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SHORT PRESENTATIONS FOR ALTERNATING AND
SYMMETRIC GROUPS

J.N. BRAY, M.D.E. CONDER, C.R. LEEDHAM-GREEN, AND E.A. O’BRIEN

Abstract. We construct two kinds of presentations for the alternating and

symmetric groups of degree n: the first are on two generators in which the

number of relations is O(log n) and the presentation length is O(log2 n); the
second have a bounded number of generators and relations and length O(log n).

1. Introduction

A long-standing question is the existence of ‘simple’ presentations for the alter-
nating and symmetric groups of degree n. Many such presentations were recorded
by Coxeter and Moser in their seminal monograph [8, §§6.2-6.3], and while the
term ‘simple’ was not well defined, the number of generators and relators certainly
influenced their selections.

A question of more recent interest, motivated in part by algorithmic group theory,
is the existence of ‘short’ presentations. In a 1984 paper, Babai and Szemerédi [3]
defined the length of a presentation to be the number of symbols required to write
down the presentation. Each generator is a single symbol, and a relator is a string of
symbols, where exponents are written in binary. The length of a presentation is the
number of generators plus the sum of the lengths of the relators. This definition
accords well with the requirement of polynomial-time analysis of computational
complexity.

In [3], Babai and Szemerédi formulated the Short Presentation Conjecture: there
exists a constant c such that every finite simple group G has a presentation of
length O(logc |G|). One motivation for this conjecture is its application to deciding
in polynomial time certain key properties of finite matrix groups, such as order and
membership. We refer the reader to the survey by Babai [4] for a discussion on
these and related matters. The results of Babai et al. [1], Hulpke & Seress [12], and
Suzuki [20] establish this conjecture with c = 2 for all finite simple groups, with
the possible exception of the Ree groups 2G2(q).

Perhaps the best known family of presentations for the finite symmetric groups
are the presentations of Moore [14]; see also [8, 6.22]. In these, the symmetric
group Sn of degree n is presented in terms of the transpositions tk = (k, k+1) for
16k<n, which generate Sn and satisfy the defining relations tk

2 = 1 for 16k<n,
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and (tk−1tk)3 = 1 for 1 < k < n, and (tjtk)2 = 1 for 1 6 j < k−1 < n−1. These
are now commonly known as Coxeter relations for Sn, because of their analogues
in other contexts. For n > 1 the number of these relations is n(n−1)/2, and since
each relator has bounded length, the presentation length is O(n2). By using a single
transposition and an n-cycle as generators, Moore derived a shorter presentation of
length O(n log n). By introducing powers of the n-cycle as (redundant) additional
generators, one can readily obtain a presentation for Sn with bn/2c+ 1 generators,
2bn/2c+ 2 relations, and length O(n).

We now describe the main results of this paper. In Section 2 we introduce
methods of ‘gluing’ together presentations for Sm and Sn to produce presentations
for Sm+n−1 and Sm+n, which are then used to prove the the following.

Theorem 1.1. For every integer n > 1, the symmetric group Sn has a presentation
on the generators (1, 2) and (1, 2, . . . , n) in which the number of relations is O(log n)
and the presentation length is O(log2 n).

In Section 3 we adapt these methods to construct presentations for Sn with a uni-
formly bounded number of generators and relations and length O(log n). Note that
O(log n) is the best possible, since merely specifying the integer n needs Ω(log n)
bits. We use presentations for 2-dimensional projective linear groups to produce
presentations for Sp+q+2 for odd primes p and q, and then apply (proven) variants
of the Goldbach conjecture.

Before proceeding, we define some notation in order to ease exposition. If P =
{X |R} is a presentation, then d(P ) and r(P ) denote the cardinalities of X and R
respectively, and `(P ) is the length of P . The standard generators for Sn are the
transposition (1, 2) and the n-cycle (1, 2, . . . , n). Note that (1, 2) can be replaced
by any transposition (k, k + 1) for 1 6 k < n, and that the choice of k is irrelevant,
since conjugation by (1, 2, . . . , n) is equivalent to the obvious cyclic relabelling of the
points. A presentation for Sn whose generating set contains the standard generators
is called special. Special presentations can be particularly helpful in the constructive
recognition of linear groups.

Our main theorem in Section 3 is the following.

