}2) =b, 01(3/3) = (ab)ila

for some involution o € G' \ G. Conjugation by « gives the following auto-
morphism of G:

a: a—b b—a, c— bebh

Note that after a cyclic permutation of the generators, this is exactly the
same automorphism as the automorphism S in case N7 (with u = t).

Conversely, if G admits such an automorphism then G # Aut X.

4 Non-normal extensions

In this section we deal with those cases from Singerman’s list in Table 1
for which I' is a non-normal subgroup of the group I'. We adopt the same
notation as in the previous Section for signature presentations of I" and I",
and also largely the same approach, except that the emphasis shifts (by
necessity) from extensions by group automorphisms to other types of group
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extension. The fundamentals, however, remain the same: if the smooth
epimorphism 6 : I' — G can be extended to another smooth epimorphism
0" from I'" onto some group G’ containing G as a subgroup of index |I” : T|,
then G’ is (isomorphic to) a group of automorphisms of X larger than G, so
that G is not the full automorphism group of X.

Many of the calculations are more technical than those in Section 3, but
can easily be carried out with the assistance of the MAGMA system [2].

Case T1: o([) =(0;7,7,7); o) =(0;2,3,7); [IV:T| =24

In this case the defining relations for the group I' are z] = 2§ = z} =

T17273 = 1 while those for TV are y? = y3 = y{ = y1yoys = 1, and an
embedding of T in I is given by

1 = (Y 1y§yzy§ zyz)ys(yg‘ ly?iyayg‘ 2y22)’1,
T2~ (y3 ' Y3y2y3 “y2) 'ys(ys Y3y2ys “y2)
r3 =  Y3.

If a,b and ¢ are the images of x1,x2 and x3 under the epimorphism
6:T — G, then G has partial monodromy presentation G = (a,b,c | a’ =
b" = ¢’ = abc = --- = 1). If § can be extended to a smooth epimorphism
0' : ' — G’ where |G' : G| = 24, then letting o = 0'(y2) we have 0'(y;) =
(ac)™t, 0'(y2) = @, and @'(y3) = ¢, the first two of which lie in G\ G while
the third lies in G. In this case, however, a does not normalise G (although
the above embedding of I' in I shows that the element o 'c?ac 2a =
0'(yy 1y§y2y3— 245) of order 3 does, as in the case N6 in the previous Section).

Instead, the group G’ contains G as a non-normal subgroup, of index 24.

Now the (2,3,7) triangle group I has only one conjugacy class of sub-
groups of index 24, a fact which may be verified easily by considering tran-
sitive permutation representations of IV of degree 24, or with the help of the
low index subgroups procedure in MAGMA. Further, the natural permuta-
tion representation of I induced by right multiplication on right cosets of
any such subgroup may be given by

y1 — (1,3)(2,4)(5,7)(6,8)(9,11)(10,12)(13, 15)(14, 16)(17, 19)
(18,20)(21, 23)(22, 24),

y2 —  (1,2,3)(4,5,6)(7,23,15)(8,16,24)(9,10,11)(12,13, 14)
(17,18,19)(20, 21, 22),

ys — (2,3,4,8,22,23,5)(6,7,13,10,11,12,16)(14, 15, 21, 18, 19, 20, 24).

These three permutations generate a group of order 168, which is isomorphic
to PSL(2,7), the automorphism group of Klein’s quartic surface of genus 3.
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In particular, assigning to the generators yi,y2 and y3 the linear fractional
transformations z — —1/z, z+ (2 —1)/z and z — 2z — 1 (over GF(7))
provides a surjective homomorphism from I onto PSL(2,7), under which
the images of 1,z and z3 are the transformations z+— 2z —2, z—>2—14
and z — z — 1 respectively. The kernel of this homomorphism is a surface
Fuchsian group of signature (3; —), of index 7 in I" and index 168 in I/, and

generated by conjugates of (yoy1y3)* = (yav1vy 'y1)* = zoa3 = 77 '3,

It follows that if the epimorphism # : I' — G can be extended to a
smooth epimorphism 8’ : I — G’ where |G’ : G| = 24, then also G’ has the
same transitive permutation representation on cosets of GG, with kernel K
of index 7 in G and index 168 in G’, generated by conjugates of (zox3) =
bc® = a 1c?. Note that G/K = C7 while G'/K = PSL(2,7).

Conversely, suppose G has such a normal subgroup K (of index 7 and
generated by conjugates of bc® = a~!¢?), and G is extendable to a group G’
containing G as a subgroup of index 24 and generated by ¢ and an element
« such that o normalises K and also satisfies o® = 1, (ac)? = 1, a =
(e tctac2a)c(atPac™2a)™! and b = (o 'ctac 2a) le(a tac2a).
Then the smooth epimorphism 6 : I' — G can be extended to a smooth
epimorphism 0 : IV — G’ with ker @ = ker§ = A. So G' = T'/A is a group
of automorphisms of X = U/A larger than G, and G # Aut X.

In fact it can be seen from case N6 above that the existence of the
element o 'c?ac 2a (which induces an automorphism of G of order 3 given
by a + b+ ¢+ a) on its own is sufficient to prevent G from being the full
automorphism group of X.

Case T2: o(T') =(0;2,7,7); o(I') =(0;2,3,7); |T":T|=9
This case is very similar to the previous one. An embedding of " in I is given

by @1~ y1, T2~ (y2y1y2) " ys (Y2u1y2) and T3 — (Y2195 ys (Yay1ys ).
The natural permutation representation induced by I on cosets of I is

given by y1 — (2,4)(3,7)(5,6)(8,9), w2 — (1,2,3)(4,5,6)(7,8,9), and
ys — (1,7,8,3,4,5,2). These permutations generate a group of order 504,
isomorphic to the group PSL(2, 8) in its natural action on the projective line
over GF(8). The kernel of the representation is a surface Fuchsian group of
signature (7; —), of index 56 in T' and index 504 in I, and generated by
conjugates of (y1y3 °v1y3v193)* = (Vay1vov1vz "y1ys ‘vivevivy i1y i)? =
(zoz3 'mom123) ™",

If @ can be extended to ¢ : I' — G’ where |G’ : G| = 9, then letting
a = 0'(y2) we require 0'(y1) = a, 0'(y2) = @, and #'(y3) = (ac) !, and the
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kernel K of the corresponding permutation representation of G’ on cosets of
G is generated by conjugates of 9(362305136233136%) = bc~'bac?, with quotient
G/K is isomorphic to a semi-direct product C3 x C7 of an elementary abelian
group of order 8 by a cyclic group of order 7, while G'/K = PSL(2, 8).

