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CONSTRUCTIVE RECOGNITION OF PSL(2,q)

M.D.E. CONDER, C.R. LEEDHAM-GREEN, AND E.A. O’'BRIEN

ABSTRACT. Existing black box and other algorithms for explicitly recognising
groups of Lie type over GF(g) have asymptotic running times which are poly-
nomial in g, whereas the input size involves only log g. This has represented a
serious obstruction to the efficient recognition of such groups.

Recently, Brooksbank and Kantor devised new explicit recognition algo-
rithms for classical groups; these run in time that is polynomial in the size of
the input, given an oracle that recognises PSL(2, ¢) explicitly.

The present paper, in conjunction with an earlier paper by the first two
authors, provides such an oracle. The earlier paper produced an algorithm
for explicitly recognising SL(2, ¢) in its natural representation in polynomial
time, given a discrete logarithm oracle for GF(g). The algorithm presented here
takes as input a generating set for a subgroup G of GL(d, F') that is isomorphic
modulo scalars to PSL(2, ¢), where F is a finite field of the same characteristic
as GF(q); it returns the natural representation of G modulo scalars. Since
a faithful projective representation of PSL(2,q) in cross characteristic, or a
faithful permutation representation of this group, is necessarily of size that
is polynomial in ¢ rather than in logq, elementary algorithms will recognise
PSL(2, q) explicitly in polynomial time in these cases. Given a discrete loga-
rithm oracle for GF(q), our algorithm thus provides the required polynomial
time oracle for recognising PSL(2, g) explicitly in the remaining case, namely
for representations in the natural characteristic.

This leads to a partial solution of a question posed by Babai and Shalev: if
G is a matrix group in characteristic p, determine in polynomial time whether
or not Op(Q) is trivial.

1. INTRODUCTION

An explicit recognition algorithm for a group H takes as input a group G defined
on a generating set X, and decides whether or not G is isomorphic to H; if so,
it then also computes the image of X under such an isomorphism and enables
computation of the image in G under the inverse isomorphism of a given element
of H.

We are concerned with the case where G is given as a matrix group over a finite
field.

The black box recognition algorithms for classical groups proposed by Kantor &
Seress [22] and the recognition algorithm for SL(d, ¢) in its natural representation
proposed by Celler & Leedham-Green [10] have complexity that is polynomial in
the size of the field (and the rank of the group). Classical groups have faithful
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representations over the defining field (such as the natural representation) whose
degrees are independent of the field size, and so the field size may be exponential
in the size of the input. Hence more efficient algorithms are needed to deal with
these cases. Recently, new explicit recognition algorithms for groups isomorphic to
classical groups have been developed by Brooksbank [5] and Brooksbank & Kantor
[6]; these run in time that is polynomial in the size of the input, provided the same
can be achieved for the groups PSL(2, q).

The development of an explicit recognition algorithm for PSL(2,q) is a non-
trivial task, even when G is not just isomorphic to, but is PSL(2,q). A central
difficulty lies in finding an element of order p, that is to say a transvection, as a
word in the given generating set. Conder & Leedham-Green [9] present an explicit
recognition algorithm for SL(2, q) in its natural representation, which runs in time
that is polynomial in loggq. It relies on a discrete logarithm oracle for GF(q) —
that is, an oracle that will provide, for a given non-zero element y of GF(g) and a
fixed primitive element a of GF(g), the unique integer % in the range 1 < k < ¢ for
which p = a*. For a description of discrete log algorithms, see [25, Chapter 4].

This reduces the explicit recognition of PSL(2, q), given by a linear or projective
representation in the natural characteristic, to the construction of the natural rep-
resentation from the given one. In this paper we present such an algorithm which
runs in time polynomial in the size of the input.

Let 7(d) denote the number of factors of d. Our primary result is the following.

Theorem 1.1. Let G be a subgroup of GL(d, F) for d > 2, where F' is a finite field
of the same characteristic as GF(q); assume that G is isomorphic modulo scalars to
PSL(2,q). Then there exists a Las Vegas algorithm that constructs an epimorphism
from G to PSL(2,q) at a cost of at most O(d®7(d)) field operations.

In theory we are concerned with a group isomorphic to PSL(2,q), and which
will be defined modulo scalars; but in practice we deal with linear groups, so we
have a subgroup G of GL(F) that is isomorphic, modulo scalars, to PSL(2,q).
It is convenient to replace G by its derived group, so that G is isomorphic to
PSL(2, q) or to SL(2,q). To replace G with its derived group we use, for example,
the polynomial-time Monte Carlo algorithm of [4]. When the algorithm of Theorem
1.1 has run, it provides a simple method of computing the image of an element of
G in PSL(2, q), and this can be applied to any element of the group, not just to an
element of the derived group.

Let ¢ be a power of a prime p, and let V be a finite-dimensional vector space over
a finite field of characteristic p. In summary, we present an algorithm that takes as
input a subset X of the matrix group GL(V') that generates a group G isomorphic
to SL(2, ¢) or to PSL(2, q), and constructs the natural projective representation of
G by constructing the image of X under some homomorphism of G onto PSL(2, q).
Our algorithm has three basic steps: the first replaces the given representation
with an absolutely irreducible representation over a subfield of GF(g); the second
replaces this absolutely irreducible representation with a tensor irreducible repre-
sentation over GF(q); the final step constructs the natural representation from this
representation, so that G can be explicitly recognised using the algorithm of [9].

The significance of our algorithm lies in its ability to deal with values of ¢ that
are large in terms of the size of the input. Our basic algorithm does not apply
for certain small values of ¢: for example, to the Steinberg representation in odd
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characteristic, which is in dimension q. However we can address these cases using
more elementary techniques.

A faithful linear or projective representation of PSL(2, ¢) in cross characteristic
has degree which is polynomial in ¢ [18]; thus we may assume that the input group
is a matrix group in its natural characteristic.

In addition to its own intrinsic importance, the algorithm has wider importance
for the matriz recognition project [19]. This project seeks to reduce the problem of
constructive recognition of a matrix group G to the recognition of the composition
factors of G. In particular, the constructive recognition of classical groups is of
central significance to this project. Brooksbank & Kantor [6] reduce the time
required to recognise the classical groups to a function whose dependence on the
field size is polynomial in log ¢, given an oracle which recognises PSL(2, q) explicitly.
Hence this work is a central component of a strategy for the constructive recognition
of matrix groups.