Theorem 1.2. For every integer n > 1, the symmetric group Sn has a special
presentation P of length O(log n) with a uniformly bounded number of generators
and relations. In particular, if n is even and n − 2 is the sum of two odd primes,
then d(P ) 6 6 and r(P ) 6 24, while if n is odd and n − 3 is the sum of two odd
primes, then d(P ) 6 7 and r(P ) 6 28; for all other values of n, d(P ) 6 15 and
r(P ) 6 82.

Note that O(log n) is the best possible presentation length, since merely speci-
fying the integer n needs Ω(log n) bits.

We are left with one outstanding question: Does Sn have a bounded presentation
of length O(log n) on its standard generators?

By a theorem of Babai, Kantor and Lubotzky [2], the diameter of the Cayley
graph for Sn on the standard generators is Θ(n2). Hence if each non-standard
generator in a special presentation is replaced by a word in the standard generators,
then the length of every relator is multiplied by at most n2. Theorem 1.2 now
implies that Sn has a bounded presentation of length O(n2 log n) on its standard
generators. By exploiting the ideas used in the proof of Theorem 1.2 and a short
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presentation for PGL(2, p) given in [8, §7.5], we can reduce the length to O(n2).
Whether or not there is a shorter one is an open question.

Our presentations for Sn give rise to presentations for the alternating group An

with similar characteristics, as we explain in Section 4. In particular, we have the
following consequence of Theorems 1.1 and 1.2.

Theorem 1.3. For every integer n > 2, the alternating group An has:

(a) a 2-generator presentation with O(log n) relations and length O(log2 n);
(b) a presentation of length O(log n) with a uniformly bounded number of gen-

erators and relations;
(c) a 2-generator presentation with a uniformly bounded number of relations.

Theorem 1.3(c) provides a positive answer to a question of Campbell et al. [7]
about the existence of a 2-generator presentation for An with a bounded number
of relators.

A weaker version of some of these results was announced in 2004; see [15], where
our original motivation is also described — namely the challenge of finding short
presentations for groups of Lie type on specific generating sets. In particular, our
presentations for An and Sn can be used in conjunction with the algorithms of
Beals et al. [5] to verify constructive recognition of black-box representations of
these groups.

Simultaneously, and independent of our work, Guralnick, Kantor, Kassabov and
Lubotzky obtained similar but stronger results about short presentations of An and
Sn with a bounded number of generators and relations.

In [10] they use a more refined definition of presentation length, namely the
number of generators plus the sum of the lengths of the relators as words in the
corresponding free group (see [18, pp. 190–191]), and obtain a result which is
optimal for that metric. They also exploit properties of PSL(2, p), but in other re-
spects their approach is substantially simpler; for example, instead of the Goldbach
conjecture, they use Bertrand’s Postulate (proved by Chebyshev in 1850).

In a major extension, they use their presentations for An and Sn to prove that ev-
ery nonabelian finite simple group of rank r over GF(q), with the possible exception
of the Ree groups 2G2(q), has a presentation with a bounded number of generators
and relations and total length O(log r + log q); again this result is optimal. In a
more recent paper [11], they show that both An and Sn have presentations with 3
generators, 7 relators, and length O(log n).

After we completed this work we learned from Bill Kantor about a 1972 con-
struction by Sass [17] of a short presentation for Ap+2 for prime p. This could be
used to obtain similar results.

2. Building presentations for Sm+n from Sm and Sn

We first introduce simple constructions to build special presentations for Sm+n−1

and Sm+n from special presentations for Sm and Sn. The key idea is to ‘glue’ the
presentations together using a single transposition.

Lemma 2.1. Given special presentations Pm and Pn for the symmetric groups Sm

and Sn of degrees m,n > 3, there exist special presentations Pm+n−1 and Pm+n for



4 J.N. BRAY, M.D.E. CONDER, C.R. LEEDHAM-GREEN, AND E.A. O’BRIEN

Sm+n−1 and Sm+n, respectively, such that:

d(Pm+n−1) 6 d(Pm) + d(Pn) + 1, d(Pm+n) 6 d(Pm) + d(Pn) + 2,
r(Pm+n−1) 6 r(Pm) + r(Pn) + 8, r(Pm+n) 6 r(Pm) + r(Pn) + 12,
`(Pm+n−1) 6 `(Pm) + `(Pn) + O(1), `(Pm+n) 6 `(Pm) + `(Pn) + O(1).