Conversely, suppose G has such a normal subgroup K (of index 56 and
generated by conjugates of bc~'bac?), and G is extendable to a group G’ con-
taining G as a subgroup of index 9 and generated by a and an element « such
that o normalises K and satisfies o® = 1, (aa)” = 1, b = (caa) laa(aac)
and ¢ = (aaa)aa(aaa™!), then the action of G' can be extended to one
of G’ as a larger group of automorphisms of X = U/A.

Case T3: o(T) =(0; 3,3,7); o(I') =(0;2,3,7); [I":T| =8

This case is again similar to case T1, indeed may be viewed as part of it. An
embedding of " in I is given by z1 — y2y52y2y§y2_1, To > y{1y§y2y52y2
and z3 — y3. The permutation representation induced by I on cosets of
T is given by y; — (1,3)(2,4)(5,7)(6,8), y2 — (1,2,3)(4,5,6) and y3 —
(2,3,4,8,6,7,5), with these permutations again generating a group of order
168 isomorphic to PSL(2,7), here in its natural action on the projective line
over GF(7). The kernel of this representation is the same surface group
of signature (3; —) as in case T1, generated by conjugates of (yoy1y3)* =
(ngylg/Q_lyl)‘l = ToT1T3 = wl_lxglzleg, but now of index 21 in T.

If 6 can be extended to ¢ : IV — G’ where |G’ : G| = 8, then letting
a = 0'(y2) we require §'(y1) = (ac)™t, 0'(y2) = a, and €'(y3) = ¢; this
time K is generated by conjugates of 6(zo112%) = bac? = a ‘¢ lac?, with
G/ K isomorphic to C7 x Cs, while G'/K = PSL(2,7). Conversely, if G has
such a normal subgroup K of index 21, and G is extendable to a group G’
such that |G’ : G| = 8 and G’ is generated by ¢ and an element « such
that o normalises K and satisfies o = 1, (ac)? = 1, a = ac2ac’a™! and

—1,.2

b= a"'c’ac ?a, then the action of G can be extended to one of G’ on X.

Case T4: o(T') =(0; 4,8,8); o(I') =(0;2,3,8); [I':T| =12
This is again similar to T1, but with an embedding of I" in I" given by

o1 Y3, w2 (Yays v2)ys(ys 'usy, ) and @z e (v5 'y Cy2)us(vs  Y3ue),
and permutation representation of I'' on cosets of I' given by

yi = (1,9)(2,4)(3,7)(5,6)(8,10)(11,12),
Y2 (15273)(47536)(75879)(10511512)7
ys — (1,7)(2,9,10,11,8,3,4,5),

These permutations generate a (soluble) group of order 96, which is a non-
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split extension of a Klein 4-group by the symmetric group Sy, with the kernel
being of index 8 in ' and index 96 in I, and generated by conjugates of
(yoy1y3)® = (ygylyglyl)?’ = 132_2:1:1 = a:2_3:1:§1. Also G/K = Cg, while G'/K
is a non-split extension of C2 by Sj.

Accordingly, if G has such a normal subgroup K (of index 8 and generated
by conjugates of a~!b%) and G is extendable to a group G’ with |G’ : G| = 12
and G' is generated by elements « and 3 which satisfy o® = 88 = (a8)? =1,
a=p3%b=(afla)B(a"pa"t) and ¢ = (a8 2a)B(a" 1 B%a), then the
action of G can be extended to one of G’ on X. In fact from case N8 in
Section 3, the existence of the element o~!3%a (which induces an involutory
automorphism of G interchanging b and ¢ while conjugating a to cac™!) is
sufficient to prevent G from being the full automorphism group of X.

Case T5: o(T') =(0; 3,8,8); o(I') =(0;2,3,8); |I':T|=10

This is again similar to previous cases, but with an embedding of I' given
by @1 = y2y3 y2ydys s T2 — Y3 'Y3Y; 'ysyeys Y2 and m3 — 3, and
the permutation representation given by y; — (1, 3)(2,4)(5,10)(6,7)(8,9),
y2 +— (1,2,3)(4,5,6)(7,8,9), and y3 — (2,3,4,7,8,6,10,5). These per-
mutations generate a group of order 720, isomorphic to PGL(2,9), and the
kernel is generated by conjugates of (y21193)° = (Yov19, “41)° = z3z123 and
(W3yous 'v13y21)? = vy (w3 mewy lwy ' miay ys. Also G/K = C3 x Gy
and G'/K =2 PGL(2,9).

Hence if G has such a normal subgroup K (of index 72 and generated by
conjugates of b?ac? and ¢c*ba~1b~lab™!) and G is extendable to a group G’
containing GG as a subgroup of index 10 and generated by ¢ and an element
a such that o =1, (ac)? = 1, a = ac2ac’a™! and b = a~'Pa"cac 2,
then the action of G can be extended to one of G’ on X, so G # Aut X.

Case T6: o(T') =(0;9,9,9); o(I') =(0;2,3,9); |T':T| =12

In this case the key features are an embedding of T" in TV given by z1 —
(y2u3ys Dus(v2ys *ya 1), T2 = (y2y3 °ys Dus(y203y, ') and 3 — y3, and
permutation representation y; — (1,3)(2,4)(5,7)(6,10)(8,9)(11,12), y2 —
(1,2,3)(4,5,6)(7,8,9)(10,11,12), and y3 — (2,3,4,10,11,6,7,8,5). Here
the kernel is generated by conjugates of y5 2y2_ 1y§y2y3_ 2y2_ 1y3y2y3_ 2y2_ 1y3y2_ !
= 23 w125 T2, and G/K is an extraspecial group of order 27, while G'/K =
C3 x Ay (a semi-direct product of an elementary abelian group of order 27
by the alternating group Ay).