The organisation of the paper is as follows. In Section 2 we recall Brauer &
Nesbitt’s [7] structural characterisation of an absolutely irreducible representation
of SL(2, g) which cannot be written over a smaller field; essentially, this is a tensor
product of certain symmetric powers of the natural module. In Section 3 we discuss
how to tensor-decompose such a representation of SL(2,q) to construct a tensor
indecomposable factor. In Section 4 we show how to construct the natural module
of SL(2,q) from such a symmetric power. In Section 5 we discuss exceptional
cases not covered by the main algorithm. In Section 6 we summarise the explicit
recognition algorithm of [9] for SL(2, ¢) in its natural representation. In Section 7 we
present our complete algorithm and consider its complexity. In Section 8 we discuss
how to recognise a linear group isomorphic to SL(2,q) (as opposed to a projective
linear group isomorphic to PSL(2, ¢)), and how to prove that the input group is in
fact isomorphic, as projective linear group, to PSL(2, q). We also discuss a problem
of Babai & Shalev [2]. Finally, we report on the performance of an implementation
in MAGMA [8].

2. IRREDUCIBLE REPRESENTATIONS OF SL(2, q)

Let G be a subgroup of GL(d, p*) isomorphic to SL(2,q) or to PSL(2, q), where
g = p®, and let V denote the corresponding G-module of dimension d over GF(p®).

The first aim is to construct from this data a non-trivial absolutely irreducible
representation of G that cannot be written over a smaller field.

If V is reducible, then we use the MEATAXE [15], [17] to replace V by a section
of V on which G (or possibly G modulo a central subgroup) acts faithfully.

Similarly, if V' is irreducible, but not absolutely irreducible, then we rewrite V
as an absolutely irreducible G-module in smaller dimension over a larger field [15].

If G, as an absolutely irreducible subgroup of GL(d, p®), is conjugate to a sub-
group of GL(d, p®) for some proper divisor b of a, then we find such a conjugating
matrix using the algorithm of [13], and thus write G over GF(p?).

We may now apply the following theorem of Brauer & Nesbitt [7, §30].

Theorem 2.1. Let F' be an algebraically closed field of characteristic p, and let
V be an irreducible F[G]-module for G = SL(2,q), where ¢ = p®. Then V ~
T' T, ® - ®T; ®gr(q) F, where T; is the s;-fold symmetric power S; of the
natural GF(q)[G]-module M twisted by the f; th power of the Frobenius map, with
0<fi<fo<- < fi<e,and1<s; <p foralli.
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Thus V is defined over GF(q), and may be defined over a proper subfield K.

Given ¢t and (s;) and (f;) it is easy to determine the smallest field K over which
V is defined as follows. The group A of automorphisms of GF(g) is cyclic of order e,
generated by the Frobenius automorphism. This group acts on the set of all ordered
pairs (s;, fi), where 0 < f; < e and 1 < s; < p, the Frobenius automorphism
replacing (s;, fi) by (si, g;) where g; = f; + 1 mod e. Let B be the subgroup that
normalises the set of pairs arising from the above tensor decomposition. Then K
is the subfield of GF(g) corresponding to B in the Galois correspondence; that is
to say, K is the subfield centralised by B. In particular, if all s; are equal, as in
the Steinberg representation when s; = p—1 for all 4, then K is GF(p). In practice
we have obtained K as the smallest field over which V' may be written, but have
yet to compute (s;) and (f;). If K is a proper subfield of GF(q) we replace the
K[G]-module V by the GF(q)[G]-module V ® k¢ GF(g). Thus the above theorem
may be reworded as follows.

Theorem 2.2. Let K be a finite field of characteristic p, and let V be an absolutely
irreducible K[G]-module for G = SL(2,q), where ¢ = p®. Suppose that V' cannot be
written over a smaller field. Then K is a subfield of GF(q), and V ® x GF(q) ~
T1@T>®- - -QTy, where T is the s;-fold symmetric power S; of the natural GF(q)[G]-
module M twisted by the f; th power of the Frobenius map, with0 < f; < fo <--- <
fi<e,and1<s; <p for alli.

The next step is to decompose this tensor product, by finding one tensor inde-
composable factor.

3. A TENSOR INDECOMPOSABLE REPRESENTATION

The aim of this section is to prove the following result.

Theorem 3.1. Given a subset of GL(d, q) that generates a non-trivial tensor de-
composable representation of SL(2,q), a non-trivial tensor indecomposable tensor
factor of the given d-dimensional module can be constructed in O(d®1(d)) field op-
erations, where 7(d) s the number of divisors of d.

We prove this theorem by presenting an algorithm to construct such a tensor
indecomposable tensor factor. For odd p, the algorithm does not apply if V has
dimension p®, or if e = 2 and V' has dimension p(p — 1) or (p — 1)2. For p = 2 and
e = 2 it fails in dimension 4. We return to these cases in Section 5.

The construction of a tensor indecomposable representation of G relies on the
theoretical framework and algorithm developed by Leedham-Green & O’Brien [20,
21] for finding a tensor decomposition of a finite-dimensional module over a finite
field, or proving that no non-trivial tensor decomposition of this module exists.
Here we summarise briefly the necessary background material, first recalling the
concept of equivalence of tensor decompositions.

Definition 3.2. A wu-tensor decomposition of V' is a linear isomorphism « from
U®W onto V, where U and W are vector spaces, with U of dimension u. If
a:U®W =V and 8:U'® W' — V are tensor decompositions of V' then a and
B are equivalent if there are linear isomorphisms ¢ : U — U’ and ¢ : W — W'
such that a = (¢ ® ¢)B. If V is an F[G]-module, where F' is the underlying field
and G is a group, then a u-tensor decomposition of V' as F[G]-module requires U
and W as above to be F[G]-modules, and « to be an F[G]-isomorphism; and in the
definition of equivalence ¢ and ¢ are required to be F[G]-isomorphisms.
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A wu-projective geometry on V', where u divides the dimension of V, is a projective
geometry where the k-flats are of dimension ku, the join of two flats is their sum,
and their meet is their intersection. Thus in a wu-tensor decomposition of V as
above, the subspaces of V' that are the images of subspaces of U ® W of the form
U ® Wy, where Wy runs through the set of subspaces of W, form a u-projective
geometry on V. More generally, a u-tensor decomposition of V' as F[G]-module
gives rise as above to a u-projective geometry on V' where Wy runs through the set
of F[G]-submodules of W. This projective geometry is G-invariant, in that the set
of flats is G-invariant. In [20] it was shown that this construction of a u-projective
geometry from a tensor decomposition of V' as F[G]-module sets up a one-to-one
correspondence between the set of G-invariant projective geometries on V' and the
set of equivalence classes of tensor decompositions of V' as FG-module. A point
in the projective geometry corresponding to a wu-tensor decomposition of V' has
dimension u as a subspace.