Moreover, if d(Pm) = d(Pn) = 2 then in each case the resulting presentation can be
simplified to one on the two standard generators, with at most r(Pm) + r(Pn) + 12
relations, and length `(Pm) + `(Pn) + O(log m + log n).

Proof. Let Pm = {A |R} and Pn = {B | S}, with (a, v) and (b, w) standing for the
standard generators of Sm and Sn. We first show that

Pm+n = {A,B, t, y |R,S, t2, (at)3, (tb)3, [a, b], [a,w], [v, b], [v, w],
[av, t], [vav−1, t], [t, wb], [t, w−1bw], y−1wtv }

is a special presentation for Sm+n.
Let G be the group defined by this presentation, and observe that there exists

an epimorphism θ : G → Sm+n under which

a 7→ (m−1,m), v 7→ (1, 2, . . . ,m),
b 7→ (m+1,m+2), w 7→ (m+1,m+2, . . . ,m+n),
t 7→ (m,m+1), y 7→ (1, 2, . . . ,m, m+1,m+2, . . . ,m+n).

Now in G, define tm−1 = a and tm−i−1 = viav−i for 16 i6m−2, and also tm = t,
and tm+1 = b and tm+i+1 = w−ibwi for 16 i6n−2.

By the choice of a and v, the elements ti for 1 6 i < m generate a subgroup
isomorphic to Sm and hence satisfy the Coxeter relations for Sm, and similarly, the
elements tm+i for 16 i<n satisfy the Coxeter relations for Sn. Also the relations
(at)3 = (tb)3 = 1 imply that (titi+1)3 = 1 for 16 i6m+n−2.

Next, we show that [tj , tk] = (tjtk)2 = 1 whenever 1 6 j < k−1 < m+n−1.
If j < k < m or m < j < k, then this follows from the presentation Pm or Pn,
respectively; if j < m < k, then it follows from the four relations [a, b] = [a,w] =
[v, b] = [v, w] = 1, as these imply that 〈a, v〉 commutes with 〈b, w〉. The elements av
and vav−1 generate a subgroup of index m in 〈a, v〉 ∼= Sm containing the involutions
t1, t2, . . . , tm−2, and wb and w−1bw generate a subgroup of index n in 〈b, w〉 ∼=
Sn containing tm+2, tm+3, . . . , tm+n−1. Accordingly, the four relations [av, t] =
[vav−1, t] = [t, wb] = [t, w−1bw] = 1 imply that t centralises 〈t1, t2, . . . , tm−2〉 and
〈tm+2, tm+3, . . . , tm+n−1〉, and so we obtain also [tj , tm] = 1 for 16 j 6m−2 and
[tm, tk] = 1 for m+26k6m+n−1.

Hence the m+n−1 involutions ti generate a subgroup satisfying the Coxeter
relations for Sm+n. The relations in Pm and Pn imply that each of the elements
of A or B is expressible as a word in these ti, and the relation y−1wtv = 1 then
implies the same for y, and therefore the involutions ti generate G. Thus G is
isomorphic to Sm+n, and the rest follows easily, by observing that a = yty−1,
v = (yt)m−1y−(m−1), b = y−1ty and w = y−(n−1)(ty)n−1.

A similar construction without the gluing transposition gives the following special
presentation for Sm+n−1 with the required properties:

Pm+n−1 = {A,B, y |R,S, (ab)3, [a,wb], [a,w−1bw], [v, wb], [v, w−1bw],
[av, b], [vav−1, b], y−1wv }. �
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As a basis for induction, the constructions used in Lemma 2.1 are not the best
possible, since doubling the degree roughly doubles both the number of relations
and the presentation length. Taking m = n, however, we can express one copy of
Sn as a conjugate of another and obtain the following.

Lemma 2.2. Given a special presentation Pn for Sn where n > 3, there exists a
special presentation Q2n for S2n with d(Q2n) 6 d(Pn) + 1, r(Q2n) 6 r(Pn) + 6,
and `(Q2n) 6 `(Pn) + O(1). Moreover, if d(Pn) = 2 then Q2n can be simplified to
one on the two standard generators, with at most r(Pn) + 6 relations, and length
`(Pn) + O(log n).