Hence if G has such a normal subgroup K (of index 27 and generated by
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conjugates of c"tac~'b) and G is extendable to a group G’ with |G’ : G| = 12
and G' is generated by ¢ and an element « such that o = 1, (ac)? = 1,
a=(acta Ne(acta™) L and b = (acta) " te(acta™?), then the action of
G can be extended to one of G’ on X. In fact from case N6 in Section 3,
the existence of the element ac3a~! (which induces an automorphism of G
of order 3 given by a — b +— ¢ — a) is sufficient to prevent G from being
the full automorphism group of X.

Case T7: o([) =(0;4,4,5); o(I') =(0; 2,4,5); |I":T| =6

Here the key features are an embedding of I' given by z1 — y3y3y2y3 lyg,
To Yy 1y3y2y3_ lyp and z3 +— y3, permutation representation y; >
(1,4)(2,5)(3,6), y2 — (1,2,3,4) and y3 — (2,4,6,3,5), kernel gener-
ated by conjugates of (y>y19s)* = (voyrv3 '11)? = 7 ‘25 a3 = o7 'wazmiad,
and G/K = C5 x Cy while G'/K = PGL(2,5).

Hence if G has such a normal subgroup K (of index 20 and generated by
conjugates of a 'b 'c? = a lcac?) and G is extendable to a group G’ with
|G' : G| = 6 and G’ is generated by ¢ and an element « such that a* = 1,
(ae)? =1, a = a’cac 'a? and b = o ‘cac la, then the action of G can be
extended to one of G’ on X.

Case T8: o(T) = (0; n,4n,4n), n >2; o) =(0; 2,3,4n); [I':T| =6
Here the key features are an embedding of I' given by z; — y, lyg‘yg,
To > (Yo 3 2y2)ys(yy 'y3y) and z3 +— y3, permutation representation
y1 — (1,3)(2,6)(4,5), y2 — (1,2,3)(4,5,6) and y3 — (2,3,6,5), kernel
generated by conjugates of y3 = x4 (or equivalently by conjugates of z1),

and G/K = C, while G'/K = S,.

Hence if G has such a normal subgroup K (of index 4 and generated by
conjugates of a) and G is extendable to a group G' with |G’ : G| = 6
and G’ is generated by c and an element « such that o® = 1, (ac)? = 1,
a=0(z1) = alcta and b = §(z3) = a'c2aca"c?a, then the action of
G can be extended to one of G’ on X. In fact from case N8, the existence of
the element ca(ac)(ca)™ (which induces an automorphism of G of order 2
interchanging b and ¢ while conjugating a to cac™!) is sufficient to prevent

G from being the full automorphism group of X.

Case T9: o() = (0; n,2n,2n), n>3; o) =(0; 2,4,2n); [I":T| =4

Here the key features are an embedding of I in I given by z1 — y2yfysy L
Ty > y5y3ys and T3 > y3, permutation representation y; — (1,4)(2,3),
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ya = (1,2,3,4), and y3 — (2,4), kernel generated by conjugates of y2 = z3
(or equivalently by conjugates of z1), and G/K = Cy while G'/K = D,
(dihedral of order 8).

Hence if G has such a normal subgroup K (of index 2 and generated by
conjugates of a) and G is extendable to a group G' with |G’ : G| = 4
and G’ is generated by ¢ and an element « such that o* = 1, (ac)? = 1,
a = 6(z1) = ac’a™! and b = 0(z2) = a?ca?, then the action of G can be
extended to one of G’ on X. In fact from case N8 in Section 3, the existence
of the element o? (which induces an automorphism of G of order 2 given
by a — cac™! and b +— ¢+ b) is sufficient to prevent G from being the full
automorphism group of X.

Case T10: o(T') =(0; 3,n,3n), n>3; o) =(0;2,3,3n); [I':T|=4

Here the key features are an embedding of I' given by z1 — y1y3y2ys3 Ly,
T2 — y193y1 and z3 — y3, permutation representation y; — (1,3)(2,4),
yo — (1,2,3) and y3 — (2,3,4), kernel generated by conjugates of y3 = =3

(or equivalently by conjugates of z2), and G/K = C3 while G'/K = Ay.

Hence if G has such a normal subgroup K (of index 3 and generated by
conjugates of b) and G is extendable to a group G’ with |G’ : G| = 4
and G’ is generated by c and an element « such that o = 1, (ca)® = 1,
a=0(x1) = ac(ca) tcla and b = O(x3) = ac’a, then the action of G can
be extended to one of G’ on X.

Case T11: o(T) = (0; 2,n,2n), n>4; o(l') =(0; 2,3,2n); [I':T| =3

In this final case the key features are an embedding of T in IV given by
T1 — Y2Y1Yy Lozg Yy 1y§y2 and z3 — y3, permutation representation
y1 — (1,3), y2— (1,2,3) and y3 — (2,3), kernel generated by conjugates
of y2 = x3 (or equivalently by conjugates of z3), and G/K = C, while
G'/K = S3. Accordlingly if G has such a normal subgroup K (of index 2
and generated by conjugates of b) and G is extendable to a group G’ with
|G’ : G| = 3 and G' is generated by ¢ and an element « such that o = 1,
(ac)? =1, a = 0(z1) = a(ac)a ! and b = O(z2) = o 'c®a, then the action
of G can be extended to one of G’ on X, so G # Aut X.
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5 Results

We summarise our results in the following two theorems. The first covers
cases N1 to N5, in which the Fuchsian group I' is not a triangle group. As
noted earlier, conditions for extendability in case N4 are covered by case Nb5.