In [20] an algorithm FINDPOINT is presented: given as input a subspace F of
V, it determines whether or not F is a flat in a G-invariant u-projective geometry
on V, and, in the affirmative case, returns the corresponding tensor decomposition
of V. In [21] this geometrical approach and some other ideas were exploited to
develop a practical algorithm for deciding tensor decomposability. Here we only
use one component of FINDPOINT, namely ISPOINT, which decides whether or not
the supplied F is in fact a point; it has complexity O(d®) field operations.

Hence the problem of finding a tensor decomposition of an FG-module V as
U ® W, where U and W are modules for a covering group of G, is equivalent
to constructing a point in one of the two corresponding projective geometries: a
subspace of V' of the form u @ W or U @ w for u € U \ {0} or w € W \ {0}.

Assume that we have an irreducible G-module V' defined over the field FF =
GF(q), where G is isomorphic to SL(2, q) or to PSL(2, ¢). By Theorem 2.2,

V§T1®T2®"'®Tt, (*)

where T is the s;-fold symmetric power S; of the natural module M twisted by the
fi th power of the Frobenius map, with 0 < fi < fo<--- < fy<e,and 1 < s; <p
for all . Hence S;, which is a space of dimension s; + 1, can be viewed as the set of
homogeneous polynomials in z and y of degree s; over F', with the natural action of
SL(2,q). Accordingly G acts as SL(2,q) on S; and T; for odd s;, and as PSL(2, q)
for even s;. In particular, G is isomorphic to SL(2,q) if the number of odd s; is
odd (or if p = 2), and is otherwise isomorphic to PSL(2, q).

If p = 2 then s; = 1 for all ¢, and SL(2,q) = PSL(2,q). If p is odd, we need to
consider two cases:

(i) Suppose ¢ = 3 mod 4. Then the elements of SL(2,q) of projective order
(¢ —1)/2 define two rational conjugacy classes in PSL(2, ¢), one defined by
the elements of SL(2,q) of order ¢ — 1, and the other by the elements of
order (¢ — 1)/2. If g € SL(2, ¢) has projective order (¢ — 1)/2, then either
g has order ¢ — 1 and —g has order (¢ — 1)/2, or vice versa.

(ii) Suppose ¢ =1 mod 4. Then g € SL(2, q) has projective order (¢ — 1)/2 if
and only if g has order ¢ — 1, so the elements of projective order (¢ — 1)/2
define a single rational conjugacy class in PSL(2, q).

It is easy to find g € G of order ¢ — 1 for p = 2, or projective order (¢ — 1)/2
for odd p, by random search; see Section 7 for further discussion. It follows from
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the above analysis that if the eigenvalues of g in the natural representation are a*!
then o has order ¢ — 1 if p = 2, and order (q — 1)/2 if ¢ is odd.

Let g be such an element, with eigenvalues a®! in the natural representation.
If G is isomorphic to PSL(2, q), then there is an ambiguity in the sign of «, which
disappears since only even powers of « arise in this case. (No attempt will be made
to compute «, since this is not needed.)

Next let E denote the multiset of exponents of eigenvalues of g on V', expressed
as powers of some fixed primitive element 8 of GF(gq). The tensor decomposition
(%) expresses E in terms of ¢ arithmetic progressions, namely the sets of exponents
of eigenvalues of g on the symmetric powers T;. For all ¢, the length s; + 1 of the
i th arithmetic progression will divide the dimension of V', and will be at most p,
and FE is the multiset obtained by forming all possible sums constructed by taking
one summand from each arithmetic progression.

This gives rise to arithmetic progressions within E itself. If « = ™, then m is
coprime to (¢ — 1)/2, and

t
E= {mZtipf"} mod ¢ —1,
i=1
where t; takes each of the s; + 1 values in the set {—s;, —s; + 2, —s; +4,...,s;}.
Now, for some j, let us fix ¢; for all 4 # j, and let ¢; vary. This gives rise to an
arithmetic progression of length s; + 1.

Assume that the terms of this arithmetic progression correspond to eigenvalues
of multiplicity 1. Then the corresponding eigenvectors span a subspace of V' of the
form v ® T}, and such a space is a point in the corresponding tensor decomposition.
The tensor decomposition is now readily constructed, as shown in [20, §3]. In
particular, the corresponding action of G' on Tj is easily obtained. This may be
a projective action, so that an action of PSL(2,¢) may be lifted to an action of
SL(2,q).

How do we construct appropriate arithmetic progressions in E? If E contains
multiple entries then we remove all multiple entries from E, and we consider or-
dered pairs of the remaining elements of E as the first two elements in a possibly
appropriate arithmetic progression. If no multiple entries existed in the original
E, then we know that suitable arithmetic progressions of length s; + 1 exist for all
i, and since the product of the s; + 1 is the dimension d of V', we only consider
arithmetic progressions of length a multiple of the largest prime dividing d in the
hope that this will reduce the number of arithmetic progressions sent to ISPOINT.
Also, in this case we may clearly restrict attention to arithmetic progressions that
contain some randomly chosen but fixed element of E. If E did originally contain
multiple entries then, as we shall see later, s; > (p — 1)/2 for all 4, so in this case
we only consider arithmetic progressions of length at least (p + 1)/2.

These arithmetic progressions are tested in order of increasing length, until we
find a tensor decomposition of V', or conclude that none can be found in this way. By
testing the arithmetic progressions in order of increasing length we can be certain
that when a tensor factor is found it will be tensor indecomposable.

Since |E| is at most d there are at most d?7(d) arithmetic progressions to test, at
a cost of O(d®) field operations each, giving a bound of O(d°7(d)) field operations.

There are three outcomes to consider:

(a) a tensor decomposition of V is found;



CONSTRUCTIVE RECOGNITION OF PSL(2,q) 7

(b) no tensor decomposition is found, and every entry in E has multiplicity 1,
in which case V is tensor indecomposable; or

(¢) no tensor decomposition is found, and E has elements of multiplicity greater
than 1.

We need to determine what conclusions can be drawn from the last of these
possibilities. If V is tensor decomposable then clearly e > 1, and we shall see
that if e > 1 and F has elements of multiplicity greater than 1 then V is tensor
decomposable. This is the situation that we now investigate.