Proof. As in the proof of Lemma 2.1, one can show that if x, w stand for the
standard generators of Sn in Pn, then

{A, y |R, y2n, (xy)2n−1, [x,wy−1], [w2xw−1, wy−1], [x, yn]2, [x, yn−1]2 }

is a special presentation for S2n, with y standing for the 2n-cycle (1, 2, . . . , 2n). In
particular, w = y−(n−1)(yx)n−1 (since this relation is satisfied by the corresponding
elements in S2n), and the final assertion follows. �

Theorem 1.1 now follows from Lemma 2.2 and its obvious analogue for S2n−1.

3. Short presentations for Sn with a bounded number of relations

As a first step in this section, we give a variant of our ‘gluing’ constructions.

Lemma 3.1. Let P = {A, t |R} and Q = {B, t | S} be presentations for Sm+1

and Sn+1, with m,n > 1, such that the generator t stands for a transposition
in both cases. Let M and N be sets of words on the sets A ∪ {t} and B ∪ {t}
standing for generators of the natural subgroups Sm and Sn fixing a point moved by
t, respectively, and let [M,N ] denote the set of all commutators [u, v] with u ∈ M
and v ∈ N . Then {A,B, t |R,S, [M,N ] } is a presentation for Sm+n, again with
the generator t standing for a transposition. If y and z stand for an (m+1)-cycle in
Sm+1 and an (n+1)-cycle in Sn+1, respectively, then zyt stands for an (m+n)-cycle
in Sm+n.

Proof. Observe that there is a natural homomorphism from the group G with the
given presentation onto Sm+n under which the subgroups generated by M and N
map to Sym({1, . . . ,m}) and Sym({m+1, . . . ,m+n}), respectively, and t maps to
the transposition (m,m+1).

Choose m generators a1, a2, . . . , am for 〈M, t〉 = 〈A, t〉 ∼= Sm+1 that satisfy the
Moore presentation for Sm+1, with 〈a1, . . . , am−1〉 = 〈M〉 and am = t; similarly,
choose n generators b1, b2, . . . , bn for 〈N, t〉 = 〈B, t〉 ∼= Sn+1 that satisfy the Moore
presentation for Sn+1, with b1 = t and 〈b2, . . . , bn〉 = 〈N〉. Also define am+j−1 = bj

for 1 < j 6 n, and let S = {a1, . . . , am+n−1}, a set of involutory generators for
〈M, t,N〉 = 〈A, t, B〉 = G.

Now consider a Coxeter relation (aiaj)mij = 1. If 16 i6j 6m then this holds in
〈M, t〉, or if m6 i6j 6m+n−1 then it holds in 〈N, t〉, and otherwise, if 16 i<m<j
then it holds since ai ∈ M commutes with aj ∈ N . Thus G = 〈S〉 ∼= Sm+n. Finally,
if y and z are elements of G standing for the (m+1)-cycle (1, 2, . . . ,m+1) and the
(n+1)-cycle (m,m+1, . . . ,m+n), respectively, then zty stands for the (m+n)-cycle
(1, 2, . . . ,m+n). �
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Corollary 3.2. Let P = {A, t |R} be a presentation for Sm+1, such that the gen-
erator t stands for a transposition, and let a and c be words on the set A ∪ {t}
standing for generators of the natural subgroup Sm fixing a point moved by t. Then
{A, b, t |R, b2, (bt)3, [a, b], [c, b] } is a presentation for Sm+2, with the generators b
and t standing for transpositions. This presentation has |A|+ 2 generators, |R|+ 4
relations, and length `(P )+O(1). An element standing for an (m+2)-cycle in Sm+2

can be expressed in the form yb, where y stands for an (m+1)-cycle in Sm+1.

Proof. Take n = 2, B = N = {b} and M = {a, c} in Lemma 3.1. �

We next recall two facts which we will use to construct a special presentation of
length O(log p) for Sp+2, when p is an odd prime.

Proposition 3.3 (Sunday [19]). Let p be an odd prime. Then PSL(2, p) has presenta-
tion { a, c | ap, acacac−1, (a(p+1)/2ca4c)2 }, of length O(log p), where the generators
a and c may be taken as standing respectively for the linear fractional transforma-
tions z 7→ z+1 and z 7→ −1/z.

Proposition 3.4 (Burnside [6] and Miller [13]). If n > 3 then Sn+1 has presentation
{ a1, a2, . . . , an | a2

i , (aiaj)3, (aiajaiak)2 for all distinct i, j, k }, with generator ai

standing for the transposition (i, n + 1) for 1 6 i 6 n.