Theorem 5.1 Let G be a finite group acting with a non-mazimal and non-
triangular Fuchsian signature on a compact Riemann surface X of genus g.
(i) If G acts with signature (2; —), and for a corresponding presentation
G = (a,b,c,d | [a,b][c,d] = --- = 1) the assignment a — a~!, b+ ab~la" 1,
cr (b7 led)c (b7 led)™! and d— (b~ le)d (b 1)t is an automorphism
of G, then G is not the full automorphism group of X.

(ii) If G acts with signature (1;t,t), and for a corresponding presentation
G = (a,b,x | z' = ([a,b]z)! = --- = 1) the assignment a > a~', b+ b7}
and z +— (ab) "tz "(ba) is an automorphism of G, then G is not the full
automorphism group of X.

(iii) If G acts with signature (1;t) and for a corresponding presentation
G = (a,b|[a,b]' =--- =1) the assignment a +— a ! and b— b ! is an
automorphism of G, then G is not the full automorphism group of X.

(iv) If G acts with signature (0;t,t,u,u) where t +u > 5, and for a corre-
sponding presentation G = (a,b,c,d |a’' =b' =c* =d* =abcd =---=1)
the assignment a +— b, b— a, ¢+ a 'da and d — bcb™! is an automor-
phism of G, then G is not the full automorphism group of X.

In the preceding theorem the converse is not always true: if G does
not admit an automorphism of the appropriate form, then although the
epimorphism 6 : I' — G cannot be extended to a Fuchsian group I" in the
way described in cases N1 to N5, it may still be possible that § be properly
extended to another Fuchsian group I'” containing T'.

On the other hand, for triangle groups no extension is possible unless the
group appears in Singerman’s list (in Table 1). The reason for this is that
all embeddings of an abstract triangle group into PSL(2,R) are mutually
conjugate, since the Teichmiiller dimension is zero.

Accordingly, if the action of a finite group G on a surface X with sig-
nature ¢ = (0;m1,m2, m3) extends to one of a larger group G', then G’
necessarily acts with signature o’ = (0;m}, mf, m%) where the pair (o,o’)
appears in Singerman’s list. Moreover, in this case the canonical generators
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of I'" may be chosen so that the embedding of " in I is as given in one of
the cases N6 to N8 or T1 to T11.

Again we have a single theorem to deal with all these cases. Note that
a group acting with a fixed signature may fulfil different conditions for its
extendability, and thus may admit more than one type of extension; in
particular, in the theorem below cases N7, T1 and T6 are covered by case
N6, while N7, T4, T8 and T9 are covered by N8.

Theorem 5.2 Let G be a finite group acting on a compact Riemann surface
X of genus g with a triangular signature (0;m1, mo, m3), corresponding to a
presentation of the form G = (a,b,c|a™ =b" =™ =abc=---=1).
Then G is the full automorphism group of X unless at least one of the fol-
lowing conditions is satisfied (up to permutation of the periods mi,ma, ms3),
in which case G # Aut X :

(i) G acts with signature (0;t,t,t) where t > 4, and the assignment a — b,
b— ¢ and ¢~ a induces an automorphism of G;

(ii) G acts with signature (0;t,t,u) where t > 3 and t +u > 7, and the
assignment a+— b, b+ a and ¢+ beb™! induces an automorphism of G;

(iii) G acts with signature (0;2,7,7), the conjugates of bc™'bac® generate
a normal subgroup K of index 56 in G, and G is extendable to a group
G' containing G as a subgroup of index 9 such that G' is generated by a
and an element o which normalises K and satisfies o® = 1, (aa)” = 1,
b= (aaa) laa(aaa) and ¢ = (eaa™V)aa(aaa™);

(iv) G acts with signature (0;3,3,7), the conjugates of bac® generate a nor-
mal subgroup K of index 21 in G, and G is extendable to a group G' contain-
ing G as a subgroup of index 8 such that G' is generated by ¢ and an element
« which normalises K and satisfies o® = 1, (ac)? =1, a = ac 2ac?a ™!
b=oafac?;

(v) G acts with signature (0;3,8,8), conjugates of b*ac?® and ¢~ *ba~'b~lab~!
generate a normal subgroup K of index 72 in G, and G is extendable to a
group G' containing G as a subgroup of index 10 such that G' is generated
by ¢ and an element o which normalises K and satisfies o> = 1, (ac)? =1,

a=oac?ac’a” ! and b= o 'a cac % a;

and

(vi) G acts with signature (0;4,4,5), the conjugates of a~'b~'c? generate
a normal subgroup K of index 20 in G, and G is extendable to a group
G' containing G as a subgroup of index 6 such that G' is generated by c

and an element o which normalises K and satisfies o* = 1, (ac)? = 1,
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a=co’cac o and b= a lcac ' a;

(vil) G acts with signature (0;3,n,3n) where n > 3, the conjugates of b
generate a normal subgroup K of index 3 in G, and G is extendable to a
group G' containing G as a subgroup of index 4 such that G' is generated
by ¢ and an element o which normalises K and satisfies o> = 1, (ca)® =1,

a= ac(ca) lela and b = acda;

(vili) G acts with signature (0;2,n,2n) where n > 4, the conjugates of b
generate a normal subgroup K of index 2 in G, and G is extendable to a
group G' containing G as a subgroup of index 3 such that G' is generated
by ¢ and an element o which normalises K and satisfies o = 1, (ac)? = 1,

a=alac)a ! and b= a 'cta.

At this point we observe also that there are certain arithmetic conditions
on the genus g of the surface which are necessary for extendability of the
group action as described above, in the cases of non-normal extensions.
These conditions (summarised in Table 2) follow from the Riemann-Hurwitz
formula and the requirements identified in Section 4.