The multiset £ may be written as

[
{m) (si —2u)p'™" : 0<uw; <si},
i=1

where 0 < s; < p for each 1.

Suppose that some element in E has multiplicity greater than 1, this element
arising both from {u; | 1 < i < e} and from {u} | 1 < i < e}. Let w; = uj — u;.
Then

e
ZZwipifl =0 mod ¢g—1. (%)
i=1

Let S denote the left hand side of (xx). We may assume that S > 0. Since
—p < w; < p, we know that if S = 0 then w; = 0 for all 4, and this does not
correspond to a multiple entry in E. Hence we may assume that S > 0.

If S =2(q — 1) then w; = p— 1 for all 4, which implies that s; = p — 1 for all
i since w; < s; < p— 1. This means that we have the Steinberg representation.
For p odd other multiplicities will also arise from S = ¢ — 1, and since no suitable
arithmetic progressions can be found, all of these must be treated as exceptional
cases. If p = 2 then S must be even. Hence the Steinberg representation is the
only source of multiplicities for p = 2, and there is just one eigenvalue, namely 1,
of multiplicity 2. It follows that if e = 2 we have an exceptional case, but for e > 2
and p = 2 it is easy to find a suitable arithmetic progression, and this case can be
resolved using the general algorithm.

This leaves the case S = ¢ — 1; hence p must be odd. We now need to solve the
equation

e ) e 1 .

Zwip’_l = pr’_l mod g — 1,

=1 =1
with —s; < w; < s;. The most obvious solution to this equation is to take w; =
(p—1)/2 for all i; but other possibilities arise, in that we may add 1 to w; for ¢ > 1
provided we subtract p from w;_;. However, the condition —s; < w; < s; must be
preserved for all 4, and since s; < p, this clearly implies that w; = £(p £+ 1)/2 for
all 4.

Now suppose that s; < p— 2 for some j. Take u; = min(s;, (p—3)/2). Then for
any w; as above, of the two integers u; £ w;, one is negative and the other exceeds
sj. Thus neither is a candidate for ug., and hence any eigenvalue with this value of
u; has multiplicity one. Thus fixing u; at this value, and also fixing u; for all other
values of 7 with one exception, and letting u; vary in the range (0,...,s;) for this
exceptional value of i, a suitable arithmetic sequence is obtained.

Now suppose that e > 2, and that s; = p — 2 for some value of j. Since the
Frobenius automorphism permutes the entries of the tuple (sg,...,s.) cyclically,
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we may assume that j = 2. Now take u; = (p — 3)/2 and uz = (p— 1)/2. If
(u;) gives rise to an eigenvalue of multiplicity greater than 1, the corresponding
tuple (w;) must start ((p —1)/2,(p — 1)/2,...), or (—=(p+1)/2,(p+1)/2,...) or
(=(p+1)/2,—(p—1)/2,...). Now sz = p—2, and we may assume that s; isp—1or
p—2. But whatever the value of s1, it is easy to see that the tuple (u}) = (u;) £ (w;)
has one of the first two entries out of bounds. That is to say, either u} < 0 or u} > s;.
Thus if the first two components of (u;) are fixed as above, and all but one of the
other u; is fixed (here we use e > 2), a suitable arithmetic progression is obtained.

If e = 2 and s; > p—2 for each value of ¢ again no suitable arithmetic progression
can be found, and these cases are also considered in Section 5.

If s; < (p—1)/2 for some ¢ then u; < (p — 1)/2; so no multiple eigenvalues can
arise in this case, as stated above.

4. DECOMPOSING SYMMETRIC POWERS

We have now reduced the problem of constructing the natural representation of
G = SL(2,q) to the case where the input module V is the s-th symmetric power
of the natural module M for some s < p, and we wish to construct the natural
representation for G. Naturally we may assume that p > 2 and s > 1.

The aim of this section is to prove the following result.

Theorem 4.1. Let V be the s-th symmetric power of the natural module for
SL(2,q), where s < p. Let SL(2,q) = (g, h) where g has projective order (¢ —1)/2.
Given the elements of GL(V) that define the action of g and h, an ordered basis for
V can be constructed that exhibits V as the symmetric power in O(s*) field opera-
tions. Given k € GL(V), written with respect to this basis, one can determine in
O(s?) field operations whether or not k lies in the image G of SL(2,q) in GL(V).
Given that k is the image in GL(V') of some element u of SL(2,q), the image of u
in PSL(2,q) can be determined in a fixed number of field operations, independent
of q or s.

Note that the elements g and A could be readily found by random search; in the
context in which the theorem is used such elements will be known.

We prove this theorem by presenting an algorithm to accomplish the necessary
task. The argument in this section does not cover the following exceptional cases:
g <5;and s > (p—5)/2 where ¢ = p > 7 (unless p = 13 and s = 4). These excep-
tional cases — where ¢ is small compared to the size of the input — are considered
in Section 5.

It is convenient to abuse notation, and to write g and h for the images of these
elements in GL(V). Let g have eigenvalues a*' in the natural module M, and
let  and y be corresponding eigenvectors. Then V can be taken to be the set of
homogeneous polynomials in z and y of degree s, and {z®,z* ly,...,zy*~1,y°} is
then a basis of V' consisting of eigenvectors for g. Finding such an ordered basis
will exhibit the structure of V', as required. The corresponding eigenvalues can be
arranged to form a geometric progression, with common ratio o, or, reversing the
order, with common ratio a—2.

Our proof relies on two assumptions: the eigenvalues of g on V' all have multiplic-
ity 1, and can be arranged in only one way (up to reversal of order) as a geometric
series, so that a*2 can be determined. This implies ¢ > 5. The assumption of
uniqueness means that only one possible value for a? need be found. We will later
show that these assumptions hold for all but the exceptional cases mentioned above.
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The choice between o and o~ ! is a choice between z and y; so suppose that g,
acting on the natural module, has eigenvalue +a on z and £a~! on y. Then the
eigenvectors z°, 25 1y, ..., 2y 1, y® of g acting on V can be constructed, in order,
as above, up to non-zero scalar multiples. Choosing these eigenvectors at random,
we have an ordered basis

(60z®,612° 1y, ..., 0, 12y° ", 0,y°)

of V where the 8; are unknown. Since multiplying all the basis elements by the same
scalar does not change the matrices, we may assume that 8y = 1. Since multiplying
y by a scalar divides #; by the same scalar, we may also assume that ; = 1. The
other 6; will be calculated.