In the latter, it suffices to use for each unordered triple {i, j, k} just one relation
of the form (aiajaiak)2, because the relator (aiajaiak)2 is conjugate to (aiakaiaj)2,
and equivalent to (ajaiajak)2 since (aiaj)3 = 1.

Theorem 3.5. Let p be an odd prime, and let λ be a primitive element of GF(p),
with inverse µ. Then

{ a, c, t | ap, acacac−1, (a(p+1)/2ca4c)2,

t2, [t, a], [t, caλcaµc], [t, c]3, (ttcttca)2, (ttcttcaλ

)2, (atc)p+1 }

is a 3-generator 10-relator presentation of length O(log p) for Sp+2, in which attc

stands for a (p+2)-cycle and t stands for a transposition. If p ≡ 3 mod 4, then the
relator (ttcttcaλ

)2 is redundant and just 9 relators are needed.

Proof. Let G be the group with the given presentation. Then there is an epimor-
phism θ : G → Sp+2, where Sp+2 acts on {?,∞} ∪ GF(p), such that θ maps t to
the transposition (?,∞), and maps a and c to elements that fix ? and act on the
projective line {∞} ∪ GF(p) in the same way as the two transformations given
in Proposition 3.3. In particular, a and c generate a subgroup H isomorphic to
PSL(2, p), and the images of a and caλcaµc generate the stabiliser in H of the
points ? and ∞ (and centralise t). Hence t has exactly p+1 conjugates under the
action of H, say ui for i ∈ {∞} ∪ GF(p), where t = u∞, and θ takes ui to the
transposition (?, i) for each i.

Now the relations t2 = [t, c]3 = (ttcttca)2 = (ttcttcaλ

)2 = 1 give u2
∞ = (u∞u0)3 =

(u∞u0u∞u1)2 = (u∞u0u∞uλ)2 = 1. Next, we use the facts that PSL(2, p) is
doubly-transitive on the projective line L = {∞} ∪GF(p), and has just two orbits
on ordered triples of distinct points of L, namely the orbits of (∞, 0, 1) and (∞, 0, λ).
These give all that is required to invoke Proposition 3.4, and so the subgroup K
generated by these p+1 conjugates of t is isomorphic to Sp+2. Moreover, if p ≡ 3
mod 4, then the relator (ttcttcaλ

)2 can be dropped because in that case PSL(2, p)
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has a single orbit on unordered triples of points of L — see the observation after
Proposition 3.4.

On the other hand, the relator (atc)p+1 may be written as ap+1 times a product
of conjugates of tc, and as ap = 1 it follows that a−1 is expressible as a product of
conjugates of tc (and hence of t). In particular, a lies in K, so all conjugates of a lie
in K, and as these conjugates generate H ∼= PSL(2, p), it follows that K contains
〈a〉H = H, and thus G = HK = K ∼= Sp+2. �

We remark that, analogously, a 3-generator 6-relator presentation of length
O(log p) due to Todd [21] for PGL(2, p) can be used to obtain a 4-generator 12-
relator presentation of length O(log p) for Sp+2.

Sass [17] used a presentation of Frasch [9] for PSL(2, p) to construct a presenta-
tion for Ap+2 with 3 generators, at most 9 relations, and length O(log p).

Ideally, we would like to convert one of our bounded short presentations for
Sp+2 to one on its standard generators. Taking these to be x = (?,∞) and y =
(?,∞, 0, 1, . . . , p−1), and a, c and t as in Theorem 3.5, we have x = t and y = attc,
and conversely a = yxy−1xy. We cannot, however, express c as a short word in x
and y, and suspect that this cannot be done.

Instead we apply Lemma 3.1 to Theorem 3.5 and obtain the following:

Theorem 3.6. Let p and q be odd primes, and let λ and µ be primitive elements
of GF(p) and GF(q), with inverses ρ and σ respectively. Then

{ a, c, d, f, t | ap, acacac−1, (a(p+1)/2ca4c)2, dq, dfdfdf−1, (d(q+1)/2fd4f)2,

t2, [t, a], [t, caλcaρc], [t, d], [t, fdµfdσf ], [t, c]3, [t, f ]3,

(ttcttca)2, (ttf ttfd)2, (ttcttcaλ

)2, (ttf ttfdµ

)2, (atc)p+1, (dtf )q+1,

[a, d], [a, f ], [c, d], [cf, t]2 }
is a 5-generator 23-relator presentation of length O(log p + log q) for Sp+q+2, in
which atf ttcd stands for a (p+q+2)-cycle and t stands for a transposition. If p ≡ 3
mod 4 then the relator (ttcttcaλ

)2 is redundant, and if q ≡ 3 mod 4 then the relator
(ttf ttfdµ

)2 is redundant.