Case | Conditions on |G| Conditions on genus g
T1 | |G| ="7(g —1)/2, divisible by 7 g odd

T2 | |G| =28(g —1)/3, divisible by 56 g =1 (mod 6)

T3 | |G| =21(g — 1)/4, divisible by 21 g =1 (mod 4)

T4 | |G| =4(g — 1), divisible by 8 g odd

T5 | |G| = 24(g — 1)/5, divisible by 72 g =1 (mod 15)

T6 | |G| =3(g — 1), divisible by 27 g= E
T7 | |G| =20(g — 1)/3, divisible by 20 g=1(
T8 | |G| =4n(g—1)/(2n — 3), divisible by 4 | g =1 (mod -22=3")
T9 | |G| =2n(g—1)/(n—2), divisibleby 2 | g=1 (
T10 | |G| =3n(g —1)/(n —2), divisibleby 3 | g=1 (
(g—1)/(n —3), divisibleby 2 | g=1 (

/
/
/
/

T11 | |G| = 4n(g — gl 56)

Table 2: Arithmetic conditions necessary for non-normal extendability

For example, in case T2 where the signatures of the Fuchsian groups are
a(T) =(0;2,7,7) and o(T') = (0;2,3,7), the group G has order 28(g —1)/3
so g =1 (mod 3); but further, as G must have a normal subgroup of index
56, |G| has to be divisible by 56, so g — 1 is even and thus g = 1 (mod 6).
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6 Some applications

In this section we apply the above results to a few examples, to illustrate
the range of possibilities.

Example 6.1 Let G be a cyclic group of order 7, generated by an element
v. Up to equivalence there are two smooth homomorphisms from the (7,7,7)
triangle group T' = (z1,%2,73 | ] = 25 = 2] = 312925 = 1) to G, each
corresponding to an action of G on a surface of genus 3. One of these takes

(z1,22,23) to (v,v,v°%) and the other takes (z1,x2,z3) to (v,v% v%).

In the first case, the identity automorphism of G has the effect of inter-
changing the (coincident) images of 21 and z2, and so by Theorem 5.2(ii) we
find G is not the full automorphism group of the associated surface. Indeed
by case N8 the action of G is extendable to the action of a cyclic group G’ of
order 14, generated by v and an involution « which centralises v. The latter
action corresponds to a smooth homomorphism from the (2,7,14) triangle
group onto G'.

In the second case, the squaring map v¥ — v?* is an automorphism of
G which permutes the images of 1,22 and z3 in a 3-cycle, so by Theorem
5.2(i) we find again G is not the full automorphism group of the surface.
Indeed by case N6 the action of GG is extendable to the action of a semi-direct
product G’ = C7 x C5 of order 21, generated by v and and element « such
that o® = 1 and o 'va = v?, corresponding to a smooth homomorphism
from the (3,3,7) triangle group onto G’. (Moreover, by case T1 the action
of G extends to an action of PSL(2,7), as seen in [3].)

Example 6.2 Let G = (v) be a cyclic group of order 11. Up to equivalence
there are two smooth homomorphisms from the (11,11,11) triangle group

I = (z1,79,73 | 1! = 23! = 21! = 112023 = 1) to G, each corresponding
to an action of G on a surface of genus 5. One of these takes (z1,z2,z3) to

(v,v,v%) and the other takes (z1,z2,x3) to (v,v?,v%).

In the first case, the identity automorphism of G has the effect of in-
terchanging the (coincident) images of z; and z9, so by Theorem 5.2(ii)
we know G is not the full automorphism group of the associated surface.
Indeed by case N8 the action of G is extendable to the action of a cyclic
group G’ of order 22, generated by v and an involution « which centralises
v, corresponding to a smooth homomorphism from the (2,11,22) triangle
group onto G'.
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In the second case however, G has no such automorphism, and also no
automorphism of G which permutes the images of z1, zo and z3 in a 3-cycle.
Hence by Theorem 5.2, we find G is the full automorphism group of the
surface in this case.

Example 6.3 Let G = S7 be the symmetric group of degree 7. This group
acts faithfully on a surface of genus 1681, associated with a smooth homo-
morphism from the (3,4,12) triangle group ' = (1, 20,23 | 23 = 25 =
732 = 717923 = 1) to G given by z1 — (1,2,3)(4,5,6), o — (2,7,3,4)
and z3 — (1,3,7)(2,6,5,4). As S7 has no normal subgroup of index 3, this
homomorphism cannot be extended to a smooth homomorphism from the
(2,3,12) triangle group to a group G’ containing S7 as a subgroup of index
4 (as per Theorem 5.2(vii)). Hence S7 is the full automorphism group of the
surface in this case.

Example 6.4 Let G = Si9, and consider the actions of G on surfaces of
genus 1451521 associated with the following two inequivalent smooth ho-
momorphisms from the (2,5,10) triangle group T' = (z1,22,73 | 22 =
3 = 3% = z12973 = 1) onto G: ome given by z1 — (4,6)(5,9)(7,10),
z2 — (1,2,3,4,5)(6,7,8,9,10) and z3 — (1,9,8,10,5,6,7,4,3,2), and the
other given by 1 — (3,6)(4,8)(5,9), z2 — (1,2,3,4,5)(6,7,8,9,10) and
z3 — (1,9,4,6,10,5,8,7,3,2). In both cases, conjugates of the image of zo
generate the alternating group Ajp, of index 2 in G.

In the first case, let a and b denote the images of 1 and x5 respectively,
and consider the permutation p = (1,8,9)(2,5,10)(3,7,6). Conjugation by
p is an automorphism of Ajg of order 3, and as also (p(ab)~!)? = 1, and
p(p(ab)~1)p~! = a, it has the properties required of the element o described
in Theorem 5.2(viii). It follows that the action of G = Si¢ in this case can be
extended to an action of a semi-direct product A1g x S3 on the same surface
(where the S3 is generated by automorphisms corresponding to conjugation
by p and an odd involution in S1¢ which inverts p).

In the second case however, there is no such permutation p in Sip (an
observation which may be checked using MAGMA or by hand using only the
conditions that p? = 1 and p~!c¢?*p = b). As every automorphism of Ay is
induced by conjugation by some element of Sig, it follows that there is no
way of extending the action of G in the way prescribed by Theorem 5.2(viii).
Therefore Sp is the full automorphism group of the surface in this case.
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7 Non-cyclic abelian groups of automorphisms

In this section we apply the above results to a special family of groups
of automorphisms, namely non-cyclic abelian groups. The extendability of
cyclic group actions was studied in [3] and [11].