The element g was needed only to find the above basis for V. In particular, we
do not need to calculate a®2, but only decide on its uniqueness. We will return to
the question of uniqueness later.

Accordingly, suppose that h as above has matrix

(¢ 3

in its action on the natural module with respect to the ordered basis (z,y). We are
of course not given this matrix. Suppose first that ab # 0.
The image of the first basis vector pz® under h is

b0 (az + by)® = a®*6px® + sa*~'b(6p/61)012° 'y + -+,

from which we can read off the coefficients a®, sa®~1b(/61), etc., and hence find
(a/b)(61/60), (a/b)(02/61), etc. Since 8y = 6; = 1, this determines a/b and all of
the remaining 6;.

Clearly a = 0 if and only if x° is an eigenvector for h, and b = 0 if and only if y*
is an eigenvector for h. Thus the condition ab # 0 can be checked. If ab = 0 then
cd # 0, since h neither fixes nor interchanges the eigenspaces of g, as G is generated
by {g,h}. So if ab = 0 then the 6; may be determined by interchanging the roles of
z and y. In this way we can construct an ordered basis (z°,z° 1y,...,y°) for V,
corresponding to some ordered basis (z,y) for M, and take the 6; to be all equal
to 1.

Now let h be an arbitrary element of G, and again denote the matrix of h on M

by

a b

¢ dJ’
Suppose first that a # 0; equivalently that z® is not an eigenvector for h. The
image of the first basis vector z*® is now

(ax +by)® = a’z° + sa® ‘br" ly +--- .

From this we can read off a® and b/a. The image of the second basis vector z°~*
under h is

(az +by)* ez + dy) = a® ez’ + ((s — )a* 2be+a® Hd)z*ly + -

Y

From the first term, we can read off a® !c. Now since we already know a®, this
gives c¢/a. From the second term, we can read off (s — 1)a®~?bc + a®~1d. Having
computed a® and bc/a?, we can compute the first of these two monomials and hence
also a®*~'d and d/a. We have now computed b/a and ¢/a and d/a. Thus the image
of h in PSL(2, q) has been computed.
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Similarly we can deal with the case a =0 but d # 0.

If a = d = 0 then h maps z° to b°y® and 2° 'y to b5 'cxy®~!. From this we can
read off b/c, which again determines the image of h in PSL(2, q).

If a = 0, this is discovered by observing that h maps the first new basis vector
for V to a multiple of the last. Similarly, one can decide whether or not d = 0.

Thus, if h € G is given, then the image of h in PSL(2,¢q) can be determined
by looking at four entries of the matrix representing the action of h on the given
symmetric power of the natural module. Deciding whether or not A € G from this
matrix is of course more expensive. If G is known to act faithfully on this module,
so that h is determined by the above matrix, then it is a triviality to extend the
above analysis to decide whether or not A lies in G. But in general we will not have
this assurance, and will have to proceed as in Section 8.

What of our assumption that the eigenvalues of g have multiplicity one? Multiple
eigenvalues occur if and only if s > (¢ — 1)/2, which implies ¢ = p. If for example
q = p, and s = p — 3, then the multiset of eigenvalues consists of the identity with
multiplicity 1, and the other quadratic residues with multiplicity 2.

What of our second assumption that the eigenvalues of g on V' can be arranged
in only one way (up to reversal of order) as a geometric series? Assume that there
are no multiple eigenvalues (and so s < (¢ — 3)/2), but that the set E of exponents
of a that arise can be ordered in at least two essentially different ways to form
an arithmetic progression. We may take F to be an arithmetic progression with
common difference 2, either having an odd number of terms (when s is even) with
0 as the central element, or having an even number of terms with +1 as the two
central elements (when s is odd). Thus every element of E is even, or every element
of E is odd. If E consists of all even residues modulo ¢ — 1, so that the eigenvalues
consist of all the non-zero quadratic residues of GF(q), then the eigenvalues can
be ordered to form a geometric series with common factor 32 for any primitive
B € GF(q). A similar observation applies if E consists of all the odd residues
modulo g — 1.

If s = (¢ — 3)/2, then ¢ = p since s < p. It is now easy to see that distinct
arithmetic progressions occur for ¢ = p and s = (¢ — 3)/2 if and only if p > 7.

Now suppose that s < (g —3)/2. We consider the possibility that multiplication
by some integer k prime to ¢ — 1 should induce a permutation of £ modulo ¢ — 1,
where k is not congruent to £1 modulo ¢ — 1 if the elements of E are odd, and 2k
is not congruent to 1 if the elements of E are even. We may take E to be the
set of all odd or of all even integers in the interval [—s, s], and so s is the largest
element of E.

Suppose first that s is even. Replacing k by —k if necessary, we may assume that
1 < 2k < (¢—1)/2, and since k is prime to ¢—1 and we may assume g > 3, it follows
that 2k < (¢ — 1)/2. Since 2k € E it follows that 2k < s. Now s +2 — 2k € E,
but s + 2 ¢ E, so when FE is ordered as an arithmetic progression with common
difference 2k, it follows that s + 2 — 2k is the last element of E. If s+4 ¢ E
then since s + 4 — 2k € E we now have a contradiction, as E cannot have two last
elements. Thus s + 4 € E and the only element of the same parity as s missing
from E is s + 2. Hence we can deduce that E contains exactly (¢ — 3)/2 elements,
and so s = (¢—5)/2. Since (¢—3)/2 is even and s = (¢—5)/2 is even, ¢ = 1 mod 4,
and E consists of the even residues other than (¢ — 1)/2. In this case multiplying
by any odd residue modulo ¢ — 1 maps (¢ — 1)/2 to itself, and hence maps E to
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itself, and in general we have an exceptional case if s = (¢ — 5)/2 for ¢ = 1 mod 4.
If p = 13 there is just one arithmetic progression.

Now suppose that s is odd. Then we may assume that k£ < (¢ — 1)/2, and it
follows as before that k < s and s + 4 € E. This implies that ¢ = 3 mod 4, and FE
consists of the odd residues other than (¢ — 1)/2. Again this gives rise in general
to an exceptional case.

In summary, the elements of E can be arranged in more than one distinct way
as an arithmetic progression if and only if ¢ = p and one of the following holds:

(1) s=(p—3)/2 and p > 7, so that E consists of all even or odd residues; or
(2) s=(p—15)/2 and p > 11, p # 13, so that E consists of all but one of the
even or all but one of the odd residues.