Proof. Take m = p+1 and n = q +1, and A = {a, c} and B = {d, f}, with
M = {a, tct} and N = {d, tft}. Then using Lemma 3.1, we obtain the desired
presentation for Sp+q+2, but with the relators [a, tft], [d, tct] and [tct, tft] in place
of [a, f ], [c, d] and [cf, t]2. Since t commutes with both a and d in this group, the
relations [a, f ] = 1 and [c, d] = 1 imply that [a, tft] = 1 and [d, tct] = 1; further
the relation [tct, tft] = 1 is equivalent to 1 = [tc, tf ] = (ctcftf)2 and hence to
[cf, t]2 = (fctcft)2 = 1. �

Proof of Theorem 1.2. Suppose n is even. If n− 2 is the sum of two odd primes (as
implied by the Goldbach conjecture), then Theorem 3.6 gives a bounded presenta-
tion of length O(log n) for Sn, in which the n-cycle (1, 2, . . . , n) can be expressed as
a word of length 9 in the generators. Adding an additional generator to represent
this n-cycle then gives a special presentation with the required properties. Simi-
larly, if n is odd and n− 3 is the sum of two odd primes, then the above argument
gives a suitable presentation for Sn−1, to which Corollary 3.2 may be applied.

Even if the Goldbach conjecture is false, for sufficiently large n a theorem of
Vinogradov [22] implies that n−2 or n−3 is expressible as a sum of three odd primes
p, q, r. Theorem 3.6 then gives a 5-generator 23-relator presentation for Sq+r+2,
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which can be used with Theorem 3.5 and Lemma 3.1 to produce a presentation for
Sp+q+r+2 = Sn or Sn−1, with 5+3−1 = 7 generators and at most 23+10+2×2 = 37
relations, and length O(log n). The appropriate long cycle is expressible as a word
of length 9 + 1 + 5 = 15 in the generators, and the rest follows easily.

Alternatively, we can resort to a theorem of Ramaré [16] which states that every
even positive integer is a sum of at most six primes. We partition the primes
into three pairs, use Theorem 3.5 or Theorem 3.6 as appropriate for each pair,
and then apply Lemma 3.1 twice to glue the three presentations together. For
even n, this gives a presentation for Sn on at most 13 generators with at most
(23+23+4)+23+ 4 = 77 relations, with the n-cycle (1, 2, . . . , n) expressible as a
word of length at most (9 + 1 + 9) + 1 + 9 = 29 in the generators. For odd n, again
we can construct a suitable presentation for Sn−1, and then apply Corollary 3.2. �

4. Alternating groups

Presentations for the alternating groups An are obtainable easily from those for
Sn, using the Reidemeister-Schreier process (as described in [18, Chapter 6]).

If P is any presentation for Sn, let E and O be the subsets of generators in
P that stand for even and odd permutations in Sn, respectively. For a Schreier
transversal for An in Sn, we may take {1, t} where t is any one of the generators in
O (such as one standing for a single transposition). The Schreier generators for An

then consist of all elements of the form u and tut−1 where v ∈ E, together with all
elements of the form tv±1 where v ∈ O, and the Reidemeister-Schreier relators are
just those in the presentation for Sn, rewritten in terms of these Schreier generators,
plus conjugates of these by the element t−1.

Hence if Q is the resulting presentation for An, then d(Q) 6 2d(P )− 2, r(Q) 6
2r(P ) and `(Q) 6 2`(P ).

If P is defined on the standard generators x = (1, 2) and y = (1, 2, . . . , n), then
the presentation Q for An is on the two n-cycles y and xyx when n is odd, or the
two (n − 1)-cycles xy and xy−1 when n is even. Note also that if P is a special
presentation with a bounded number of generators and relations, then any non-
standard generator can be eliminated by the addition of one further relation, and
so P gives rise to a presentation for Sn on the standard generators, and hence to a
2-generator presentation for An, with a bounded number of relations.

Thus we obtain Theorem 1.3 as a consequence of Theorems 1.1 and 1.2.
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