First we consider the implications of Theorem 5.1 for the non-triangular
signatures.

Case 5.1(i): An abelian group G acting with signature (2;—) has (partial)
monodromy presentation G = (a,b,c,d | [a,b][c,d] = --- = 1). Since G is
abelian, the relation [a, b|[c,d] =1 is redundant, and so G can be any finite
abelian group generated by four (or fewer) elements. Also the assignment
required by Theorem 5.1(i) is @ — a7, b+ b7 ¢ ¢!, dw— d7L
Inversion of all elements is an automorphism of any abelian group, and so
the action of G is always extendable.

Case 5.1(ii): An abelian group G acting with signature (1;¢,¢) has (par-
tial) monodromy presentation G = (a,b,z | 2t = ([a,b]z)! = --- = 1).
Since G is abelian, the second relation ([a,b]z)! = 1 is redundant, and G
can be any finite abelian group generated by three (or fewer) elements, at
least one of which has order ¢. The assignment required by Theorem 5.1(ii)
is a— a ', b— b !, z+— L. This corresponds to an automorphism of
G, and therefore the action of G is always extendable.

Case 5.1(iii): This case is impossible for an abelian group G, since the
Fuchsian group presentation for signature (1;t) is (a,b | [a,b]' = 1), and
the relation [a,b]! = 1 forces ¢ = 1 (for a smooth embedding).

Case 5.1(iv): An abelian group G acting with signature (0;¢,¢,u,u) has
(partial) monodromy presentation G = (a,b,c,d | a® = b! = ¥ = d* =
abed = --- = 1). The relation abcd = 1 implies ab = (cd)™!, which has
order dividing both ¢ (the common orders of a and b) and u (the common
orders of ¢ and d), since G is abelian. As also b= a~!(ab) and d = (abc)~*,
the group G can be generated by the elements a, ab, and ¢, and hence the
order of G must divide ¢tmu where m = ged(t, u).

In particular, G must be a factor group of C; & C,, ® Cy, in which the
orders of the generators a, b, ¢, d are preserved (as t,t, u,u respectively). The
assignment required by Theorem 5.1(iv) is a — b, b — a, ¢ — d, d — ¢,
which implies that the element ab = (cd) ! is fixed.
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Clearly this assignment corresponds to an automorphism of G in the case
where G = C;® C,,, ® C,, (that is, where no further relations hold other than
those which follow from the prescription of the orders of the generators and
the fact that they commute). It will also give an automorphism in other
cases, for example when @ = b~! and ¢ = d~! and G = (a,c) = C; @ C,.
The assignment will only fail to give an automorphism in cases where the
generators a, b, ¢, d satisfy additional relations, not all of which continue to
hold when a and c¢ are interchanged with b and d respectively.

Whenever this assignment does provide an automorphism of G, the ac-
tion of G is extendable in the manner described in case N5 in Section 3.

Similarly, in the special case where u = t, if the relations satisfied by the
generators a, b, ¢, d still hold also when a and b are interchanged with d and
¢ respectively, then the action of G is extendable in the manner described
in case N4 in Section 3. This is certainly true when G = C; & Cy & Cy, and
in many other instances besides.

We now consider the implications of Theorem 5.2 for the triangular sig-
natures. In each case the non-cyclic abelian group G is assumed to act with
signature (0; m1,m2,m3), and to have a corresponding (partial) monodromy
presentation of the form G = (a,b,c |a™ =b"2 =™ =abc=---=1).

Case 5.2(i): Here the signature is (0;¢,¢,t), and the assignment required
by Theorem 5.2(i) is a+— b, b+ ¢ and ¢+ a.

Let A = (a) and B = (b), and suppose A N B has order m and hence
index £ = t/m in each of A and B. Then G = (a,b) = AB, and so
|G| = |AB| = |A||B|/|AN B| = t?/m = tk, and G = C; ® Ck. Also AN B
is cyclic and is generated by each of a* and b*, so b* = (a¥)® for some s
coprime to m = t/k. Now if the assignment a — b, b+ ¢, ¢ — a gives
an automorphism of G, then the relation b¥ = (a*)® must be preserved by
this assignment, so (ab) % = c¥ = (b*)* and therefore 1 = (ab)*(b¥)* =
aF bk (BF)% = a¥(ak)*((ak)*)* = (a¥)'+s+5" ) which implies that s>+ s+1=0
(mod m). Conversely if b* = (a¥)* where s +s+1 =0 (mod m), then the
required assignment gives an automorphism of G.

Case 5.2(ii): This case is similar to the one above. The signature is
(0;t,t,u), and the assignment required by Theorem 5.2(ii) is a + b — a and
¢+ c. Since G is abelian, the order u of ab is a divisor of ¢t = [(a)| = |(b)|.
Letting A = (a) and B = (b), and m = |[AN B| and k = t/m, we have
G = AB = C; ® Cy, and b* = (a*)* for some s coprime to m = t/k. Note
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also that 1 = (ab)® = a"b", so a® = b~ ", and hence both a* and b* lie in
AN B, so that k = t/m divides u. Now if the required assignment a + b,
b+ a, ¢+ ¢ gives an automorphism of G, then a* = (b*)* = ((a*¥)*)* and
therefore s> =1 (mod m). Conversely if b* = (a*)* where s> =1 (mod m),
then the required assignment gives an automorphism of G.

Cases 5.2(iii)-(vi): In case 5.2(iii) the signature is (0;2,7,7). This re-
quires the product of the elements b and ¢ of order 7 to have order 2, which
is impossible for an abelian group. Analogous arguments exclude signatures

(0;3,3,7), (0;3,8,8) and (0;4,4,5).