5. DEGENERATE CASES

We have observed that the tensor decomposition algorithm does not apply if p
is odd and V has dimension p°® (the Steinberg representation), or if p is odd and
e = 2 and V has dimension p(p — 1) or (p — 1)?, or if p = 2 and V has dimension
4. Further, if e = 1 the symmetric power algorithm does not apply if s > (p—5)/2
and p > 7 (unless p = 13 and s = 4). In these cases ¢ is O(d), so it is easy to
recognise G explicitly using more elementary techniques which we now outline.

Omitting the trivial case p = ¢ = 3 and s = 2, assume ¢q > 4. Following Theorem
2.2, we reduce to the case where V is an absolutely irreducible GF(g)[G]-module.
We explicitly recognise G as follows. Since ¢ is small, we find x € G of order p by
random search. Then x has just one eigenspace on a symmetric power, and this has
dimension 1. Hence z has just one eigenspace, say (v), on the module in question,
as this is a tensor product of symmetric powers. The orbit of this space under the
action of G has length ¢ + 1, and we choose a (permutation group) base for the
action consisting of any three distinct spaces in the orbit, say {{v;) : 1 < i < 3},
where v; = v. We find g of order (¢ — 1)/2 for ¢ odd, and order ¢ — 1 for g even,
that fixes (v1) and (v2), and a of order 2 that interchanges these two spaces. Now
x, x* and g, when referred to an appropriate basis, lift in SL(2, ¢) to its Chevalley

generators
11 1 0 a 0
0 1 9 1 1 9 0 a~ 1 )

where « is a primitive element of GF(¢)* (or possibly minus a primitive element if
g = 3 mod 4).

We now use this explicit recognition to decompose the tensor product, when
e > 2, and to recognise the symmetric power when e = 1. Thus, to find a tensor
decomposition of the given G-module V', having recognised G explicitly, we can
construct the required tensor product U ® W, and find an explicit isomorphism
between this module and V; we can either do this using the algorithm of Holt &
Rees [15] which has complexity O(d®) field operations, or we can construct one
readily by observing that an isomorphism must send the eigenspace of z in U @ W
to the eigenspace of  in V. There is a certain ambiguity in the choices for U and
W when the given module V has dimension p(p — 1) and e = 2. Then U and W
are the (p — 1)st and (p — 2)nd symmetric powers of the natural module, up to
a choice of a Frobenius automorphism of G. Since e = 2, there are precisely two
possibilities, and the choice can be settled by trial and error. (This ambiguity is
already present in the isomorphism between G and PSL(2,q).) Since e = 2 the
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automorphisms of PSL(2, ¢) induced by conjugation in GL(2, q) form a subgroup of
index 2 in the full automorphism group, the Frobenius automorphism giving rise to
the non-trivial coset. The case of a symmetric power is similar, but simpler. When
V has been explicitly recognised as a symmetric power, a basis for V' consisting
of monomials in z and y of degree s has been found, and so our algorithm for
recognising G explicitly can be used.

6. THE NATURAL REPRESENTATION

The explicit recognition algorithm for SL(2, ¢) in its natural representation takes
as input a generating set X for SL(2,q), and writes any element of SL(2,q) as a
word on X.

A canonical generating set for SL(2, q) in its natural representation consists of a
lower-triangular matrix, an upper-triangular matrix and a diagonal matrix

1 0 1 ¢ ndaO
b 1)’ 0 1) 2 0 al)’

where « is a primitive (¢ — 1)th root of 1 and b,c € GF(¢)*. If b=¢c =1 we
refer to this set, and to its image in PSL(2, q), as a Chevalley generating set. The
preprocessing stage of the algorithm finds such a canonical generating set as words
on X. A word for an arbitrary element of SL(2,q) on the canonical generating set
is now obtained readily by echelonising the corresponding 2 x 2 matrix, and so we
can write any element as a word on X.

For completeness, we summarise the algorithm of [9] to construct such a canonical
generating set for SL(2,q). Let H = (X) be the input group generated by 2 x 2
matrices of determinant 1.

(1) Find by random search an element A in H of order ¢ — 1.

(2) Compute eigenvectors u and v of A, with corresponding eigenvalues « and
a~ L

(3) Let B be a random conjugate of A.

(4) Find an element C of H and an integer 4 such that BC fixes (u). Since A
and B(C lie in SL(2, ¢) and have a common eigenvector u, their commutator
S = [A, BiC] is a transvection fixing u.

(5) Similarly, find a random element D of H and a j such that B/ D fixes (v)
and T = [A, B/ D] is not trivial. Now, T is a non-trivial transvection fixing
v.

(6) Write S, T, A with respect to the ordered basis (u, v) to obtain the canon-
ical generating set for SL(2, q).

Step 4 is the core of the algorithm. Observe that 4 exists if and only if (u)C~!
lies in the orbit of (u) under (B). In odd characteristic, since B has order ¢ — 1,
this orbit consists of approximately half the 1-dimensional subspaces of the natural
module; in even characteristic, the orbit has length ¢ — 1 and consists of every
1-dimensional subspace other than the eigenspaces of B. Hence a suitable C' can
be found easily. The requirement that B*C fixes (u) is equivalent to the condition
that a? = u, where u € GF(q) is determined by the choice of C, which choice
must be made in such a way that p is a square in GF(g). Computing i relies on a
discrete logarithm oracle.
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7. THE ALGORITHM AND ITS COMPLEXITY

Assume we are given as input a subset X of GL(V'), where V is a finite dimen-
sional vector space over a field with the same characteristic as GF(q), and that
G = (X) is isomorphic to SL(2,q) or to PSL(2,q). We consider the complexity of
our algorithm to recognise G' and discuss membership testing in G.

Following Section 2, we construct an absolutely irreducible representation of G
over GF(q). Following Section 3, we obtain a tensor indecomposable representation
of G, and then following Section 4, we construct the natural linear (or projective)
representation of G. Following Section 6, we find canonical generators of PSL(2, q)
as words in the images of the elements of X.

The complexity of the MEATAXE is generally O(d®) field operations, but in one
case is O(d*) [15], [17]. The complexity of writing an irreducible representation in
smaller dimension over a larger field is O(d®) field operations in the smaller field
[15]. The complexity of writing an absolutely irreducible representation in the same
dimension over a smaller field is O(d®) field operations in the larger field [13]; this
also assumes the existence of a discrete logarithm oracle for the smaller field. Here
the smaller field is GF(g), and we already use a discrete logarithm oracle for this
field for the explicit recognition of PSL(2, ¢) in the natural representation.