Cases 5.2(vii)-(viii): In case 5.2(vii) the signature is (0;3,n,3n), requir-
ing the product of elements of orders 3 and n to have order 3n. For an
abelian group G, this occurs only when G is cyclic (of order 3n), as treated
in [3, 11]. The analogous argument excludes also the signature (0;2,n,2n).

We can now summarise the conditions for the extendability of non-cyclic
abelian groups, in the following theorem.

Theorem 7.1 Let G be a non-cyclic finite abelian group acting on a com-
pact Riemann surface X of genus g with non-mazimal Fuchsian signature
o. Then the following hold:

(a) The signature o cannot be one of (1;t), (0;2,7,7), (0;3,3,7), (0;3,8,8),
(0:4,4,5), (033,m,3n) or (0;2,n,2n);

(b) If o = (2; —) or (1;t,t) then G # Aut X;

(c) If o = (0;t,t,u,u) then G is a factor group of Cy & Cy & Cp,, where
m = ged(t,u), and further, if the action of G corresponds to a (partial)
monodromy presentation in terms of commuting generators a,b,c,d subject
to relations o' = bt = ¢* = d* = 1, then if the assignment a — b — a,
c— d > cis an automorphism of G then G # Aut X;

(d) If o = (0;t,t,t) then G =2 Cy @ Cy with monodromy presentation of the
form G = (a,b| a’ = b" = (ab)! = [a,b] = 1, b* = a**) for some k dividing
t and some s coprime to t/k, and in this case G # Aut X if and only if
s2=1 (mod t/k) or s> +s+1=0 (mod t/k);

(e) If o = (0;t,t,u) with t # u then u divides t, and G = Cy @ Cy with
monodromy presentation G = (a,b | a' = bt = (ab)* = [a,b] = 1, b¥ = a**)
for some k dividing u and some s coprime to t/k, and in this case G # Aut X
if and only if s> =1 (mod t/k).
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Note that further arithmetic conditions will be satisfied in the last two
cases of Theorem 7.1. Suppose we write ¢t = du where u is the order of ab
(with d = 1 and u = t in case (d)), and consider all r for which (ab)*" = 1.
Then on one hand, as ab has order u, we know (ab)*" = 1 if and only if r is
divisible by u/k. On the other hand, if (ab)*" = 1 then a=*" = b¥" = (a**)"
so a*TVF" =1 and therefore (s + 1) has be divisible by ¢/k, and conversely.
In particular, taking r = u/k we find s + 1 is divisible by ¢/u, that is, by d.
Writing s 4+ 1 = pd we now have that (ab)*" = 1 if and only if rpd is divisible
by t/k, or equivalently, rp is divisible by uw/k. Thus s + 1 = pt/u where p is
coprime to u/k.

Moreover, when u = t we find that both s and s + 1 are coprime to t/k,
and hence ¢/k must be odd in case (d).

We now consider specific examples, which reveal further which extensions
are possible for non-cyclic abelian groups acting with triangular signatures.

Example 7.2 Suppose G acts with signature (0;7,7,7). This is case (d) of
Theorem 7.1, with £ = ¢t and G = C7 @ C7 (since 7 is prime). The action
of G (on a surface of genus 15) always extends to one of a larger group. In
fact the action extends to one of a group of order 294 containing C7; & C
as a normal subgroup of index 6, with signature (0;2, 3, 14), as described in
case N7 of Section 3. See also example 7.4 below for the general case of N7.

Extension of the type T1 in Section 4 is impossible. For suppose the con-
trary, namely that G extends to a group G’ acting with signature (0;2, 3, 7).
Then, by the observations made in Section 4, G’ can be generated by ele-
ments z,y,z satisfying the relations 22 = y> = 27 = zyz = 1, such that
2z = ¢, and conjugates of the element w = (yzy~'z)* generate a normal
subgroup K of index 168 in G’ and index 7 in G. In particular, K must be

cyclic of order 7, generated by w itself. But w = (yry 'z)* is inverted

by conjugation by z and centralised by zy = 27! = ¢! € G, there-

fore ywy ! 1 1 -3 =

1

= zzywy 'zz = zwr = w ', which implies w = y3wy
((w™1)~1)~! = w1, contradicting the conclusion that w has order 7.

Example 7.3 Suppose G acts with signature (0;9,9,9). Then two possibil-
ities can occur: either G = (a,b | a® = b° = (ab)® = [a,b] = 1) = Cy @ Co,
or G ={a,b|a®="0=(ab)? = [a,b] = 1, a® = b3) =2 Cy ® C3. Extension
of type N7 is possible in both cases. In the first case G acts on a surface of
genus 28, and the action extends to one of a group of order 486 containing
Cy @ Cy as a normal subgroup of index 6, with signature (0;2, 3,18). In the
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second case G acts on a surface of genus 10, and the action extends to one
of a group of order 162 containing C9 @ C3 as a normal subgroup of index
6, again with signature (0;2, 3, 18).

Extension of the type T6 in Section 4 is impossible, for in this case if
the action of G extends to one of a group G’ with signature (0;2,3,9), then
G must have a normal subgroup K such that G/K is an extraspecial group
of order 27, contradicting the fact that G is abelian.

Example 7.4 Suppose G acts with signature (0;t,¢,t), where ¢ is any in-
teger greater than 3. In this example we consider conditions under which
an extension of type N7 in Section 3 will be possible. This is a combina-
tion of cases N6 and N8, and so extendability requires both assignments
(a,b,¢) — (b,c,a) and (a,b,c) — (b,a,c) to give automorphisms of G.

Accordingly, the parameter s in the relation b* = (a*)® in part (d) of
Theorem 7.1 has to satisfy both s2 +s+1 =0 and s> = 1 (mod t/k).
Together these congruences give s = —1 —s2 = —2 (mod t/k) and therefore
0=s2+s+1=(-22-2+1= 3 (mod t/k), so that t/k = 1 or 3.
Conversely, if £ = ¢ then G = C; @ C; (with AN B trivial), and the extension
is easy. If k = t/3 then G = C; © Cy/3 (with AN B cyclic of order 3) and
ged(s,3) = ged(s + 1,3) = 1, so s = 1, which satisfies both s2 +s+1=0
and s2 = 1 (mod 3). Hence the action of G extends whenever k = ¢ or
k = t/3, to one of a group containing G as a normal subgroup of index 6,
with signature (0;2, 3, 2t).