The complexity of constructing a tensor decomposition of the given module, or
of proving it to be tensor indecomposable, was given as O(d°7(d)) field operations
in Section 3. This estimate was based on an analysis of the general case, when the
set E of exponents of eigenvalues of multiplicity 1 contains a suitable arithmetic
progression. In the exceptional cases, when this does not apply, ¢ is small enough
for elementary methods, as in Section 5, to be faster than the above bound. The
estimate of O(d°7(d)) comes from a factor of d3, arising from the cost of ISPOINT,
a factor of d? arising from the possible choices of the first two elements of the
arithmetic progression, and a factor of 7(d), the number of divisors of d, as the
number of possible lengths of the arithmetic progressions.

This bound is probably significantly too high. It takes no account of the re-
strictions imposed on the arithmetic progressions that need to be considered. For
example, if all eigenvalues have multiplicity 1, the length of the progression is re-
quired to be a multiple of the largest prime dividing d, and it is also required to
contain some fixed element of E. The former condition should become more effec-
tive as the prime in question increases, but is of course vacuous if d is a power of 2.
Perhaps a more significant consideration is the fact that many pairs of elements of
E will not be the first two terms of any arithmetic progression of length dividing
d and passing through a given element of E. Similar considerations might produce
a better bound when there are multiple eigenvalues, as in this case we need only
consider arithmetic progressions of length at least (p + 1)/2.

The function 7(d) is rather ill-behaved, having average order log(d). (All loga-
rithms are natural.) The normal order of log(7(d)) is log(2) loglog(d), and if € > 0
then

7(d) < 2(1+)log(d)/loglog(d)
for all sufficiently large d, while also

T(d) > 9(1—€)log(d)/loglog(d)
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for infinitely many values of d; see pp. 64, 359 and 262 of [14] for details. On a more
mundane level, 7(d) < 32 for d < 1000; hence, it is not a significant contributor to
the practical cost of the algorithm.

The complexity of the symmetric power algorithm is more straight-forward: the
small number of matrix multiplications and linear algebra computations give a
complexity of O(d?) field operations.

A central task at various points in the algorithm is to find an element of order a
divisor of (¢ — 1) by random search. The proportion of elements of PSL(2, ¢) of the
required form is (3¢(q — 1)) /(¢ — 1). Since ¢(q — 1)/(¢ — 1) > 1/loglogq (see [23,
§I1.8]), we expect to make at most O(loglog ¢) random selections to find a suitable
element. In practice, random elements are constructed using the algorithm of [12];
after an initial preprocessing stage, the cost of obtaining one is just two matrix
multiplications.

Some of the procedures used are Las Vegas, for example the MEATAXE; hence
the corresponding complexity is Las Vegas.

The recognition algorithm should be considered as having two stages. The first
finds a symmetric power of the natural representation within the given represen-
tation, and a basis that exhibits this structure; the second finds the image of
g € GL(V) in the natural representation of G (or proves that the given element
does not lie in G). The first stage is carried out once, but the second stage may
need to be performed many times.

Suppose then that the first stage has been carried out. This can give rise to
a change of basis for the given module as follows. First we choose an irreducible
section S/T of V and so take the new basis to contain a basis for S that in turn
contains a basis for T. We are now only concerned to change basis elements that
lie in S but not in T'. This section S/T might not be absolutely irreducible. In this
case a change of basis is produced that exhibits S/T as a matrix group over the
larger field, elements of the larger field being represented by submatrices. It may
now be possible to write this section over a smaller field, in which case a further
change of basis will exhibit this fact. The relevant section of the given module has
now been written over GF(q), the elements of GF(q) appearing either as matrix
entries or as blocks. A further change of basis exhibits S/T as a tensor product, so
the elements of G are now represented by the Kronecker product of two matrices,
one of which gives the action on a symmetric product. A final change of basis
exhibits the structure of the symmetric product.

Constructive membership testing can now be readily carried out. If g € GL(V)
is an element of G, then g must preserve the various structures. If so, we perform
the necessary change of basis; now, to obtain the image of g in PSL(2, ¢), it suffices
to read off 4 of the entries of the matrix giving the action of g on the symmetric
product. (These are only determined up to multiplication by a scalar in GF(q),
but only the ratio between entries is significant.) This image is then expressed as
a word in the canonical generators of PSL(2,q), and the word is evaluated in the
corresponding elements of G; comparing the resultant element of G with g now
decides the membership question. Membership testing is dominated by the cost
of evaluating the word, which we shall see in Section 8 is O(d®) field operations,
together with the use of the discrete logarithm oracle.

In practice, the recognition algorithm is most likely to be used while recognising
a matrix group of large dimension over a field of modest size. If an irreducible
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representation arises that is not absolutely irreducible, this may give rise to a rep-
resentation of small degree over a large field. Hence, practically, we are not so much
concerned with the complexity as a function of d as its dependence on gq.

Clearly a precise bound to the complexity of the algorithm should make some
reference to the size of the given generating set. If the generating set is large, it
should be easy to find a small generating set for G to complete the first stage of the
algorithm without considering all of the generators. However, if a proof is required
that the given generators do in fact generate PSL(2, ¢) modulo scalars, rather than
some larger group, then every generator must be run through the second stage.

8. DECIDING ISOMORPHISM

Recall that our algorithm takes as input a subset X of the matrix group GL(V)
which is known to generate a group G isomorphic to SL(2, q) or to PSL(2, ¢), and
constructs the natural projective representation of G by constructing the image of
X under some homomorphism of G' onto PSL(2, g).

Suppose now that G is isomorphic to SL(2,¢), and an isomorphism 6 : G/{(G)
onto PSL(2, ¢) has been constructed. How do we lift § to an isomorphism from G
to SL(2,q)? Clearly this problem only arises when ¢ is odd.

To construct such an isomorphism ¢, suppose first that 8 has been lifted to a
map, also denoted by 6, from G to SL(2,q). Then ¢(g) € {£6(g)} for all g € G.

If the order of g is odd, then the sign is determined by the fact that ¢(g) is of
odd order. Also, if we have an expression for g as a product of commutators (G is
perfect) then ¢(G) can be computed by applying 6 to this expression, as ambiguities
in the sign do not affect the value of a commutator. If the order of g is even, we
can multiply g by a random product of commutators, say ¢, to produce an element
h = gc of odd order. Then we can compute ¢(h) and ¢(c), and hence ¢(g). The
order of an element of GL(d, ¢) can be found using the algorithm of [11]; since we
need only learn if the order is even or odd, the associated integer factorisation can
be avoided and so the cost is O(d?) field operations.

The proportion of elements of PSL(2, ¢) of odd order is greater than 1/2. We are
here concerned only with the case of odd ¢. Then if u is the 2-adic value of ¢ — 1
and v is the 2-adic value of g+ 1 it is easy to see that the proportion is 1/2%+41/27;
since u or v is 1, this proportion is greater than 1/2.

A second related problem is the following. How do we verify that the input group
G is isomorphic modulo scalars to PSL(2, ¢)? Having constructed a surjection from
G to PSL(2,q), we can find elements of G that map to the Chevalley generators
of PSL(2,q). We must determine the kernel of this map. To do this, we use the
short presentation of Todd [24] for PSL(2,q) on its Chevalley generators. (Here
short implies that the presentation has length that is polynomial in the rank of
the group and the logarithm of the field size.) We first evaluate these relations
on the corresponding elements of G. If these all yield scalars, the next step is to
evaluate for all g in a generating set of G the image of g in PSL(2, ¢), express this
element as a word in the Chevalley generators of PSL(2, ¢), evaluate this word on
the corresponding elements of G to produce some h € G, and finally check that
gh~1 is a scalar.

In practice, all words are constructed and stored as straight-line programs, be-
cause the length of a word in a given generating set constructed in n multiplica-
tions and inversions can increase exponentially with n, whereas the length of the
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corresponding straight-line program is linear in n. One may intuitively think of
a straight-line program for h € (X) simply as an efficiently stored group word on
X that evaluates to h. More precisely, a straight-line program is a list of pointers
or pairs of pointers. If an item contains a single pointer, the pointer will either
point to an element x of X, in which case the item represents the word (); or it
points to an earlier item, in which case it represents the inverse of the word repre-
sented by that item. If an item contains an ordered pair of pointers, these pointers
will point to earlier elements of the list, and the item represents the product in
that order of the words defined by these elements. (For example, the list of words
z,y,z~ 1, 271y on the set X = {z,y} may be represented by the straight-line pro-
gram [p,,py,1,(3,2)].) We allow a third type of item consisting of a pointer to a
previous item and an integer. If the previous item represents the group element g,
and the integer is n, the item represents g™. This is significant since such items
with large values of n arise naturally, and elements of GL(d,q) can be raised to
high exponents with O(d?) field operations.

More generally, if G is a matrix group in characteristic p defined by a generating
set X, one wishes to determine a composition series for G. Following the strategy
of the matrix recognition project [19], we first find a composition series for the
given module V, and determine G/O,(G) as the image of G acting on the direct
sum of the composition factors of V. Finding a composition series for G/O,(G),
and recognising the composition factors explicitly, enables one to construct random
elements of O,(G). But can we prove for example that O,(G) is trivial? To do
this, it seems necessary to construct a presentation of each composition factor of G
on the generating set found for it. This enables one to construct a presentation for
G/O,(G) on the image of X, and hence to obtain, with proof, a generating set for
Op(@G) as a normal subgroup of G.

Can we complete this task in polynomial time? To do this, given a generating
set X for a simple projective matrix group H, we need to determine the name of
H, construct a canonical generating set for H, find a short presentation for H on
this generating set, and write an arbitrary element of H as a straight-line program
on this generating set, all in polynomial time.

The critical case is when H is a group of Lie type, with natural characteristic p.
We may use the (non-constructive) polynomial-time Las Vegas algorithm of Babai
et al. [1] to name the group. Given an oracle that recognises PSL(2,q) explicitly,
the algorithms of Brooksbank & Kantor [6] construct Chevalley generating sets for
the classical groups in time polynomial in the size of the input. Babai et al. [3] and
Hulpke & Seress [16] give short presentations of every group of Lie type that is not
2G5 (3%m+1) on its Chevalley generators.

Hence we can provide a partial answer to the following challenge problem of
Babai & Shalev [2]:

(p-core problem.) The big open problem is to decide whether or not
Op(GQ) =1 where Oy(G) is the p-core of G (the largest normal p-
subgroup) and G is a matriz group over GF(p) or more generally, a
black box group of characteristic p. Is the p-core problem any easier
for matrix groups than for black-box groups of characteristic p?

They define a group H as a black box group of characteristic p if H is a black-box
group of some encoding length n, and H is isomorphic to a quotient of a subgroup
of GL(d, p) where d = |n/logp|, and p is known. The significance of this definition
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is that the composition factors of H are either of Lie type in characteristic p, or
have order bounded by some polynomial function of .

As far as current algorithms are concerned, the Op(G) problem has complexity
that is exponential in the encoding length n in the black-box case, since GL(2d, p)
contains copies of SL(2,p?), and it is not known how to find a transvection in
SL(2,p?), as a black-box group, in sub-exponential time. But in the matrix group
context, the problem can now be solved in polynomial time given a discrete log-
arithm oracle for GF(q), when the input is a group of Lie type for which the
recognition problem can be reduced in polynomial time to an SL(2,q) oracle.

9. IMPLEMENTATION AND PERFORMANCE

An implementation of the complete algorithm is publicly available in MAGMA.
The computations reported in Table 1 were carried out using MAGMA V2.10 on
a Pentium IV 2.8 GHz processor. The input to the algorithm is an absolutely
irreducible (projective or linear) representation of SL(2,p¢) given as a subgroup of
GL(d, p*). In the column entitled “Factors”, we list the degrees of the tensor factors
for this representation. In the column entitled “Time”, we list the CPU time in
seconds needed to recognise the group and to construct the isomorphism between
the input representation and the natural representation.

TABLE 1. Performance of implementation for a sample of groups

d pl| e Factors | Time
12 | 5 3,4 0.1
27 | 31|20 3,3,3 4.9
36 | 5|19 3,3,4|276.1
45 | 7|10 3,3,5 94
48 | 5|10 3,4,4| 18.7
48 119 | 10 3,4,4| 504
60 | 5|10 3,4,5| 228
60 | 19 | 10 3,4,5| 658
72| 7110 3,4,6| 46.0
108 | 5|10 3,3,3,4|249.7
128 | 2| 10 | 7 factors of degree 2 | 19.8
128 | 2| 19 | 7 factors of degree 2 | 222.5
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