Example 7.5 Suppose G acts with signature (0;4,8,8), or equivalently,
signature (0;8,8,4). Then just two possibilities can occur: either G =
(a,b|a® =0 = (ab)* =[a,b] =1, 0" =b*) 2 Cs ®Cy,0r G = (a,b|a® =
v = (ab)! = [a,b] = 1, a® = b?) = Cs ® Cy. (Note that if a? = b 2 then ab
has order 2 rather than 4.) Extension of type N8 is possible in both cases,
to groups of order 64 and 32 acting with signature (0; 2, 8,8) on surfaces of
genus 9 and 5 respectively.

As we will see in Example 7.7 below, the action of Cg & C5 here on a
surface of genus 5 extends also to one of a group of order 64 with signature
(0;2,4,8). This is an extension of type T9, which is impossible for Cg @ C.

We now consider the possibility of a greater extension, of type T4. In
applying the observations made in Section 4, we replace (a,b,c) by (c,a,b)
for consistency of signature, and take ¢ = (ab)~! as required. If the action
of G extends to one of a group G’ acting with signature (0;2,3,8), then
G' can be generated by elements z,, z satisfying the relations z? = > =
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28 = zyz = 1, such that ¢ = z

, 4 = yz_lyzy_lzy_ = yryryry - and
b=y 27 2y2y 2%y = y~loyryzyry 'ry, and conjugates of the element
w = (yzy~'z)® = a~2c generate a normal subgroup K of index 96 in G’ and
index 8 in G. In particular, |K| = |G|/8 = 2 or 4. Now w = (yzy~'z)?
is inverted by conjugation by z, as is y“lwy = (zy~lzy)3. If y does not
centralise K then K must have order 4 and be generated by two commuting
involutions, w and 3~ lwy; but if w is an involution then 1 = w? = (a ?¢)? =
a=*c?, so that |G| = 16 = 4|K|, contradiction. Hence y centralises K, so
K = (w) with w® = w™! and w¥ = w, so w = w® = WY~ = =1
which again forces w to have order 2 and so |G| = 8| K| = 16.

2 1 1

Hence for extendability of a non-cyclic abelian group G of the type T4
we require G = Cg @ Co, with ¢2 = a* or equivalently, a®> = b?. Indeed in
this case the action of Cg @ C5 on a surface of genus 5 extends to an action
of a group of order 192, with signature (0;2, 3, 8).

Example 7.6 Suppose G acts with signature (0;n,4n,4n), where n is any
integer greater than 1. In this example we consider conditions which allow
an extension of type T8 in Section 4. Here G =2 Cy,, ® C) where k divides n.

By the observations made in Section 4, if the action of G extends to one
of a group G’ acting with signature (0;2, 3,4n), then G’ can be generated by
elements z,y, z satisfying the relations z? = y3 = 2%" = zyz = 1, such that
a =1y 'z*y and ¢ = z, and conjugates of the element w = z* = ¢* generate
a normal subgroup K of index 24 in G’ and index 4 in G.

Now since G is abelian, ¢! ! = 2y commutes with ac =y~ '2%yz =

=z

yry tzy~lrzy~!, and so it follows that a = y~'2%y = yory oy lay oy =
zyyry oy ey = (zy~) = (2Y)" = w®. Also y2lyTt =y(yTre)y T =
(zy=1)* = w®, and hence w¥ = w¥ = w® = a. It follows that w is
centralised by 42, but as y has order 3 this implies w is centralised by y, and
hence a = w¥ = w = 2* = ¢*.

Thus G is cyclic, generated by ¢, with a = ¢* and b = (ca)™! = ¢°.

(Moreover, n divides 6, as shown in [3].) In particular, the extendability
described in case T8 does not apply for non-cyclic abelian groups.

Example 7.7 Suppose G acts with signature (0;n,2n,2n), where n > 3.
Here G =2 Cy, & C} where k divides n, and conditions for extendability of
type N8 are given in case (e) of Theorem 7.1. In this example we consider
conditions which allow an extension of type T9 in Section 4.

By the observations made in Section 4, if the action of G extends to one
of a group G’ acting with signature (0;2,4, 2n), then G’ can be generated by
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2n 1

elements m,y, z satisfying 2 = y* = 22® = zyz = 1, such that a = y22y~ 1,
b =y?zy? and ¢ = z, and conjugates of the element w = 22 = ¢? generate a
normal subgroup K of index 8 in G’ and index 2 in G. Now w = 2% = (y~'x)?
and so zwz = (zy !)? = ywy !; but also y ~lay lies in K and hence also in

G and therefore commutes with zy =c ', so ylwy = J;y(y‘lwy)y_la: =

TWT = ywy‘l, showmg that y? centralises w. In particular, b = (y2zy?%)? =
y?2%y? = y?wy? = w = ¢, and hence k = 2 (so n is even) and G = an@Cg
Further, as ¢ = (ab)~! we ﬁnd b2 =c? = (ab)™2 =a"2b"2 and so a® = b™*;
hence K = (a,b?) = C,, ® Co.

We claim that the action of G is always extendable in the manner de-
scribed in this case. To begin with, the group G has an automorphism a of
order 2 which interchanges b with ¢ (and centralises a), so by case N8 the
action of G extends to one of the group generated by « and ¢ with signature
(0;2,2n,2n). It is then a simple exercise to verify that this group also has
an automorphism B which interchanges ac with ¢~!, and hence (again by
case N8) the action of {«,c) extends to one of the group generated by £
and ¢, with signature (0;2,4,2n). The concatenation of these two exten-
sions of type N8 gives the required extension of type T9, and a group of 16n
automorphisms of a surface of genus 2n—3 (for every even n).
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